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ERGODIC THEOREMS FOR WEAKLY INTERACTING
INFINITE SYSTEMS AND THE VOTER MODEL
By RICHARD A. HOLLEY! AND THOMAS M. LIGGETT?

University of Colorado and University of California, Los Angeles

A theorem exhibiting the duality between certain infinite systems of
interacting stochastic processes and a type of branching process is proved.
This duality is then used to study the ergodic properties of the infinite
system. In the case of the vector model a complete understanding of the
ergodic behavior is obtained.

1. Introduction. In this paper we use the duality between certain systems of
infinitely many interacting stochastic processes and a type of branching process
to study the long term behavior of the infinite systems. The models which we
study here are similar in many respects to the contact processes of Harris (1973).
In fact, Sections 3 and 4 of our paper may be viewed as part of a continuing
program initiated by Vasershtein (1969) and Dobrushin (1971) and carried for-
ward by Harris (1973) to find conditions which guarantee that the interactions
in an infinite system of interacting stochastic processes are weak enough so that
the system is ergodic (i.e., has a unique stationary measure to which the distri-
bution at time 7 converges weakly as ¢ goes to infinity). This program is rather
complex and involves coupling several systems together in order to reduce the
problem to one concerning a process which we call a proximity process. Rather
than attempt to describe the original problem and the couplings involved in the
reduction to the proximity process we refer the reader to the original papers of
Vasershtein (1969), Dobrushin (1971), and Harris (1973), and to a recent paper
by Griffeath (1974). We concentrate our attention on the proximity processes,
which are described below.

Let / be a countable set and let S = {0, 1}*. A proximity process is a particular
type of Markov process 7,, with state space S. Thus 7,(i), the value of the ith
coordinate at time 7, is a stochastic process which takes the values zero and one.
The time parameter may be either discrete or continuous; however, since it is
easiest to define the transition function for the discrete time processes we do that
here. The general continuous time proximity process is described in Section 2.
The transition function for the discrete time proximity process is a product
measure on S each of whose factors depends (in a way to be described) on the
configuration at the time of the transition. Thus the transition function is
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given by

(1.1) Q(77’ ') = HteI”u(i,ﬂ),i(') s

where a(i, ) is defined below and v, ; is the probability on {0, 1}, which puts
mass p on {1}. In order to define a(i, ) we let, foreachiel, {@ = N, 4, N; 1, - -}
be a finite or countable collection of finite subsets of 7, and let f;(+) be a prob-
ability distribution on the nonnegative integers. For e S set

(1.2) Cp) ={iel:n(1) =1}.
Finally let D(i, 7) = {k: N, n C(7) # @}. Then
(1.3) ai, ) = Lrepu,p filk) -

Intuitively what happens is that at time n the process at each site i looks into
each of the sets N, ,. If N, , contains at least one site j with »,(j) = 1, then the
process at site i adds f;(k) to the probability that at time n 4 1 it will be a one.
Each site does this and then at time n + 1 they all change to their new states,
each making the choice independently of the others.

As a specific example let / = Z?—the square lattice—and let N, , = @, N, , =
{j: |i — j| = 1}—the four nearest neighbors of i. If f;,(0) = 1 — pand fi(1) = p,
then before every transition each site looks at its nearest neighbors and if any
of them is a one then with probability p it is a one at the next time. If all of
its neighbors are zero, then with probability one it is a zero at the next time.
It is clear that the configuration which is identically zero is absorbing for this
process. If p is small enough the measure concentrated on the configuration
which is identically zero is the only stationary measure and the distribution of
the process at time ¢ converges weakly to this measure. Corollary (3.1) implies
that if p < £ then this is the case; and by applying the techniques of Section 4,
one can easily show that if p < .31 it is still the case.

When the coupling program mentioned earlier is carried out, the parameters
of the original process determine the parameters of the proximity process. If
the proximity process has only one stationary measure, then the interactions in
the original process are sufficiently weak that it too has only one stationary
measure and the distribution at time ¢ converges weakly to that measure as ¢
goes to infinity.

We study the proximity process by passing to a dual process which we call a
branching process with interference.' A (discrete time) branching process with
interference (b.p.i.) is a Markov chain, 4,, whose state space is the set of all
finite subsets of 7. The transition function for the branching process with inter-
ference is given by

(1.4) O(4, B) = 3 Tlieafilks) »
where 4 and B are finite subsets of 7, and Y’ denotes summation over all se-

quences {k};, such that ., N;,, = B. Here {f;} and {N,,} are as before.
Intuitively what happens in a b.p.i. is that if there is a particle at site i at time
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n, then during the transition to time n ++ 1 that particle splits, with probability
fi(k), into particles which occupy the sites of N, ,. Note that since N, , = @,
the particle just dies with probability f;(0). Each particle alive at time n does
this independently of the others; however, the new particles interfere wiih each
other in that if two of them try to occupy the same site only one of them survives.
Thus the state at time n 4 1 is the union of a collection of random sets. Each
site which is occupied at time n contributes one, possibly empty, randomly
chosen set to this union.

We denote the set of all finite subsets of / by .77, Let B(@®) = S and for any
nonempty element, F, of .7~ define B(F) C S to be

(1.5) B(F)={peS:nl) =0 forall ieF}.

The connection between a proximity process and the corresponding b.p.i. is
revealed in Theorem (1.6).

(1.6) THEOREM. Let 0, be the proximity process determined by the finite sets
{N; .} and probability distributions {f;}, and let A, be the b.p.i. determined by the
same finite sets and distributions. For F e 7 let B(F) be given by (1.5) and for
ne S let C(n) be given by (1.2). Then for alln = 0, ne S, and F ¢ 7 we have

(1.7) P (1. € B(F)) = Pr(4, 0 C(1) = O) -

The subscripts » and F in P,(+) and P,(-) indicate the initial state of the
proximity process or b.p.i. respectively. We use the letter P for both processes
and the initial state indicates which process we are talking about.

Section 2 is devoted to the proof of Theorem (1.6) and its continuous time
analogue. Sections three and four contain four simple applications of these
theorems. Of these applications only Corollary (4.15) cannot be easily obtained
from previously known results and techniques. This paper came about as an
attempt to unify and simplify the previous methods. That is our justification
for including the other three examples. In Section 5 we give a much more
interesting application of the duality theorem to the “voter model”.

