ALMOST SURE CONVERGENCE OF THE QUADRATIC VARIATION OF MARTINGALES: A COUNTEREXAMPLE

BY ITREL MONROE

University of Arkansas

Let X_s be a continuous martingale and Q_{ν} be an increasing sequence of partitions of [0, 1]. Let

$$S^{2}(Q_{\nu}) = \sum_{t_{i} \in Q_{\nu}} (X_{t_{i}} - X_{t_{i-1}})^{2}$$
.

An example is given in which

$$\limsup_{
u o \infty} S^2(Q_{
u}) = \infty$$
.

1. Introduction. It is now a well-known fact that the quadratic variation of a right continuous martingale converges in measure. That is, if Q is a partition of [0, 1], then

$$S^{2}(Q) = \sum_{i=1}^{n} (X(s_{i}) - X(s_{i-1}))^{2}$$
 $s_{i} \in Q$

converges in measure as max $(s_i - s_{i-1})$ goes to zero. For a review of this material see [2], [3] and [4]. In [2], Burkholder raises the following question. If Q_{ν} is an increasing sequence of partitions of [0, 1], what can be said about $\sup_{\nu} S^2(Q_{\nu})$? In this paper an example of a right continuous martingale is given which has the property that

$$(1.1) lim sup_{\nu} S^{2}(Q_{\nu}) = \infty$$

for a specified increasing sequence of partitions Q_{ν} . Thus, any results along the line of $S^2(Q_{\nu})$ converging almost everywhere or $||\sup_{\nu} S^2(Q_{\nu})||_p \leq c_p ||X^*||_p$ must make at least some demands on the martingale.

In fact, the example shows somewhat more than that. In [6], Taylor shows that the "correct" function for measuring the pathwise variation of Brownian motion is

$$\phi_1(s) = s^2/2 \log^* \log^* s$$

 $(\log^* s = \max{\{1, |\log s|\}})$ in the sense that $\sup_Q \sum \phi_1(W_{s_i} - W_{s_{i-1}})$ is a finite random variable but will not be finite if ϕ_1 is replaced by any function ϕ such that $\phi(s)/\phi_1(s) \to \infty$ as $s \to 0$. The martingale X and the increasing sequence of partitions Q_{ν} exhibited here have the property that

(1.2)
$$\lim \sup_{\nu} \sum_{Q_{\nu}} \psi_{1}(X_{s_{i}} - X_{s_{i-1}}) = 1.$$

The paths of the martingale are continuous so as the mesh of the partitions Q_{ν} goes to zero, $|X_{s_i}-X_{s_{i-1}}|\to 0$. Since $\psi_1(s)/s^2\to 0$ as $s\to 0$, (1.2) implies (1.1). Thus, it is the result (1.2) that will be proved.

Received March 24, 1975; revised June 9, 1975.

AMS 1970 subject classifications. Primary 60G45; Secondary 60J65.

Key words and phrases. Martingales, quadratic variation, square variation.

www.jstor.org

It should be noted that for any right continuous martingale with left-hand limits

$$\lim \sup_{\nu} \sum_{Q_{\nu}} \psi_{1}(X_{s_{i}} - X_{s_{i-1}}) < \infty.$$

This follows from Taylor's result above and the fact that every such martingale is a time change of Brownian motion. See [5]. Thus in some sense, the martingale exhibited here is about as bad as a martingale can be.

2. Preliminaries. Let

(2.1)
$$\psi_1(s) = s^2/2 \log^* \log^* s$$

where $\log^* s = \max\{1, |\log s|\}$. Let Q_{ν} be an increasing sequence of partitions of [0, 1], consisting of $s_{\nu,i}$, $0 \le i \le m_{\nu}$ where $0 = s_{\nu,0} < s_{\nu,1} < \cdots < s_{\nu,m} = 1$.

(2.2) THEOREM. There exists a continuous martingale (X_s, \mathcal{G}_s) and an increasing sequence of partitions, Q_v , such that almost surely

$$\limsup_{\nu} \sum_{i=1}^{m_{\nu}} \phi_{1}(X_{s_{\nu,i}} - X_{s_{\nu,i-1}}) = 1$$
.

The martingale X_s constructed here is a time change of Brownian motion. The Brownian motion process will be denoted by (W_t, \mathcal{F}_t) . A continuous family of \mathcal{F}_t stopping times T_s will be defined and X_s will be $W(T_s)$.

