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COEFFICIENT PROPERTIES OF RANDOM
VARIABLE SEQUENCES!

By WiLLIAM J. BARLOW
Purdue University, Calumet Campus

Burkholder [3] gave a simple necessary and sufficient condition, in
terms of concentration functions, for independent sequences of random
variables to have the Stein property. Here we find sufficient conditions
for the Stein property without assuming that the random variable sequence
is independent. Our conditions are also in terms of concentration functions,
but in our case they are conditional concentration functions which specialize
to those used by Burkholder. For some of our results, the sequence of
random variables may be quite arbitrary; however, we usually assume it to
be a martingale difference sequence satisfying certain regularity conditions.

1. Introduction. Burkholder [3] gave a simple necessary and sufficient con-
dition, in terms of concentration functions, for independent sequences of random
variables to have the Stein property. Here we find sufficient conditions for the
Stein property without assuming that the random variable sequence is inde-
pendent. Our conditions are also in terms of concentration functions, but in
our case they are conditional concentration functions (see Definition 2.1) which
specialize to those used by Burkholder. For some of our results, the sequence
of random variables may be quite arbitrary; however, we usually assume it to
be a martingale difference sequence satisfying certain regularity conditions.

Let Z = {Z,, k = 1} be a sequence of complex valued random variables de-
fined on a probability space (Q, .97, P), I the set of sequences (a, ay, a,, - - +) of
complex numbers such that the series Y7, a, Z, converges almost everywhere
(to a finite limit), /* the set of sequences (a, a,, a,, - - -) of complex numbers such
that Y15, |a,|* < oo, & the field of complex numbers, and ./ the set of positive
integers. If &7 is a subalgebra of 7" let Z#+ = {Be <Z': P(B) > 0}. It will be
convenient to have names for several properties which Z may have.

DerINITION 1.1. The sequence Z has the Stein property if there exists a number
b > 0 such that if 4e .97+ then there exists an n = n(b, A) € .#” such that
(a, ay, ay, - - -) e I" implies

b(Linlal)t < esssup,eqla + X @ Zy(w)] -
DErINITION 1.2. The sequence Z has the coefficient property if I* c T.

DEeriNITION 1.3. The sequence Z has the converse coefficient property if I' C I2.
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It is obvious from Definition 1.1 that the Stein property implies the converse
coefficient property. Besides the converse coefficient property, the Stein property
has another obvious consequence: if (a, a;, a,, - - -) € I' and a, = 0 for infinitely
many k, then

P(Ye,a,Z, =a) =0, ac?.

Thus the distribution of a convergent sum i, @, Z, is non-atomic, provided
that a, # 0 for infinitely many k& and Z has the Stein property. The contra-
positive also has an interesting statement (cf. [4]): if there is an a € 2" such that
P(Xr..a,Z, = a) > 0, then 37, a,Z, is a “Z polynomial,” i.e. has only finitely
many non-zero coefficients. In addition, if one assumes a bit more than the
Stein property (see Corollary 2 to Theorem 3 in [3] and Theorem 3.2) then it is
possible to prove a summability theorem which has an unusual feature: there is
no assumption that the columns of the summability matrix must converge; instead
the column convergence is a consequence of the theorem.

Perhaps the most important consequence of the Stein property is the one used by
Stein [8], Burkholder [1], and Sawyer [7] for the case in which the sequence Z was
the Rademacher sequence (defined on [0, 1] by r,(¢) = sign sin 2z if sin 2%zt = 0
and by right continuity elsewhere). Suppose that Z has the Stein property. If
the series Y 7., a,, Z, converges, n = 1, and sup,, |2i7.,a,.Z,| < co on a set
A e o7 then limsup, ., SUpP,5, [@,,] < oo. Forlet B; = {sup,., | X5 @ Z| < 4},
2> 0. Then B, = Be .%/* for some 4 > 0. By the Stein property, there is a
b > 0and an N = N(B, b) € .4  such that

(X v-y |@n]?)t < sup,», ess SUDyep | D1 @i Zi(@)] < 4.
Hence

- A2 ,
SUp, s Ianjlz SSUP s iy @S = < o0, jZ=N,
b

and the desired conclusion follows easily.
These consequences justify a search for conditions on the sequence Z which
are sufficient for Z to have the Stein property.