The term “voter model” will be used to describe the continuous time proximity
process in which the sets N, , are singletons for k > 1, which we may as well
take to be distinct for each i, and f,(0) = O for all i ¢ /. The interpretation of
the process which leads to this terminology is that the ith individual periodically
reevaluates his position or some issue (the two possible positions on the issue are
denoted by 0 and 1), and at each time of reevaluation, he chooses to espouse
position 1 with probability >] f,(k), where the sum is taken over those k for
which the individual N, , favors position 1. The fact that N, , = {i} for some k
is possible permits the individual to let his own previous choice affect his future
choice. ‘ :

Let U, be the semigroup corresponding to this proximity process, and let .*
be the set of invariant probability measures for U,:

f:{ﬂ:ﬂUt:‘u for all 120}
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Let .7, denote the set of extreme points of _”. The first problem we deal with
in Section 5 is to describe #,. Then for a given p e %, we give necessary and
sufficient conditions on an initial distribution v so that vU, — p as r — oo. The
techniques used are similar to those used by Liggett (1973), (1974), and Spitzer
(1974) to solve the same problems for a different infinite particle system. The
continuous time version of Theorem (1.6) plays the same role in this study that
Theorem (1.1) of [6] did there.

In order to state a restricted version of the results of Section 5, let / be the d-
dimensional integer lattice, and assume that the process is translation invariant,
which means that N, =i + N,, and f,(k) = f(k) for all iel. Let X,(r) and
X,() be independent copies of the random walk on 7 which has exponential
waiting times with parameter one at each point and transition probabilities
P@, j) = fi(k) if N;, = {j}. Assume that f,(k) is such that these chains are irre-
ducible. Then X(f) — X,(7) is an irreducible symmetric random walk on /.
There are two cases to be considered, depending on whether X,(f) — X,(¢) is
recurrent or transient.

(1.8) THEOREM. Assume that X,(f) — X,(t) is recurrent. Then

(a) S, = {vo» v:}, where v, and v, are the point masses on the configurations n = 0
and y = 1 respectively.

(b) If v is any translation invariant probability measure on S, then vU, — Ay, +
(1 — A)v,, where 2 = v{n(i) = 0}.
(1.9) THEOREM. Assume that X,(t) — X,(¢) is transient. Then

(a) For every p €0, 1], there is a translation invariant and ergodic probability
measure 1, on S such that p,e 7, and p {n(i) = 1} = p.

(®) S ={n:0=p=1}

() If v is any translation invariant and ergodic probability measure on S, then
vU, — p, where p = v{n(i) = 1}.

Of course, Theorem (1.9) holds whenever d > 3, while Theorem (1.8) holds
if d =1 and )}, p(0,))|j| < oo ord =2 and };; p(0, j)| j|* < co. Therefore in
a one or two dimensional world, a consensus is approached as r — co. In higher
dimensions, however, differences of opinion tend to persist.

One of the main advantages of introducing the b.p.i. in the study of proximity
processes is that it turns questions about stationary measures for the proximity
process into questions about harmonic functions for the b.p.i. The latter are
considerably easier to handle. In Sections 3 and 4 we essentially find conditions
which guarantee that the only bounded harmonic functions for the b.p.i. are
constants. In Section 5 we consider situations where there are nonconstant
bounded harmonic functions for the b.p.i. (we assume that the one particle
process has only constants as its bounded harmonic functions but not the b.p.i.)
yet we are still able to analyze the bounded harmonic functions of the b.p.i.
well enough to learn a good deal about the stationary measures of the proximity
process.
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2. The duality theorems.

PrOOF oF THEOREM 1.6. Let {Xintiel,n=1,2,...} beaset of independent
random variables such that X, , has distribution fi for all n. Given 7 ¢ S define
7, inductively by

o =7
2.1) M) =1 if Ny, 0 C) #+ @
=0 otherwise.
Since the X; , are independent, it is clear that », is a Markov process and it is
easily checked that its transition function is given by (1.1).

Now given F e.7 define 4, inductively by

(2.2) Ay =F

An+1 = UieAn Ni,Xiy,,H_l *
Again it is easily checked that 4, is a Markov chain with transition function
given by (1.4).

We prove that (1.7) holds by induction on n. For n = 0 both sides are either
zero or one, and they are clearly equal. For n = 1 we have

(2.3) P(n € BUF)) = 2" Iier fulks) »
where the summation 3’ is over those sequences {k;: i € F} for which Nig, 0
C(y) = @. We also have

(2-4) Pp(4, 0 C(7) = @) = X" [Lier filks) »
where the summation 3}’ is over the same sequences of k’s as in (2.3). Thus
the theorem is true for n = 1. Assume as the inductive hypothesis that (1.7) is
true for n and for all Fe .7 and ye S. The summations below extend over all
sequences {k;: i ¢ F}.
Pp(A,.. N C(p) = D)
(2.5) =2 Pp(4,: N C(n) = @ | X,, =k, forall ieF)
X P(X;, = k; forall ieF)
=2 Pyiepw, (4, 0 C(p) = Q)P(X,, =k, forall icF).
And ’
(2.6) P (urr€ B(F)) = 3 P, (9,41 € B(F)| X, .4y = k; for all ieF)
X P(X; 411 =k, forall ieF).

From the definition of the 7, we see that y,,, e B(F) if and only if 7, e
B(UieFNi,Xi,n.,.l)' Thus
(2.7) P (ni1€ B(F)| X sy =k, forall ieF) = P (7, € B(Uer Ni,ki)) .

Using (2.7) and the assumption that for fixed i the X, , are identically dis-
tributed we see that

(2.8) P (1,41 € B(F)) = 3 Py €B(Uier Nip)P(X;, = k; forall ieF).
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The proof is completed by applying the inductive hypothesis to (2.8) and (2.5).

We turn to the continuous time version of Theorem (1.6). The continous time
proximity process is identified by means of the infinitesimal generator of the
corresponding semigroup. We make S into a topological space by giving {0, 1}
the discrete topology and S the resulting product topology. <7(S) is the set of
continuous functions on Sand & C <(S) is the set of functions which depend on
only finitely many coordinates. Consider the linear operator, .97, on & given by

(2.9) ) = Dier et MLAm) — fn)]
where
#1(7) = 2()) if j#i
=1—-9() if j=1i,
and (i, 7) = e[[(1 — 7())a(i, 7) + 26)(1 — a(i, )] with a(i, 7) as in (1.3).
The following theorem is an immediate consequence of Theorems (2.8) and
(4.2) of Liggett (1972).