The two processes W_t and $X_s = W(T_s)$ will invite some confusion when discussing partitions of [0, 1] so the following convention will be followed: partitions of the time parameter of W_t will be denoted by P and partitions of the time parameter of X_s will be denoted by P. Thus if $P = \{S_0, S_1, \dots, S_n\}$ is a partition of the time parameter of P, then $P = \{T_{s_0}, T_{s_1}, \dots, T_{s_n}\}$ is a partition of the time parameter of P. However, P is a random variable.

Let \mathscr{P} be the set of partitions P such that:

- (a) The only points in P are the form $k2^{-n}$ (n not fixed).
- (b) If $t \in P$ and $k2^{-n} < t < (k+1)2^{-n}$, then $k2^{-n} \in P$ and $(k+1)2^{-n} \in P$ also.

All partitions of the time parameter of W_t will be in \mathcal{P} .

The goal is to select P such that it partitions [0, 1] into intervals $[t_i, t_{i+1}]$ for which

$$\psi_{\mathbf{1}}(W_{t_i} - W_{t_{i-1}}) > (1 - \varepsilon)(t_i - t_{i-1}) \; .$$

In fact, one wants an infinite sequence of such partitions P_{ν} , with $\varepsilon \to 0$ as $\nu \to \infty$. This will be done, almost, in Lemma (3.2). For this purpose, it is convenient to introduce some notation.

Let N_l be an increasing sequence of positive integers. Define \mathcal{N}_l to be the intervals of the form $[k2^{-n}, (k+1)2^{-n}]$ such that $n > N_l$, $k < 2^n$, and

$$\phi_1(W_{k2^{-n}} - W_{(k+1)2^{-n}}) > (1 - N_l^{-1})2^{-n}.$$

Let \mathscr{A}_{l}^{*} be the intervals of the form $[k2^{-n}, (k+1)2^{-n}]$ which are

- (a) either in \mathcal{N}_l or of length $2^{-N_{l+1}}$, and
- (b) not properly contained in any interval of the type described in (a).

Note that the intervals in \mathcal{N}_i^* are disjoint and cover [0, 1]. The endpoints of the intervals in \mathcal{N}_i^* therefore form a partition of [0, 1] which in turn defines \mathcal{N}_i^* . Thus it simplifies matters to consider \mathcal{N}_i^* at once to be both a cover of [0, 1], and a partition of [0, 1].

For $N_l < n \leq N_{l+1}$ and $k \leq 2^n$, let

$$I_{k,n} = 1$$
 if $[k2^{-n}, (k+1)2^{-n}] \cap \mathcal{N}_l$
= 0 otherwise.

Finally for each $t=j2^{-m}$ with j odd, $j\leqq 2^m$, $N_l< m\leqq N_{l+1}$, let $\mathscr{F}_{j,m}$ be the σ -field generated by the functions $I_{k,n}$, $n\leqq N_{l+1}$ and $(k+1)2^{-n}\leqq (j-1)2^{-m}$. Let \mathscr{F}_l be the σ -field generated by all functions $I_{k,n}$, $n\leqq N_{l+1}$.

We will later use the fact that if k is odd, $k < 2^n$, then $\mathscr{F}_{k,n} \subset \mathscr{F}_{2k-1,n+1}$.

Observe that if F is an atom of \mathscr{F}_l , then $\mathscr{N}_l^*(\omega)$ is the same for all $\omega \in F$. Thus one can write without ambiguity $\mathscr{N}_l^*(F)$. In the same way, $\mathscr{N}_l^* \cap [0, (j-1)2^{-m}]$ depends only on the σ -field $\mathscr{F}_{j,m}$, so, if F is an atom of $\mathscr{F}_{j,m}$, one can write $\mathscr{N}_l^*(F) \cap [0, (j-1)2^{-m}]$.

- 3. Lemmas. The following simple variant of the law of the iterated logarithm is needed.
- (3.1) LEMMA. If (W_t, \mathcal{F}_t) is a Brownian motion process, $t_0 \in (0, 1)$, and $\varepsilon > 0$, then almost surely there are infinitely many n such that

$$\psi_1(W_{k2^{-n}} - W_{(k+1)2^{-n}}) > (1 - \varepsilon)2^{-n}$$

where $k2^{-n} \le t_0 < (k+1)2^{-n}$.

