NOTE

CORRECTION TO

"A COUNTEREXAMPLE TO PEREZ'S GENERALIZATION OF THE SHANNON-MCMILLAN THEOREM"

By John C. Kieffer

University of Missouri, Rolla

In [1] we presented an example which was stated to be a counterexample to Theorem 2.3 of [2]. This is not true since an assumption implicit from page 553 of [2] was overlooked. In this correction note, by modifying the technique of [1], we obtain a correct counterexample. We remark that Dr. Perez has recently repaired his Theorem 2.3 by adding an additional assumption; see [3].

Let (Ω, \mathscr{F}) be the measurable space where Ω is the set of doubly infinite sequences of integers and \mathscr{F} is the usual product sigma-field. For each integer i, let X_i be the projection from Ω onto the ith coordinate. If i, j are integers such that $i \leq j$, let $\mathscr{F}_{i,j}$ be the sub-sigmafield of \mathscr{F} generated by X_i, X_{i+1}, \dots, X_j . If P is a probability measure on \mathscr{F} let P_n be the restriction of P to $\mathscr{F}_{1,n}$, $n=1,2,\cdots$.

To provide a counterexample to Theorem 2.3 of [2] we construct probability measures P, Q on \mathcal{F} such that

- (a) P, Q are stationary;
- (b) P_n is absolutely continuous with respect to Q_n , $n = 1, 2, \cdots$;
- (c) $\lim_{n\to\infty} \int_{\Omega} n^{-1} \log (dP_n/dQ_n) dP$ exists and is finite;
- (d) for each $E \in \mathscr{F}_{0,0}$, $\lim_{n\to\infty} Q(E | \mathscr{F}_{-n,-1})$ exists a.e. [P], and there exists a probability measure P' on $\bigvee_{i\leq 0} \mathscr{F}_{i,0}$ such that

$$P'(F \cap E) = \int_F \lim_{n \to \infty} Q(E | \mathscr{F}_{-n,-1}) dP,$$

for each $F \in \bigvee_{i < 0} \mathscr{F}_{i,-1}$, $E \in \mathscr{F}_{0,0}$;

(e) $\lim_{n\to\infty} n^{-1} \log (dP_n/dQ_n)$ does not exist in $L^1(P)$.

(Condition (d) was overlooked in [1]. Also, all logarithms are to base 2.)

It is not hard to construct a double sequence $a_{n,j}$, $n, j = 1, 2, \dots$, such that

- (f) $a_{n,j} \ge 2, n, j = 1, 2, \dots;$
- (g) $|a_{n+1,j}-a_{n,j}| \leq [n \log (n+1)]^{-1}, n, j=1, 2, \cdots;$
- (h) $\lim_{n\to\infty} a_{n,j} = 2$ for each j;
- (i) $\sum_{j=1}^{\infty} 2^{-j} a_{n,j} = 3$ for each n.

For each positive integer j, let P^j be the discrete probability measure on \mathcal{F} which assigns probability one to the sequence which is identically 2j. From [1] we can construct a stationary discrete probability measure Q^j on \mathcal{F} with

support contained in the set of all sequences each of whose entries are 2j or 2j - 1, such that

$$Q^{j}(X_{1}=2j, X_{2}=2j, \dots, X_{n}=2j) = 2^{-na_{n+1,j}}, \qquad n=1, 2, \dots.$$
 Let $P=\sum_{j=1}^{\infty}2^{-j}P^{j}, Q=\sum_{j=1}^{\infty}2^{-j}Q^{j}$. Then (a)—(e) hold.

REFERENCES

- [1] Kieffer, J. C. (1973). A counterexample to Perez's generalization of the Shannon-McMillan Theorem. *Ann. Probability* 1 362-364.
- [2] Perez, A. (1964). Extensions of Shannon-McMillan's limit theorem to more general stochastic processes. Trans. Third Prague Conf. on Information Theory: Statistical Decision Functions and Random Processes. 545-574.
- [3] Perez, A. (1974). Generalization of Chernoff's result on the asymptotic discernability of two random processes. *Colloquia Mathematica Societas Janos Bolyai* 9 619-632.