(2.10) THEOREM. Let {N,,:iel,k =0,1, ...}and{f} beas in the introduc-
tion and denote the number of elements in N, , by |N, ,|. If

(2.11) supP;er €1 + Xse [Nkl fuk)] = B < o0,

then there is a unique strongly continuous semigroup of positive contractions, U,:
E(S) — €(S), whose infinitesimal generator, .87, when restricted to 7 is given by
(2.9).

The semigroup U, is the semigroup of the continuous time proximity process.
The voter model described in the introduction is an example. Processes with in-
finitesimal generator of the form (2.9) but without the assumption on the nature
of ¢(i, ») have been studied by Dobrushin (1971) and Spitzer (1971). Intuitive
descriptions of such processes may be found there.

The continuous time branching process with interference is a pure jump pro-
cess with state space 7. If 4, Be 7 and 4 + B, then g, ;, the infinitesimal
rate of transition from 4 to B, is given by

9da,B = ZieA ZkeQ(A,B,i) Cif;-(k) s

where Q(4, B, i) = {k: (A\{i}) U N, , = B}.

We can construct the continuous time branching process with interference as
follows. Let {R,(f): ic I} be a famiiy of independent Poisson processes, the ith
one having intensity c,, and let {X, ,: iel,n=0,1,2, ...} be a set of random
variables independent of each other and of the {R,}, with X, , having distribution
fi- Given Fe 7 let 4, = F and T, = 0 and define 4, and T, inductively by

T,,, = inf{t > T,: R(t) + Ry(T,) for some ie A,}
and
A'n+1 = (An\{i}) u Ni’Xi,'n ’
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where i is the element of 4, for which R,(T,,,) # R,(T,). Finally set 4, = 4,
for T, <t < T,;;. A, is the continuous time b.p.i. determined by {c,}, {N, .},
and {f;}. It is easily checked that 4, is a pure jump Markov process whose in-
finitesimal parameters are ¢, ;. There is the possibility that lim,_, T, < oo, in
which case 4, is not defined for all # > 0; however, we shall show in Lemma
(2.19) that if (2.11) holds, this does not happen.

(2.12) THEOREM. Let {c;}, {N,,}, and {f;} satisfy (2.11) and let 7, and A, be
the corresponding continuous time proximity process and b.p.i. Then for all F e .7,
neS,andt =0

(2.13) P,(n. € B(F)) = Py(4, 0 C() = @) -

Conceptually the proof of Theorem (2.12) is merely a passage to a limit using
Theorem (1.6); however, there are several technical difficulties which are con-
nected with that a priori lim,_,, 7, may not be infinite. Therefore we begin by
proving the theorem in the case that / is a finite set.

(2.14) LEMMA. If I is a finite set, then Theorem (2.12) is true.

ProoF. Let 8 be as in (2.11) and for each 2 > 8 let f,'» be the probability
distribution on {—1, 0, 1, - ..} given by

fiP(k) = ¢, fi(k)]2 if k=0
=1—¢/2 if k=—1.
Define
N, =N, if k=0

Let 0, and B, be the discrete time proximity process and b.p.i. determined
by {f;®} and {N,,}. Finally let R(f) be a Poisson process with intensity 2 and
set 9, = off), and 4,% = B),. It follows immediately from Theorem (1.6)
applied to ¢, and B,® that

(2.15) P (7" € B(F)) = Pe(4,> 0 C(n) = D).

Now 7%, 4,%, 5,, and 4, are all finite state space Markov processes; and thus
to show that the finite dimensional distributions of 7, and 4, converge to
those of 7, and 4, respectively, it is enough to show that the corresponding in-
finitesimal parameters converge. This is an elementary computation which is
left to the reader. The lemma follows from (2.15) and the convergence of the
respective finite dimensional distributions.

In order to pass from the finite to the infinite case we need to use Theorems
(2.8) and (4.2) of Liggett (1972) and approximate the infinite procesées by finite
ones. Thus for each finite subset J < 7 we define Ny} fori e Jby N) = N, , n J.
We then define 7,/ and A4, to be the proximity process and b.p.i. on {0, 1}
and the subsets of J respectively determined by {c,}, {N\}} and {f,}. The 5,
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process has an infinitesimal generator %> which satisfies

(2.16)  AVf(n) = Lieyel(1 — 9(@)a (@ 1) + 9(@)(1 — a”@ 7))
X [fGn) — f()] -

The right side of (2.16) makes sense for f € (S) and in fact we want to think
of 5, as a Markov process on S for which all of the sites outside of J never
change.

Let {J,} be a sequence of finite subsets of / with J,  J,,,and U, J, = 1. We

replace all superscripts (/,) with (n). It is easily checked that if e =7, then

lim,_, sup,cs |- "f(n) — f(n)| = 0

Thus if U,™ is the semigroup of the process 7,, Theorems (2.8) and (4.2) of
Liggett (1972) imply that when (2.11) is satisfied

(2.17) lim,_,, SUPogi<t, SUP,es |Uf(p) — U, f(n)l =0

for all ¢, > 0 and all f e &(S).

All of the processes {4,™} and A, can be constructed on the same probability
space using the same set of Poisson processes and random variables {X, ,} for all
of the 4,™ and 4,. We assume that this has been done. If we can show that
for all ¢

(218) lim, PF(At‘m) = At) =1,
then Theorem (2.12) will follow from Lemma (2.14), (2.17), and (2.18).
(2.19) LemMA. If (2.11) is satisfied, then (2.18) is true for all t = 0.

Since 4,™ is a finite state space Markov process there is no possibility of its
exploding. Thus we have no problem with the almost sure existence of A4,™
for all positive . Implicit in the conclusion of Lemma (2.19) is the almost sure
existence of A, for all positive ¢, i.e. Py(lim,_, T, < co) = 0.

Proor. It is easily seen from the construction that if 4, = 4,"™ foralls < ¢
and all n > m, then also 4, = 4,. In addition we have for n > m

2.20 Po(A,™ = A,™ for some s < 1) < e Pp(A™ & Jy) -
F F

This is because 4, = A4,™ as long as both are contained in J,,, and if A»  J,
for some s, < ¢, then with probability at least e~ at least one of the elements
in AM\J, is still in 4,". Thus, since P(4,™ ¢ J,) is increasing in n, it suffices
to show that

2.21) lim,,_., lim, ., Po(A™ ¢ J,) = 0.