PROOF. Choose a sequence $n_m \to \infty$ such that $n_m/n_{m+1} \to 0$. Choose k_m such that $k_m 2^{-n_m} \le t_0 < (k_m + 1)2^{-n_m}$, and, for convenience, denote $k_m 2^{-n_m}$ by t_m and $(k_m + 1)2^{-n_m}$ by t_m' . Let

$$\begin{split} Z_{m} &= W_{t_{m'}} - W_{t'_{m+1}} + W_{t_{m+1}} - W_{t_{m}} \\ &= (W_{t_{m'}} - W_{t_{m}}) - (W_{t'_{m+1}} - W_{t_{m+1}}) \;. \end{split}$$

The random variables Z_m are independent and the usual Borel-Cantelli argument shows that for infinitely many m

$$|Z_m| > (1 - \varepsilon/2)(2^{-n_{m+1}}\log^*\log^* 2^{n_m})^{\frac{1}{2}}.$$

See for instance [1], page 264. Moreover the law of the iterated logarithm says that for n_m sufficiently large

$$|W_{t'_{m+1}} - W_{t_{m+1}}| < 2(1 + \varepsilon)(2 \cdot 2^{-n_{m+1}} \log^* \log^* 2^{n_{m+1}})^{\frac{1}{2}}.$$

Since $n_m/n_{m+1} \rightarrow 0$, it follows that

$$|W_{t_{m'}} - W_{t_m}| > |Z_m| - |W_{t_{m+1}} - W_{t_{m+1}}| > (1 - \varepsilon)(2^{-n_{m+1}} \log^* \log^{\frac{1}{2}} 2^{n_m})^{\frac{1}{2}}$$

for infinitely many m. Since

$$\psi_1((2t \log^* \log^* t)^{\frac{1}{2}}) \sim t$$
 as $t \to \infty$,

Lemma (3.1) follows.

Lemma (3.1) allows us to modify an argument given by Taylor [6].

(3.2) Lemma. The sequence N_i can be chosen so that

$$P(\sum_{t_i \in \mathcal{N}_l^*} \psi_1(W_{t_i} - W_{t_{i-1}}) > 1 - N_l^{-1}) > 1 - N_l^{-1}$$
 .

PROOF. By induction, suppose that N_l has been selected. Lemma (3.1) and Fubini's theorem say that almost surely, \mathcal{N}_l is a Vitali cover of [0, 1]. Thus if \mathscr{C} denotes the intervals in \mathscr{N}_l which are not contained in any other interval in \mathscr{N}_l , then almost surely

$$\sum_{[a,b]\in\mathscr{C}} \phi_{1}(W_{a} - W_{b}) > 1 - N_{l}^{-1}$$
.

It is thus a simple matter to select N_{l+1} so large that

$$P(\sum_{t_i \in \mathcal{N}_l^*} \psi_1(W_{t_i} - W_{t_{i-1}}) > 1 - N_l^{-1}) > 1 - N_l^{-1}$$

which proves (3.2).

- **4. Definition of stopping times.** In order to define the process $X_s = W(T_s)$ it is only necessary to define the stopping times T_s .
- (4.1) Lemma. There is a countable set $E \subset [0, 1]$ and a family of stopping times T_s , $s \in E$, such that T_s is nondecreasing in s and
- (a) The set $E = \bigcup_{n=0}^{\infty} E_n$ where E_n is an increasing sequence of finite sets. For each $n \neq 0$, E_n is the union of disjoint sets E_n' and E_n'' and $E_{n-1} \subset E_n''$. If the elements of E_n are arranged in increasing order, the elements of E_n' and E_n'' alternate. That is, an element of E_n' is preceded and followed by an element of E_n'' . If $s \in E_n'$, the preceding element (in E_n'') is denoted by $\rho(s)$ and the following element (in E_n'') is denoted by $\tau(s)$.
- (b) As s ranges over E_n , T_s takes on every value $k2^{-n}$, $0 \le k \le 2^n$. Thus if s_1 and s_2 are successive elements in E_n , $T_{s_2} T_{s_1}$ is either 2^{-n} or zero.
- (c) For each $s \in E_n$, there is a unique odd $k < 2^n$ denoted by k_s . The set H_s defined by

$$H_s = \{T_{\tau(s)} \neq T_{p(s)}\} = \{T_{\rho(s)} = (k_s - 1)2^{-n}, T_s = k_s 2^{-n}, T_{\tau(s)} = (k_s + 1)2^{-n}\}$$
 is an atom of $\mathscr{F}_{k_s,n}$. That is, if $N_l < n \le N_{l+1}$, the functions $I_{j,m}$, $(j+1)2^{-m} \le (k_s - 1)2^{-n}$ and $m \le N_{l+1}$ are constant on H_s .

(d) For $s \in E_n$, let $s' = \max \{v \in E_{n-1}, v < s\}$ and $s'' = \min \{v \in E_{n-1}; v > s\}$. If $s \in E_n'$, either $T_{\rho(s)} = T_{s'}$ or $T_{\tau(s)} = T_{s''}$, and, on H_s both are true. For $s \in E_n'' \setminus E_{n-1}$, either $T_s = T_{s'}$ or $T_s = T_{s''}$.