2. Definitions and preliminaries. In this section we collect some additional
notation and definitions as well as a few results that will be needed in Section 3.
All equalities and inequalities between random variables are to be interpreted
as holding almost everywhere.

A sequence Z = {(Z,, 57,), k = 1} is said to be adapted if Z, is measurable
relative to the g-algebra &7, ¢ %7, k = 1, and %] c %, ---. If in addition
each Z, has finite expectation and E(Z, | &,_;) = 0, k = 2, then Z is a martingale
difference sequence and the sequence of partial sums is a martingale relative to
{4 k= 1),

For Z an adapted sequence, we make the following definitions.

DEerFINITION 2.1. If b > 0 and k ¢ .#" then
Ty (b yy) = €ssSup,e.. P(la + Z,| < b| _y)
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and
n(b| 7)) = lim sup,_.. m,(b| 7,_,) .

Here and throughout, %7, denotes the s-algebra generated by s, 5, and
5, is the trivial g-algebra {®, Q}. We have used the essential supremum in
Definition 2.1 to be certain that the function r,(b|.%,_,) is .%},_, measurable,
k>1.

DEfINITION 2.2. If 5 > 0 and ne .47 then p,(b| .57, ,) is the essential su-
premum, over all sequences (a, a,, a,, - - -) of complex numbers and all Ne .7~
with N = n, of

Pla + XinanZe| < 0(X4on |anl)t | A0ss) -
Also,
p(b| 7)) = limsup, ., p, (6| 57,_,) .

If &7, _, is independent of Z,, Z,,,, ---, k = 1, then the functions of Defi-
nitions 2.1 and 2.2 specialize to the concentration functions in [3].

(The remainder of Section 2 consists of preliminary results. The reader may
wish to skip to Section 3 now, and refer back to these results as they are used.)

Next, for ease of reference, we list two lemmas which will be of fundamental
importance in Section 3. A convenient reference for the first one is [9], Lemma
8.26, page 216.

LemMma 2.3 (Paley and Zygmund). If X = 0 is a random variable satisfying
EX)zZa>0 and EX)ZB<

then, for any 0 satisfying 0 < 0 < 1,
P(X =z éa) = (1 — o)’ . .

LEMMA 2.4. To each 6 > O corresponds an a > 0 with the following property:
If f={fvfe -} is a martingale and E(|d,|) = 0E¥(|d,|*), k = 1, where {d, = f,,
dy=f,— firds = f; — fo -+ -} is the difference sequence of f, then E(|f,|) =
aEX(|f,]5), n = 1.

This is Burkholder’s Lemma 4 in [3], and we refer the reader there for the
proof.

The following lemma and its corollary are of a technical nature, and will be
needed in Section 3.

LEMMA 2.5. Let X and Y be complex valued random variables and let b > 0.
Then, for every 2 satisfying 0 < 2 < b, there is a disjoint collection {D;, j = 1} of
measurable rectangles in & with union & satisfying

](IX+Y|<1) = Z?:l ](XeDj)I(]dj+Y|<b) ’

where d; is the center of D;, j = 1.
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Proor. Let

Dm,n:{x+iye%:(2m— 1)9.;J§x<(2m+ 1)”;Z

’

@n—1n2=A<y<con+ 1)u}
2 2
and d,, , = (m + in)(b — 2) for each pair of integers m and n. Then the D,, , are
disjoint and U i n) D, = & If Xe D, ,then | X —d, ,|< b — 4, s0XeD,,
and |X + Y| < 2 imply
A > IX"I" Yl = IX_ dm,n + dm,n + YI = Idm,n + YI - IX—dm,nI
2 dp,+ Y| —(b—4)
from which |d,, , + Y| < 2 4 (b — ) = b follows. Therefore, for all (m, n),
Ligivicnlixepmm = Lixenp i liam ntvi<o 3
hence
Lixiyicn = Z(m,fn) qu+Y1<u1(XeDm,m
= Z(m,n) I(XeDm’n)Iudm,,n+Y|<b) .
The desired conclusion follows immediately.
COROLLARY 2.6. Let X, Y, and b be as in Lemma 2.5 and let & C 7 be a o-
algebra such that X is <Z-measurable. Then
P(X 4+ Y| < b|ZZ) < esssup,... P(la + Y| < b| 7).
Proor. By Lemma 2.5, if 0 < 2 < b then

1{|X+Y|<1) § Z?:l I(XGD;)I(Idj+Yl<N *

Taking the conditional expectation given <2 of both sides yields

P(|X+ Yl < 2 I‘@) é E(Z?:l I(XGDj)I(ldj+YI<N l‘@)
= N7 lixeny P(ld; + Y| < 0| 57)
< Xiilizeny esssupge. Pla + Y| < 6| F)
= esSSUP,ee P(la + Y| < b|F)
since the D; are disjoint and have union . Now, letting 2 1 b and using left
continuity, we obtain the desired result.