Let g,, be the element of S which is equal to one on /\J/, and equal to zero
on J,. Then by Lemma (2.14)

(2.22) Po(A™ & J,) = Pp(A™ n C(a,) #= D)
=P, (7. ¢ B(F)) = U™f(on) ,
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where f is the indicator function of the complement of B(F). By (2.17)
lim,_, U™f(,) = U, f(0,.); and since U, f() is continuous as a function of 7
lim,, . U, f(¢,) = U, f(0.,), where g, is identically zero. But o, is absorbing for
the proximity process 5,. Thus U, f(¢..) = f(¢.,) = 0. This combined with (2.22)
proves (2.21) and completes the proof of the lemma.

3. First applications. In this section we apply Theorems (1.6) and (2.12) to
the proximity processes that one obtains if he carries out the coupling program
mentioned in the introduction in the cases considered by Vasershtein (1969)
Dobrushin (1971) and Chover (1974).

In the cases of Vasershtine and Chover the resulting process is a discrete time
proximity process which is covered by Corollary (3.1).

3.1 COROLLARY. Let 1), be the discrete time proximity process determined by
{N;.} and {f;}. If there is some constant 2 < 1 such that

(3-2) Lz INualfik) = 2 forall iel,
then for all Fe . and all ne S
(3-3) Py(n, € BF)) = 1 — 2|F].

Thus the only stationary distribution for 7, is the one concentrated on 7 identically
zero.

Proor. By Theorem (1.6)

(3.4) Py (1, € B(F)) = Pp(4, 0 C(n) = @) = Pe(A, = @) -
But
(3.5) Pr(4, # @) < Eg{|4,]} < 2|F] .

The last inequality in (3.5) is a consequence of the Markov property and the
following computation in which Y}’ denotes summation over all sequences
{k;:ieF}.

(3.6) En{l A} = 3" U er Nya ) TLeer fi(k)
< % Sier Wi Tier fitk) < A1F .

Note that the interference in the b.p.i. was not taken advantage of in Corollary
(3.1). A general theorem which exploited the interference effectively would have
rather involved hypotheses; however, in specific examples one can often improve
Corollary (3.1). We give such an example in the next section.

As a second application we consider the continuous time proximity process
associated with Dobrushin’s work (1971). Dobrushin considered quite general
processes; however, when the coupling program mentioned in the introduction
is applied to these processes the result is a continuous time proximity process
with two distinctive features: the rate that the site i changes from one to zero
is a constant, &d,, which does not depend on the configuration, and the rate at
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which it goes from zero to one is a function of 7, of the form & X3 ;.; 9.(j)7.(}),
where g,(j) = 0and g, = }3;.; 9:(j) < oo. Thus the infinitesimal generator, %7,
of the process is given, for fe &, by

3.7 ) = Tier&ldin() + (1 = 9(D) Zjer 9:()7NIn) — fn)] -

In order to get (3.7) into the standard form for a proximity process we let
N,,= @ and {N,,} for kK = 1 be an enumeration of all pairs {i, j} with je /.
Let b, = d, + g9, and for k = 1 set f,(k) = 9,(j)/b,, where je I is the element
such that N, , = {i,j}. Thenf,(0) =1 — 35, fi(k) =1 — g,b,"* = d;b,~*. Now
let a(i, ) be defined as in (1.3) using these {N, ,} and {f;}. It is easily checked
that if »(i)) = 1, then a(i,n) = ¢,b,7"; while if 5(@) =0, then a(i,7) =
b 361 9:(J)n(j). Thus setting ¢, = ¢,b, we have

(3-8  &fdin@) + (1 = 70)) Zijer 9:(7)n())]
= ¢[(1 — e, 7)) + (1 — 9@)al, 7)) -
To be sure that there is a strong Markov process whose generator is given by

(3.7) we must assume that (2.11) is satisfied, which in this case is equivalent to
the assumption that sup,., ¢; < oco.

3.9) COROLLARY. Let 1, be the continuous time proximity process determined
by {¢;}, {N; .}, and {f;} as described above. If
(3.10) inf,.; ¢,(2f,(0) — 1) = x>0,

then forall Fe 7, allyeSandallt = 0
(3.11) P(p,eB(F)) = 1 — |Fle™*.

Thus the only stationary distribution for , is the one concentrated on the configuration
which is identically zero.

Before proving Corollary (3.9) we remark that inequality (4.2) of Dobrushin
(1971) implies inequality (3.10) above when all of the couplings mentioned in
the introduction are carried out. This corollary also follows from Dobrushin’s
results. We include a proof here to demonstrate the simplicity of the duality
arguments.

ProOOF OF COROLLARY (3.9). Let A4, be the continuous time b.p.i. determined
by {c;}, {N, .} and {f;}. By Theorem (2.12)

(3.12) P,(n. € B(F)) = Py(A4, 0 C(y) = @) = Pe(4, = ©) .

Since |4,| grows no faster than a pure birth process with birth rate proportional
to the population size, E.{|4,|} is finite for all #. A routine argument then yields

(3-13) % A4} = Ex{ e s, ¢ Zimo (AN U Nyl — |41}

But N, , = @ and therefore [|(4,\{i}) U N, — |4,]] = —1. Also since ie N,
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and |N,,| =2 for all k = 1, we have, for k = 1, [|[(4\{i}) U N, ,| — |4]] = 1.
Thus

(3.14) Zico [R(AN} U Nia| — [A]] = —fu0) + X fulk)
=1 —2f(0).
Substituting (3.14) into (3.13) and using (3.10) we have

(3-15) -57 Al A} = Eo{Zies, e(1 — 2/(0)} = —xEx{| A}

Combining (3.15) with the initial condition, E.{|4,]} = |F|, we obtain
(3.16) E A} < e7|F|.
Since Py(A4, +# @) < Ez{|A4,}, (3.11) is a consequence of (3.12) and (3.16).

4. Expoiting the interference. In Section three we never took advantage of
the interference in the b.p.i. In specific examples it is often possible to make
significant improvements by taking the interference into account. In this section
we give two examples where this can be done.

For the first example we consider the discrete time proximity process consid-
ered by Stavskaya and Pyatetskii-Shapiro (1971). Our analysis is very similar
in spirit to theirs; however, the interpretation is different and inequality (4.5)
below seems to be more efficient than their inequality (1). Inequality (4.5) is
the main reason for introducing the b.p.i. in this example.

In this example / is the integers, N;, = @ and N,, = {i — 1,i + 1}. We take
f/0) =1 — 2 and f;(1) = 2. From Corollary (3.1) we know that if 2 < 4, then
the discrete time proximity process determined by these sets {N,,} and distri-
butions {f;} is ergodic and its distribution tends weakly to the probability
measure concentrated on the configuration which is identically zero. We prove
the considerably stronger

4.1) COROLLARY. If 7, is the discrete time proximity process determined by the
{N, .} and {f.} above then for all Fe 7 and all ne S
(4.2) P,(p € B(F)) =2 1 — [K()]*"|F],

where h(2) = 22 + 22* — 12* 4 52* — 2%
We remark that h(2) < 1if 2 < .6527.