Such a class of sets and stopping times T_s , $s \in E_n$, is easily defined by induction. One starts with $E_1 = \{0, \frac{1}{2}, 1\}$ and $T_0 = 0$, $T_{\frac{1}{2}} = \frac{1}{2}$ and $T_1 = 1$. If E_{n-1} and T_s have been defined for $s \in E_{n-1}$, one proceeds as follows. Let s' and s'' be any two successive elements in E_{n-1} . By (c) and (b), there is an odd $k < 2^n$ such that on the set $\{T_{s'} \neq T_{s''}\}$, $T_{s'} = (k-1)2^{-n}$ and $T_{s''} = (k+1)2^{-n}$. Now $\{T_{s'} \neq T_{s''}\}$ is in $\mathscr{F}_{(k+1)/2,n-1}$ if (k+1)/2 is odd and $\{T_{s'} \neq T_{s''}\}$ is in $\mathscr{F}_{(k-1)/2,n-1}$ if (k-1)/2 is odd. In either case we have $\{T_{s'} \neq T_{s''}\}$ is in $\mathscr{F}_{k,n}$. Write

 $\{T_{s'} \neq T_{s''}\} = \bigcup_{i=1}^m \Lambda_i$ where the sets Λ_i are disjoint atoms in $\mathscr{F}_{k,n}$. Select 2m-1 points in the interval (s', s''), say $s_1 < s_2 < \cdots < s_{2m-1}$.

For $\omega \in \Lambda_l$, $T_{s_i} = (k-1)2^{-n}$ if i < 2l-1, $T_{s_i} = (k+1)2^{-n}$ if i > 2l-1 and $T_{si} = k2^{-n}$ if i = 2l-1. Then for $\omega \in \Lambda_l$, T_s will increase only on the interval (s_{2l-2}, s_{2l}) . The points $s_1, s_3, \dots, s_{2m-1}$ are placed in E_n' and the points $s_2, s_4, \dots, s_{2m-2}$ are placed in E_n'' as are all the points in E_{n-1} . The properties (a), (b), (c) and (d) are easily verified.

This defines the stopping times T_s for all $s \in E$. For any other $s \in [0, 1]$, let $T_s = \inf \{T_v : v \in E, v > s\}$. Since T_s increases in increments of 2^{-n} as s ranges over E_n , the stopping times thus defined are continuous. Thus the martingale X_t is defined.

5. Definition of partitions. The partitions Q_{ν} are subsets of E. In fact there is an increasing sequence ν_l such that $Q_{\nu_l} = E_{N_l}$. Starting with Q_{ν_l} , the elements of $\bigcup_{n=N_l+1}^{N_l+1} E_n$ will be added in an order that will be described shortly.

Toward the goal of defining Q_{ν} , order \mathscr{S} as follows. If $P_1, P_2 \in \mathscr{S}$,

$$P_1 \prec P_2$$
 iff $\min((P_1 \backslash P_2) \cup (P_2 \backslash P_1)) \in P_2$.

Let $s \in E_n'$, $N_l < n \le N_{l+1}$. Consider the set H_s . On H_s , $T_s = k_s 2^{-n}$ and the partitions $\mathscr{N}_{N_l}^* \cap [0, (k_s - 1)2^{-n}]$ are constant, as has been noted. Define

$$P_s = \bigcap \{ P \in \mathscr{P}; P \cap [0, (k_s - 1)2^{-n}] = \mathscr{N}_l^*(H_s) \cap [0, (k_s - 1)2^{-n}]$$
 and $k_s 2^{-n} \in P \}$.

For $s \in E_n'' \setminus E_{n-1}$ define (inductively)

$$P_s = P_{s'} \cup P_{s''}$$

where $s' = \max \{v \in E_{n-1}; v < s\}$ and $s'' = \min \{v \in E_{n-1}; v > s\}$. Order $s \in \bigcup_{n=N_l+1}^{N_l+1} E_n$ by

$$s_1 < s_2$$
 if $P_{s_1} < P_{s_2}$ or if $P_{s_1} = P_{s_2}$ and $s_1 < s_2$.

This is the desired order in which the partitions will be augmented.

(5.1) Lemma. Let F be any atom of the σ -field \mathcal{F}_i . Let

$$Q_F = \{s \in E; P_s \leq \mathscr{N}_1^*(F)\}$$
.