The next lemma characterizes a condition on concentration functions that we
use in Section 3 in terms of a condition used by Gundy [6].

LEmMA 2.7. Let Z = {(Z,, 7,), k = 1} be a martingale difference sequence
satisfying E(Z,) = 0 and E(|1Z,|*| 57,_,) = 1, k = 1. Then the following assertions
are equivalent:

| (i) ||suPsz1 Tu(@ | )|l < 1 for some a > 0.
(i) E(|Z,|| Sk-r) = B> k = 1, for some § > 0.
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PrOOF. Assume that (i) holds, choose ¢ > 0 such that ||sup,,, 7(a | )] <
1 — ¢, and write B = ae. Then
E(|Z|| i) 2 aP(|Z]| = a| ) = o[l — P(|Z,] < a| ¥, _y)]
a[l — m(a| 7, _))] = e[l — sup,,, m(a| )]
a[l — |[sup,s; 7@ | _)||e] = @e =8, k=1.

[\A1\%

For the converse, we assume that ||sup,., 7,(a | %;_))||. = 1, « > 0, and
show (ii) cannot hold. Then

I = [[sUpsz Te(@ | )|l = SUPsz1 SUPee [|P(la + Z4] < | )] »
a>0.
Hence, given a > 0and ¢ > 0, we can choose j = j(a, d) € 4 and ¢ = ¢(a, f) € €
suchthat {P(lc + Z;| < a| ;) > 1 — 6% = 4;_,€ 7;,. Let > 0be given
and choose @« > 0and d > Osuchthat4(a + d) < . Fortheje .4 and ce ¥
chosen as above, write Z; = X, 4 iY; and ¢ = a + ib. Then

$E(1Z5]| 75-0) = $E(X( | 520) + $E(Y] | 5-0)
1) = HEX;* | 520) + E(Xy™ | 0) + E(Y;* | 50)
+ E(Y; | 50)] -
Using the Schwarz inequality and the assumption that E(|Z,*| &7;_) = 1,

E(X;* | 7500) = E(XH oy g j0car | 520) + EXG oz 20 | 521)
S EX iz ¢ | i) + Pl + Z)| Z a| ;)
< E(X Lotz < | 5-0) + 6 on A

q-1°

But  E(X; Ljerzj1car |- 5-1) S E(X* L yarx < | 5-1) since {le + Zj| < a} C
fla+ X <a}n{lb+ Y, <ea}c{a+ X;] <a}. Moreover, if a = 0 then
E(X;* s xjicar | i) S E(Xj* iy 4 cqm0y| ;1) = @ — a < a. Thus we have
a = 0 implies E(X;*|.%;_)) < a + 0 on A4;_;, a < 0 implies E(X,” | .%;_;) <
@+ 0 on A;_;, b= 0 implies E(Y;*| %;_,) < a + don A;_;, and b < 0 implies
E(Y, | %;_;) < a+ 6on A, ,. Therefore, by (1) and the choice of a and 4,
E(Z,||57;) < 4(a + 0) < fon 4.

3. Principal results.
THEOREM 3.1. Let Z = {(Z,, 57,), k = 1} be a martingale difference sequence

satisfying E(|Z,|*| S, _) = 1, k=1. If'thereisan a>0 such that E(|Z,|| 5,_) = «,
k = 1, then Z has the Stein property.

Proor. We will prove:

(i) Under the hypotheses of the theorem, there is a number 4 > 0 such that
[1p(6] )| = |[SUPnz1 Pulb | 7, )| < 1.