Proor. Let A, be the corresponding b.p.i. Then by (3.4) it is enough to
show that

(4.3) Pp(A, #+ @) = |FI[AA)]*".
Let 1 be the configuration 5(i) = 1. Then
(4.4) Pp(A, # @) = Py(A4, 0 C() + @) = Pi(n. & B(F)) .
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Thus for F, G e .7,

Proo(4; # D)
= Py(y, ¢ B(F U G))
(4.5) = Pu((7. ¢ B(F)) U (0, ¢ B(G)))
= Pi(n: ¢ B(F)) + Pa(, ¢ B(G)) — Py((. & B(F)) n (7. ¢ B(G)))
= Pi(7: € B(F)) + Py(n, ¢ B(G)) — Py(n, ¢ B(F n G))
= P(A4, + @) + PyA, + @) — Proo(A, # D) -
Using the homogeneity of the {N, ,} and {f,} we see from (4.5) that

(4.6) Pu(A, # @) < |F|Po (A, + Q).
Now
4.7) Po(A, # @) = AP _y,(Aiy #+ @) s

and again using the homogeneity

(4'8) P{—l,l)(At—l i @) = 22(1 - Z)P(—l,l)(At—Z ?& @) + ZzP(—Z,O,z)(At—2 i @) *
Since P,_, 1(4, # @) is clearly decreasing in ¢ we obtain from (4.8), upon re-
placing ¢ with ¢+ — 1, that
(4.9) AP _yom(Ais # @) S [1 — 221 — DIP_y1(Aes + @) -
Also
P(—2,0,2)(At—2 * @)
=341 — 2)2P(—l,1)(At—3 #* @)+ 2241 — Z)P(—z,o,z)(Az—s * D)
+ ZzP(—S,-l,l,S)(At—S ¢: @)
(4.10) S 341 — PPy (Aiss # @) + 2201 — DP_y09(Ais = @)
+ '22[2P(—2,0,2)(At—3 * @) - P(—l,l)(At—s * @)]
= {3471 — 2 — 2% + [2(1 — 2) + 2][1 — 221 — )]}
X Piiy(Ai-s += D) -
The first inequality in (4.10) follows from (4.5) by taking F = {—3, —1, 1} and
G ={—1, 1, 3} and then using the homogeneity. The second inequality follows
from (4.9). Upon simplifying the right side of (4.10) and substituting back into
(4.8) we obtain '
(4-11) P(—l,l)(At—l * @) = 22(1 - Z)P(—l,l)(At—2 + @)
+ A4 — T2 5B — PP, Ay # D) -

By multiplying both sides of (4.11) by 2 and using (4.7) together w1th the de-
crease of P, (4, # () as a function of ¢ we finally arrive at

(4.12) Poy(As # @) = MDPo(Aies # @) < [H(R)] 40"
This together with (4.6) completes the proof.
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There is no theoretical reason to stop the procedure used in Corollary (4.1)
after three steps. One could in principle carry out as many steps as he had the
patience for. Indeed a procedure very similar to the one above has been carried
out to seven steps on a computer by Scott Brown. He obtained the result that
if 2 < .6774 then with probability one the b.p.i. is absorbed at . Thus if
A < .6774 there is only one stationary measure for the proximity process of
Corollary (4.1).

The above example is presented mainly for its methodological interest. The
same technique can be applied to many other problems. For example this
technique (using two instead of three steps) was applied to obtain the bound .31
in the example in the introduction.

One could also apply techniques analogous to those in Corollary (4.1) to obtain
the results of Harris (1973) on contact processes, again obtaining exponentially
fast convergence. In fact although the interpretation is different, the relevant
computations are very nicely done by Griffeath (1974). Rather than do that we
give an example of another technique which does not rely on any homogeneity.
The idea is to find a function on .7~ which in some sense measures the amount
of interference in the b.p.i. Asan example let 5, be a continuous time proximity
process as in Corollary (3.9). We assume that f,(0) < 1 for all i. Let r(i, j) for
all i, j e I be given by

(4.13) () =)/ - f(0))  if Ny ={i, ]}
=0 if there isno k& for which N, ={i, j}.

Note that since there is no k such that N, , = {i}, r(i, i) = 0. We also assume
that r(i, j) = r(j, i) and that for each i and every finite set 4 containing i

(4.14)  fuO)XjearCs L + Zaea7Us N 2 Zjeu Zea 7 (s k) -

The inequality (4.14) is just an ad hoc condition which we need in the proof.
Note however that if for all j, r(i, j) is either zero or at least y,, then if f,(0) =
(1 — 7/ — 7,), the inequality (4.14) is satisfied.

For an example where the above conditions are satisfied let, for each i e I, M,
be a finite subset of /. Assume that i ¢ M,, each M, has cardinality d, and that
if je M, thenie M;. ForeachielletN,,, k=1, -...,d, bean enumeration of
the pairs {{i, j} : j € M;}. Then if £,(0) = (d — 1)/(2d — 1) and fi(k) = 1/(2d — 1)
fork =1, ...,d, the above conditions are satisfied. Here we have (i, j) = 1/d if
j € M,. Note that this example does not satisfy the hypotheses of Corollary (3.9).

(4.15) CoROLLARY. If f(0) = & > O foralliand r(i, j) given by (4.13) satisfies
r(i, j) = r(j, i) and (4.14), then the continuous time proximity process determined by

{c.}, {N, .}, and { £} satisfies
(4.16) lim, ., P,(7, € B(F)) = 1
forall pe S andall Fe 7.

ProOF. Let 4, be the continuous time b.p.i. determined by {c;}, {N,,}, and
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{f:}; and let {T,} be the branching times as in the construction of 4, given in
Section 2. From (3.13) and the construction of 4, we see that it suffices to show
that

(4.17) lim, ... Po(A, = @) = 1.

Since f;(0) = ¢ > 0 for all i, (4.17) will follow if we can show that |4, | stays
bounded with probability one.

