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NOTE

CORRECTION TO

“A COUNTEREXAMPLE TO PEREZ’S GENERALIZATION
OF THE SHANNON-MCMILLAN THEOREM”

By JouN C. KIEFFER
University of Missouri, Rolla

In [1] we presented an example which was stated to be a counterexample to
Theorem 2.3 of [2]. This is not true since an assumption implicit from page 553
of [2] was overlooked. In this correction note, by modifying the technique of
[1], we obtain a correct counterexample. We remark that Dr. Perez has recently
repaired his Theorem 2.3 by adding an additional assumption; see [3].

Let (Q, &) be the measurable space where Q is the set of doubly infinite
sequences of integers and & is the usual product sigma-field. For each integer
i, let X, be the projection from'Q onto the ith coordinate. If i, jare integers such
that i < j, let &, ; be the sub-sigmafield of & generated by X, X,,,, ---, X,.
If P is a probability measure on & let P, be the restriction of P to &,
n = 1, 2, LRGN

To provide a counterexample to Theorem 2.3 of [2] we construct probability
measures P, Q on . such that

(a) P, Q are stationary;

(b) P,is absolutely continuous with respect to @, n = 1, 2, -

(c) lim, ., {4 nlog (dP,/dQ,) dP exists and is finite;

(d) for each Ee &, lim, . Q(E| % _, _,) exists a.e. [P], and there exists
a probability measure P’ on V,,, .5, , such that

P’(F N E) = SF limn_m Q(Elj&?’-—n,—l) dPa

for each Fe V., 7 _1» E€c F 4,
(e) lim,_, n=*log(dP,/dQ,) does not exist in L!(P).

(Condition (d) was overlooked in [1]. Also, all logarithms are to base 2.)
It is not hard to construct a double seq'uence a,;nj=1,2, ..., such that

f) a,, =22,n,j=1,2, ...
(8) |anpr; — au | S [nlog(n4+ D] nj=1,2, ..
(h) lim,_,a,; = 2 for each j;

(i) X5.127%a, ; = 3 for each n.

For each positive integer j, let P/ be the discrete probability measure on &~
which assigns probability one to the sequence which is identically 2j. From
[1] we can construct a stationary discrete probability measure Q7 on &% with
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support contained in the set of all sequences each of whose entries are 2j or
2j — 1, such that

Q.i()(1 = 2j,X2= 2]', e X, = 21) = 27"at1,5 , n=1,2,....
Let P = }15.,279Pi, Q = 3,%.,279Q4. Then (a)—(e) hold.
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