(ii) Let Z be an adapted sequence. For any b > 0, if p(b|.%7,) < 1 then Z
has the Stein property with constant 4.
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Proof of (i): Let a, a,, a,, - - - be complex numbers, letn > 0, 4, ¢ 7, *, and
N =z n + 1. Consider the process {(/,, Z, .1, ¥ ,.1), kK = 1} on the probability
space (Q, %7, P, ), where P, denotes the measure P/P(4,). We also use the
notation E, for expectations relative to P, . This process is easily seen to be
a martingale difference sequence on (Q, .27, P ) which satisfies
(1) E (L, Znss)) Z aBY (L, Zosl) s k2 1,
since E, (I, Z,) = 1. Write f; =a+ ¥ 0,142, 1 <j<N. Then,
by (1) and Lemma 2.4, there exists a constant y > 0 such that

EA,,(UA”fND = TEi,,(IIA,,fNP) .
Note that the constant y does not depend on (a, a,, a,, - - +), n, N, or A, (see

the proof of Theorem 9 in [2]). By the Paley-Zygmund lemma and the fact
that £, (|1, fxl") = la* + X3 |a..]* We have

2
P40 {la+ SlnaZil 2 L (Siaalal}) 2 2 P4y
Since A, € %7, was arbitrary, this implies that

2
P(la+ Shwn a2l < L (Thanlaf? o) <1 L,
from which

2
(2) SUP,>0 Pat (%l%) <1-— _Z_

follows, in view of the above remarks about y. Writing &6 = 7/2, we then have
ISPzt pu(b | 5 )l = 1 — 07 < 1
at once from (2), and this completes the proof of (i).

Proof of (ii): Let B = B, = {w: |a + Y5, Z(0)| < b(X 5, |ax|*)t}. Since
P(A|.57,) converges to P(A|.57,), both almost everywhere and in L' (see [5],
Chapter 7, Theorems 4.3 and 4.1), we have that if 6 > 0 is given then there is
an m = m(d) € ¥~ such that, for n = m,

3) P(A N By = E[I;P(A| )] < E[Iz;P(A| ,_))] + 0
= E[P(B| ,_)P(A| 7,_)] + d.

Now P(B|.%7,_,) = 0if ¥}7_, |a,[*=0, n = 1, so we assume that 37, |a,|*> 0,
n = 1. Then, by Corollary 2.6 we have
(4) P(Bl '%n—l) g €8s supaeg P(la + Z::n akal < b(ZZLn |akl2)i l '/Q/n—l) ’

nx=1.

Since (a, aya, ---) el

ess SUPgce Pla + Xiin e Zi| < O(Xia @)} | ,0)
< esssup, liminfy o, P(la + Yil, @, Z| < b(Xi. @)t | 7,-1)
Spaub| ), n=1.
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This, together with (4), gives P(B| 57, ;) = pu(b| o), 1 2 1, which, together
with (3), implies that there is an m € .#" such that for n = m we have (using the
dominated convergence theorem)

) P(A 0 B) < E[P(A4] .57, _)pu(b] )] + 0
< E[P(A| S7)p(b| 7)) + 20,

where § > 0 is arbitrary and m depends on 4.
Now let 4e . o7+, Since P[p(b|.7.,) < 1] = 1, we have

E[P(A| 57 )p(b| 7.)] < E[P(4] )] = P(4) -

Hence we can choose 8 > 0 such that E[P(A4|..)p(b| ¥ )] + 28 < P(4) and
then choose n e .4 as at (5). Then, for any (a, a;, a,, ---) € T', we have

P@eA: |a+ N aZ@)] < (S )
< E[P(A| S7)p(b| S72)| + 20 < P(A).

Therefore P(we A: |a + Y5, @, Zy(0)| = b(T i, |a)?) > 0 and the Stein
property with constant b follows at once.

The next theorem is patterned after Corollary 2 to Theorem 3 in [3], but we
have relaxed the independence condition.

TuEOREM 3.2. Let Z = {(Z,, ), k = 1} be a martingale difference sequence
satisfying E(|Z,|*| ) = 1, k = 1, E(Z,) = 0, and E(|Z)| ) = a, k=1
for some a > 0. Let ay, Gy, - -, Gy, - - be complex numbers such that for each
ne J  the series Y., a,, Z, converges almost everywhere, write g, = 3 7., Gui Z,,
n = 1, and assume that the sequence {g,, n = 1} converges almost everywhere. Then
there exist complex numbers a, a,, - - - such that

(i) lim, . X5 @y — @f* = 0 and
(il) Tin |l < liminf, o X5 |l < supua D lawl* < oo

Proor. To prove (i), it is sufficient to prove lim,, , ... 2i%. |G — @mil* = 0.
For assume that this has been proved. Then given ¢ > 0, there is an Me .4~
such that n > m > M implies

|ank - amklz _S_ Z;’o=1 ia'nj - a'mjl2 < ) k g 1.