Let &, be the og-algebra of events prior to T, and define a function Hon .7~
by the formula

(4.18)  H(A) = |4 — Zunear(:)) = 34l + & Tica Djea ) -

Since H(A) = }|4|, it will obviously suffice to show that H(A, ) stays bounded
with probability one. We do this by showing that {H(A4; ), &} is a super-
martingale. Toward this end we set Z(4) = Y, , ¢; and compute
)| Az, = A} — H(A)

= Z7N(A) Tisea ¢ D= f(m)[H((A}) U Ny ) — H(A)]
(4.19) = Z7NA) Tica el O =1 + XjeurC; )}
+ (1 = fi0)) Djea (N — Zear(js )}
= Z7A) Tsea el =fi0) Tjea G N1 + Ziea 7(J5 K}
+ Ziea Zwea 70 (s K)] -
Inequality (4.14) guarantees that each term on the right side of (4.19) is non-
positive, and thus

E{H(4

Tp+1

E{H(4,,,)| .57} < H(4,,) .

Th+1

5. The voter model. In this section, we consider the continuous time prox-
imity process 7, and corresponding b.p.i. A4, in the case that each set N, , is a
singleton for kK > 1 and that f,(0) = O for all i e . In this case, A, possesses the
important property that |4,| is nonincreasing in ¢, and that |4,| > 1 if |4 = 1.
When restricted to {4: |4| = 1}, the b.p.i. is simply a Markov chain on 7, which
will be referred to as the one particle process. Let p,(i, j) denote its transition
probabilities. Its infinitesimal parameters are given by g, ; = ¢, fi(k) if j # i
and N, , = {j}. We will assume that sup, ¢, < co in order to guarantee (2.11),
and that the one-particle process is irreducible.

We will make an additional assumption for the sake of simplicity:

5.1 If « isa bounded function on 7 which satisfies
Y, pi, a(j) = a@@)  forall iel, t=0,
then a is constant.
The presence of nonconstant bounded harmonic functions for p, would introduce

additional invariant measures for the process 7, in much the same way that it
did in [6]. It would also complicate the proofs somewhat, and would blur the



INTERACTING SYSTEMS AND THE VOTER MODEL 657

distinction between the two cases discussed below, since there would be situ-
ations in which the process would behave like Case I on part of the space and
like Case II on another part. At the end of the section, however, we will describe
briefly the results that can be proved if assumption (5.1) is not made. Recall
that by the Choquet-Deny Theorem, assumption (5.1) is satisfied in the trans-
lation invariant case discussed in the introduction—the case in which I is the
d-dimensional integer lattice and p,(i, j) = p,(0,j — i).

Note that for any probability measure v on S, v[B(F)] = v{y: F n C(y) = @}
Therefore, integration of (2.13) with respect to v yields

(3:2) VU[B(F)] = X4er Pe(A: = Ap[B(A)]

for any Fe .77, This is the form in which Theorem 2.12 will be used.

Two cases arise in the ergodic theory of 7,, which are similar to those that
arose in [6], [7] and [9]. In order to describe them, let X, (), X,(f), - - - be inde-
pendent copies of the one particle process.

Case I. P(X,(t) = X,(t) for some r > 0) = 1 for all initial states X;(0), X,(0).
Case II: P(X,(t) = X,(¢) for some ¢ > 0) < 1 for all initial states X;(0) = X,(0).

Since X\(¢) is irreducible, these two cases exhaust all possibilities. In the trans-
lation invariant case, they correspond to the recurrence or transience respectively
of the chain X,(r) — X, (7).

For 4 e 7, define g(A4) = P,[|4,| < |A| for some ¢t > 0]. This function meas-
ures in some sense how far apart the points of 4 are. Note that g(4) = 0 for
|A] £ 1, and that g(A4) < g(B) whenever 4 & B. The latter statement can be
obtained by coupling the processes 4, and B, with initial states 4 and B respec-
tively in such a way that 4, < B, for all . By the definition of Case I, g(4) = 1
if | 4] = 2, so the motonicity of g gives that g(4) = 1 if |4] = 2. Therefore in
Case I,

(5.3) P,(l4) =1 forsom t>0)=1 forall Ae g, A+ @.
By the definition of Case II, on the other hand, g(4) < 1 if |[4] = 2.
5.49) LEMMA. Assume that Case II holds. Then

(@) 9(4) < 1if |4] = 2.

(b) P,[lim,,,g(A4,)=0]=1forall Ac 7.

(c) P[lim,_, g({Xy(®), --+, X,()}) = 0] =1 for all n = 1 and all choices of
initial points X,(0), - - -, X,(0).

(d) In the translation invariant case, lim,_, 9(A U {i}) = g(A) for all Aec 7.

Proor. Since g(A4) = 0 for |4] = 1, (c) is immediate for n = 1. Since g(4) <
Dieiiiiea 90, J), if we prove (c) for n = 2, it will follow for larger n. By as-
sumption (5.1), the process X,(¢) has no nonconstant bounded harmonic func-
tions, so by the simple extension of Lemma (3.14) of [6] to continuous time
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Markov chains, neither does the process (X(7), X,(t)). Therefore
(5.5) P, ;3t, — co such that X(¢,) = X,(z,)) =0 or 1

independently of the initial points i, j. But since g(4) < 1 for |4] = 2, the
value of (5.5) must be zero. Define § on I* by §(i, j) = g9({i, j}) if i + j and
g(i, i) = 1. Then by the Markov property, E, ;§(X(t), Xy(t)) = P, ;[3s = t such
that X,(s) = X,(s)] < §(i, j), so that §(X(¢), X,()) is a bounded supermartingale,
which therefore converges with probability one. Furthermore,

lim, .. E; ;0({X(t), Xi(t)}) = P, 31, — oo such that X,(z,) = X(t,)) = 0

by (5.5), and so lim,_,, g({X,(?), Xy(¢)}) = 0, thus completing the proof of (c).
In order to prove (b), let z, be the stopping times defined by 7, = 0 and 7,,,, =
inf{t > 7,: 4] < |4, |}. Note that if |4, = m, then z, = co. On the set
{r, = oo}, the process 4, is the same as the process {X,(f), ---, X, ()}, so
lim,_, g(A4,) = 0 a.s. on {r; = oo} by part (c). On the set {r, < co, 7, = oo},
A, .. behaves like {X,(?), - - -, X,,_,(r)} started on 4, so the same argument can
be applied again to conclude that lim,_, g(4,) = 0 a.s. on {r, = co}. Since
7,, = oo, this argument can be repeated m times to conclude the proof of (b).
To prove (a), note that the irreducibility of X(7) implies that if |[4] = |B| = 1,
then P (4, = B for some r) > 0. (See, for example, the proof of Lemma (2.1)
of [7].) Therefore if gy4) = 1 for some A4, then g(B) = 1 for all B with |4] =
|B|, which contradicts (c). Finally, (d) is proved by observing that |g(4 U {i} —
9(A)| £ X4 9(is j}), so it suffices to prove that lim,_., g({i, j}) = 0 for each
jel. But thisis equivalent to the fact that for the symmetric, transient random
walk Z(f) = X,(r) — X,(¢) on the d-dimensional integer lattice, lim,_,,, P,(Z(¢) = 0
for some ¢) equals 0.