Then

$$\{T_s(\omega); s \in Q_F, \omega \in F\} = \mathscr{N}_l^*(F)$$
.

(Here, $P_1 \leq P_2$ means either $P_1 < P_2$ or $P_1 = P_2$.)

PROOF. To show that $\mathscr{N}_l^*(F) \subset \{T_s(\omega); s \in Q_F, \omega \in F\}$, let $k2^{-n} \in \mathscr{N}_l^*(F)$. We can assume that k is odd. Then for some $s \in E_n$ with $n \leq N_{l+1}$, $k = k_s$ and $H_s \supset F$. It follows easily that $P_s \subset \mathscr{N}_l^*(F)$ so $P_s \leq \mathscr{N}_l^*(F)$. That is, $s \in Q_F$ and on $F \subset H_s$, $T_s = k_s 2^{-n} = k2^{-n}$.

To show that $\{T_s(\omega); s \in Q_F, \omega \in F\} \subset \mathscr{N}_l^*(F)$, suppose the contrary. Choose the smallest n such that for some $k < 2^n$, $k2^{-n} \notin \mathscr{N}_l^*(F)$ but $T_s(\omega) = k2^{-n}$ for some $s \in Q_F$ and $\omega \in F$.

Then either $s \in E_n'$ or $s \in E_n'' \setminus E_{n-1}$. But if $s \in E_n'' \setminus E_{n-1}$, by (d) of (4.1) either $T_s = T_{s'}$ or $T_s = T_{s'}$ where $s' = \max \{v \in E_{n-i}; v < s\}$ and $s'' = \min \{v \in E_{n-1}; v > s\}$ which contradicts the choice of n, since $T_{s'}$ and $T_{s'}$, take on values of the form $j2^{-(n-1)}$. Thus $s \in E_n'$. Moreover, $F \subset H_s$. Otherwise, $F \cap H_s = \emptyset$, since F is an atom, and $T_{\tau(s)} = T_{\rho(s)}$ on F. But again by (d) of (4.1) either $T_s = T_{s'}$ or $T_s = T_{s'}$ contradicting the choice of n. Thus $F \subset H_s$.

Now it follows that $k = k_s$ and

$$\mathscr{A}_{l}^{*}(F) \cap [0, (k-1)2^{-n}] = \mathscr{A}_{l}^{*}(H_{s}) \cap [0, (k-1)2^{-n}]$$

so

$$P_s \cap [0, (k-1)2^{-n}] = \mathscr{N}_l^*(F) \cap [0, (k-1)2^{-n}].$$

But $k2^{-n}=k_s2^{-n}\in P_s$ and $P_s\preceq \mathscr{N}_l^*(F)$. Thus there is a $t\in \mathscr{N}_l^*(F)$ such that $(k-1)2^{-n}< t< k2^{-n}$. But since $\mathscr{N}_l^*(F)\in \mathscr{S}$, this means that $k2^{-n}\in \mathscr{N}_l^*(F)$ which contradicts the original assumption on n. Thus $\{T_s; s\in Q_F, \omega\in F\}\subset \mathscr{N}_l^*(F)$.

The proof of Theorem 2.2 is now immediate. For any atom F in \mathcal{F}_l , let $s_0 = \sup_{l} Q_F$ and observe that

$$\{s; s \leq s_0\} = Q_F.$$

Thus $Q_F = Q_{\nu}$ for some ν and Lemma 5.1 says that

$$\textstyle \sum_{i=1}^{m_{\nu}} \psi_1(X(s_{\nu,i}) \, - \, X(s_{\nu,i-1})) \, = \, \sum_{t_i \, \in \, \mathcal{N}_I^*} \psi_1(W(t_i) \, - \, W(t_{i-1})) \; .$$

Lemma 3.2 completes the proof.

REFERENCES

- [1] Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
- [2] BURKHOLDER, D. (1971). Martingale inequalities. Martingales, a report on a meeting at Oberwolfach. Lecture Notes in Mathematics 190 1-8. Springer-Verlag, New York— Berlin.
- [3] DOLÉANS, C. (1969). Variation quadratique des martingales continues à droite. Ann. Math. Statist. 40 284-289.
- [4] MILLAR, P. W. (1969). Martingales with independent increments. Ann. Math. Statist. 40 1033-1041.
- [5] MONROE, I. (1972). On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 1293-1311.
- [6] TAYLOR, S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 219-241.

DEPARTMENT OF MATHEMATICS
301 SCIENCE-ENGINEERING BUILDING
UNIVERSITY OF ARKANSAS
FAYETTEVILLE, ARKANSAS 72701