Thus {a,,, n = 1} is a Cauchy sequence, k = 1, so that lim,_,a,, = a, €&
exists, k = 1. Hence, by Fatou’s lemma,
ZZ;I |ak - amkl2 —é llm inf'n—voo Zl?:l Ia'nk - amlcl2 < €
if m > M and (i) follows immediately.
Now we show that lim,, , .. 15, |@, — @nel* = 0. Let e > 0 be given. By
Theorem 3.1, Z has the Stein property with constant b for some & > 0. Choose
0 > 0 satisfying 0%/b* < ¢. Since {g,, n = 1} converges almost everywhere, there

is an M e .4 such that 4 = {SUP,smoy |0n — I < 0} € 57+, Therefore, by
the Stein property with constant b, there is a K = K(b, A) € .4~ such that if
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n > m > M then

(L ik | — am|’)t < esssup,c, [0,(0) — gn(0) < 6.
Thus

(©) Siox law — af S 9, < s
if n > m > M and therefore
(7) lim,, o Xk (@ — @pi]* = 0.

Let B={je. s lim, , . 3.7 ;| — a,/* = 0}. B is nonempty by (7).
Hence B has a least element, say J. We claim that J = 1. For suppose that
J > 1. Then, using the orthonormality of the sequence Z, we get

E(| 20 (A — @ui)Zi]) < BN X, (@ — i) Zy)") = (X7-s |nr — Amal?)?
and this last sequence converges to zero as m, n — oo. Thus

s (@ — ap)Z, — 0 in L, as myn— co.
By hypothesis we have
2 (@ — i) Z, — 0 almost everywhere as m, n — oo .

Thus both sequences converge to zero in probability as m, n — co. Subtraction
of the limits yields
8 izt @y — ap)Z, — 0 in probability as m, n — oo .

Now choose y >0 such that y/8 < (¢/2)!, where g is such that
|[SUPezs (8| %))l < 1. This is possible by Lemma 2.7. By Corollary 2.6
we have

P22 (e — i) Ze| < 7|525)
%) S esssuUp,e. Pla + (@, — s )2, < 7| ;)
L]
=Ty, < r ‘—%J~2> *
|an,J—l - am,J—ll
By (8) there is an Ne.#” such that n > m > N implies that P(|3{-! (a,, —
am)Z,| < y|;_;) is arbitrarily close to one on some set C of positive
probability. Since ||sup,.; 7,(8 | -%;_1)||. < 1, we can choose N € .#" such that
n > m > N implies
POZE5 (@ — and)Ze] < 7[7520) > |ISUPeas B0l 2 7,4(B|55-s)
on the set C. By this and (9) we then have
7B 75) < 7TJ—1< r

|an,J—l - am,J—-lI

)
on C. Since m(4|%,_,) is non-decreasing in 4, k > 1, this implies that if
n > m > N then

b
(10) @, ;-1 — Ay yq| < % < (%) .
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But since Je B, there exists an M e .4~ with M > N such that n >m > M
implies

(11) 2 1 — i’ < —;— -

Therefore, combining (10) and (11) yields Y7, @, — @ > < cif n > m > M.
Thuslim,, , .. 2151 |8 — @mi|* = O, a contradiction of the choice of J. Hence
J = 1 and we have

(12) limy, e 325 (@0 — @uil* =0,

completing the proof of (i).
Now we prove (ii): By (12) there is an N e 4" such that if n > N then

¢ > (Din | — aml)t 2 (T |aul)? — (T law)?
so that
(I et < e 4+ (Do law)t
By the converse coefficient property (a consequence of Theorem 3.1),

2o |aml® < oo, Hence sup,,y 317, |a,.)* < co.
Clearly sup,c,<y 2151 |@ai]* < oo since 317 a,| < oo, 1 < n < N, by the
converse coefficient property again. Thus

Zl?=l |ak|2 é lim infn-»oo Zl?:l Ia'nk|2 é Supnzl Zl?:l |a'nk|2 < oo,

and this completes the proof of the theorem.
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