We proceed now to the ergodic theory of the process 7,. The situation is
simplest in Case I. Recall that v, and v, are the point masses on the configu-
rations 7 = 0 and 5 = 1 respectively.

(5.6) THEOREM. Assume that Case I holds. Then

@) 7, = [ ui)-

(b) If v is any probability measure on S, then vU, — Av, + (1 — A)v, if and only if
5.7 lim, ., 3; p:(i, j{n(j) =0} =4  forall iel.

In particular, this is true if v{n(j) = 0} = A forall jeI.

Proor. It isimmediate that v, v, ¢ . Consider any e #. Since pU, = p,
applying (5.2) to F = {i} gives

#{n(i) = 0} = 33, pui, )e{n(j) = 0} - .

By assumption (5.1), p{n(i) = 0} is a constant which we will call 2. In order
to prove that g = Ay, + (1 — 2)v,, it suffices to prove that p[B(F)] = 4 for all

F=+ @. Apply (5.2) to such an F to obtain |g[B(F)] — AP4(|4,| = 1)| =
P.(|4,) > 1) for all t. By (5.3), lim,_,, P;(|4,| = 1) = 1, so the result follows.
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For the proof of part (b), let v be any probability measure on S. If vU, —
Avy + (1 — )y, then in particular, vU,{(/) = 0} — 2 as t — oo, so (5.7) follows
from (5.2) with F = {i}. Conversely, suppose (5.7) holds and take Fe .7,
F# @. Letr =inf{r > 0: |4, = 1}. By (5.3), ¢ < oo with probability one.
By (5.2),

VUIB(F)] = Lyer Pe(r > 1, A, = Ap[B(4)]
+ Lier Vo Pr(z € ds, A, = {i}) Zjer pos(l J0(J) = 0}
Therefore lim,_,,, vU,[B(F)] = 2 follows from the bounded convergence theorem.
Since this holds for all F = @, vU, — Ay, + (1 — A)y,.

For the remainder of the section, we will assume that Case II holds. For
0 =< p =1, lety, be the product measure on S with v,{7(/) = 1} = p for all ;.

(5.8) THEOREM.
(@) For0<p=<1, p,=1im,_,v,U, exists and p, € 7.
(b) |1 [B(F)] — (1 — p)*'| < g(F) forall F e 7, so in particular p {(i) = 1} = p

forall i.
(¢) In the translation invariant case, p, is translation invariant and ergodic.

Proor. By (5.2),
(5-9) v, UB(F)] = Ep[(1 — p)***]
for all Fe 7. Since |4, is nonincreasing, lim,_, |4,| exists. Therefore
lim, ., v, U,[B(F)] exists. Since the space of probability measures on § is com-
pactand {B(F): F € 7"} is a determining class, it follows that lim,_, v, U, exists.
By (5.9)

v, ULB(F)] — (1 — o) = Pp(|4,| < |F]),

so (b) follows by letting 7 — co. In the translation invariant case, v, U, is trans-
lation invariant for each ¢, and therefore p, is also. In order to show that g, is
ergodic, construct b.p.i.’s 4,, 4,}, and 4,* on the same probability space with
initial states F, U F,, F,, and F, respectively, such that 4,' and 4, are inde-
pendent and 4, = 4,' U 4,2 for t < ¢ = inf{r > 0: 4 n 4 #* @}. Then by
(5.9), since [4,| = |4,}| + |4,} for t < =,

| [B(FL U Fy)] — [ B(F)] e [B(Fy)]|
= lim,_o [E[(L — ) — (1 — o) (1 = p) 4]
= Pt < ) £ Yieryier, 9{i 7} -

Now replace F, by F, 4 i and use part (d) of Lemma (5.4) to conclude that
lim,_, ¢, [B(F, U (F, + i))] = p,[B(F))]p,[B(F;)] and thus complete the proof.

(5.10) THEOREM. 7 is the closed convex hull of {¢,: 0 < p < 1}.

ProOOF. Let p be any measure in ., and define # on .7 by A(F) = p[B(F)].
Then by (5.2) and the fact that ¢ 7,

(5-11) WF) = Ziaer Pp(4, = A)(A)
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for all Fe. 7. We will prove first that # almost depends on F only through |F|,
in the sense that there is a sequence p, = 0 with the property that

(5-12) |h(F) — .| = 9(F)

whenever |F| = n. By assumption (5.1) and (5.11) applied to F = {i}, A({i}) is
independent of i, so p, can be defined satisfying (5.12). Fix n > 1, and consider
k to be a function on I* via A(i}, ---,i,) = A({i}, -- -, i,}). Let V, be the semi-
group corresponding to the Markov chain (X(¢), - - -, X,(#)) on I*. Applying
(5.11) to F = {iy, - - -, i,} where n = |F| yields

(5-13) \A(F) — Vih(iys - - -5 8,)| < 9(F)
for t = 0. Therefore |V ,h — V,,,h| < V,g, so since V,g — 0 by (c) of Lemma
(5.4), lim,_,, ¥,k exists and is a bounded harmonic function for (X(), - - -, X,(?)).

By assumption (5.1) and the continuous time version of Lemma (3.14) of [6],
lim, ¥V, & is a constant on I”, which we will call p,. Inequality (5.12) now
follows by letting 7 — oo in (5.13). The next step in the proof is to show that
there exists a probability measure y(dp) on [0, 1] so that

(5.14) ou = $5(1 — 0)"7(dp) .

As is well known, a necessary and sufficient condition for this is that for
k,m=0, 3™, (*)(—1)p4,, = 0. Forsuch a k and m. By (c) of Lemma (5.4),
there exists a sequence F,, of sets of cardinality k 4 7 so that lim,_, g(F,) = 0.
Let G, be a subset of F, of cardinality k. By (5.12), lim,_, ¢{n: 5(i) = O for
ieG,and 5(i) = 1 forie F,\G,} = 2™, (*)(—1)" 04, Which gives the required
conclusion. By (5.9), p,[B(F)] is continuous in p for each Fe .7, so thata
probability measure # on S can be defined by z = {j ¢,7(dp). It only remains
to show that ¢ = f, since then it follows that 4 is in the closed convex hull of
{¢,: 0 < p < 1}. In order to do this, let A(F) = g[B(F)], and note that from
(b) of Theorem (5.8) and (5.14) it follows that |(F) — p,| < g(F) whenever
|F| = n. Therefore by (5.12) |A(F) — h(F)| < 29(F) for all Fe.7". Since both
h and # are invariant functions for the b.p.i., h = h follows from this and (b)
of Lemma (5.4).

(5.15) CoROLLARY. .7, ={¢,: 0 < p < 1}

Proor. By Theorem (5.10), .7, C {¢,: 0 < p < 1}. Therefore it suffices to
prove that if y(d?) is a probability measure on [0, 1] and p, = §§ ¢,7(d4), then
7 is the point mass at p. For any fixed k > 1, let F, be a sequence of sets
of cardinality k for which g¢(F,) —0. Then by (b) of Theorem (5.8),
lim,_,, ¢#;[B(F,)] = (1 — 2%, so (1 — p)* = {5 (1 — 2)*r(d4). Since this is true
for all k = 1, it follows that 7 is the point mass at p.

(5.16) THEOREM. Let v be any probability measure on S. Then 'vU, — pt, as
t — oo if and only if v satisfies

(5.17) lim, o, 5 puli () = 0} = 1 — o,
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and

(G-18)  limy_o, 350 Pl )Py K)¥{7()) = 0, 9(k) = 0} = (1 — p)?
forall iel.

PROOF. Assume first that vU, — p,. An application of (5.2) with F = {i} gives
vU{n(i)} = 0} = 33; p.(i, j)v{n(j) = 0}, so (5.17) follows immediately from the
fact that p,{n(/) = 0} = 1 — p. On the other hand, applying (5.2) to F = {n, m}
where n s m yields [WU[B(F)] — ;. p(n, jpdm, k){n(j) = 0, n(k) = 0}] =
29(F), so (b) of Theorem (5.8) gives

I(1 = 0)* = Xy Pl fp(m, k)o{n(j) = 0, n(k) = O}
= 39(F) + PUIB(F)] — #[B(F)]| -

Substituting X,(s) and X,(s) for n and m where X,(0) = X,(0) = /, and then taking
expected values yields

|1 = 0)* = 20k Pews(is Praa(is K(0(j) = 0, n(k) = 0}
< 3E0(U(), X)) + POG(S) = Xu(s)) + BV, — s )[BU(S), Xi(s))] -

To complete the proof of (5.18), use (c) of Lemma (5.4) to show that s can be
taken so large as to make the first two terms on the right as small as desired,
and then use the assumption that vU, — p, to make the last term small by taking
t large. For the converse, assume that (5.17) and (5.18) hold. We will show
that vU,[B(F)] — p,[B(F)] for every Fe 7. By (5.2),

vU[B(F)] — v, U[B(F)] = Ep{v[B(4,)] — (1 — p)'*+}
= DT E[B(A)] — (1 — o), |4, = K}
In order to prove that this tends to zero as r — oo, it suffices to prove that
(5-19) lim, .. Ex{y[B(A,)], |[4| = |F]} = (1 — p)"[1 — g(F)]

for all Fe.7, since then the term corresponding to k = |F| tends to zero, from
which it follows by an appropriate application of the strong Markov property
that the other terms tend to zero also. From (5.17) and (5.18), it follows that

§s [Z5 P D1 — 9(N} — (1 — o)y — 0,

and therefore that 33, p,(i, )[1 — 7n(j)] = (1 — p) in probability relative to v.
Therefore

(5:20)  EQ[B{X(), -+, X, (I} = EF IIiL [1 — n(Xi(@®)]dv — (1 — p)" -

for all choices of initial points X,(0), - - -,AX,L(O). In order to deduce (5.19) from
(5.20), write :

E{o[B(Ai10)]s [As4s| = |F|} = Z|A1|=|A,|=|F| Py(4, = AI)PA](A, = Az);’[B(Az)] ’

and use part (b) of Lemma (5.4).
The proof of the following corollary is the same as that of Theorem (5.6) of [6].
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(5.21) COROLLARY. In the translation invariant case, if v is a translation invari-
ant ergodic probability measure on S, then vU, — p1, where p = v{n(i) = 1}.

We conclude this section with a description of _#, when assumption (5.1)
does not hold. Let 57 be the set of function a on 7 such that 0 < « < 1 and
1, P(i, a(j) = a(i). Thus assumption (5.1) is just the statement that 5 con-
sists only of the constants between zero and one. For a €57, a(Xy(?) is a
bounded martingale, so lim,_,, a(X,(¢)) exists with probability one. Recall that
g(Xy(t), X,(¢)) is a bounded supermartingale, so its limit exists also. It is not hard
to see that lim,_, g(X,(¢), X,(r)) = 0 or 1 with probability one. Also, |a(i) —
a(j)] £ 1 — g(i,j) for all i, je I and a € 27, so lim,_, a(X,(t)) = lim,_., a(Xy(?))
a.s. on {o: lim,_, g(X,(f), X,(t)) = 1}. Let S#* be the set of all a e Z# for
which lim,_,, a(X,()) = 0 or 1 on {w: lim,_,, g(X,(f), Xy(f) = 1}. Then .7, can
be described in terms of 27 in the following way.

(5.22) THEOREM. For every a € 5%, there is a p, e 7, such that pn(i) =
1} = a(i). Furthermore, #, = {y1,: a € SF*}.

Note that this is consistent with our results under assumption (5.1), since
then Case I corresponds to having S#* = {0, 1} and Case II corresponds to
having 2#* = 2 = [0, 1].

An example of the application of Theorem (5.22) when assumption (5.1) is
not satisfied is the following. Let I be the integers, ¢, = 1 for all i, N;, =
=1} No={i+1} fl) =/ =4 f(l)=f(2)=¢q for i>0, and
fil) = f_i(2) = p fori < 0, where p + g = 1 and p > §. Then there are four
extreme invariant measures for the proximity process. Two of them are v, and
v,, a third satisfies lim, _,, p{n(i) = 0} = 0 and lim,_,., #{y(i) = 0} = 1, while
the fourth is obtained from the third by reflection about the origin. Moreover,
the last two are concentrated on the set {: »(i) &+ (i + 1) for exactly one i},
and the distribution of the i for which 5(i) + 7(i + 1) is easily computed.
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