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ALMOST SURE CONVERGENCE OF THE QUADRATIC
VARIATION OF MARTINGALES:
A COUNTEREXAMPLE

By ITREL MONROE

University of Arkansas
Let X; be a continuous martingale and Q, be an increasing sequence
of partitions of [0, 1]. Let
$2Q,) = Ztier (th. - Xti_1)2 .
An example is given in which

lim sup, . $%Q,) = oo .

1. Introduction. It is now a well-known fact that the quadratic variation of
a right continuous martingale converges in measure. That is, if Q is a partition
of [0, 1], then
SHQ) = Lt (X(s0) — X(s:-0))? si€0Q
converges in measure as max (s, — s,_;) goes to zero. For a review of this ma-
terial see [2], [3] and [4]. In [2], Burkholder raises the following question. If
Q, is an increasing sequence of partitions of [0, 1], what can be said about
sup, $%(Q,)? In this paper an example of a right continuous martingale is given
which has the property that

(1.1) lim sup, $*%(Q,) = oo

for a specified increasing sequence of partitions Q,. Thus, any results along the
line of $*(Q,) converging almost everywhere or |[sup, $*(Q,)||, < c, || X*
make at least some demands on the martingale.

In fact, the example shows somewhat more than that. In [6], Taylor shows
that the “correct” function for measuring the pathwise variation of Brownian
motion is

||, must

di(s) = s*/2 log* log* s
(log* s = max {1, [log s|}) in the sense that sup, 3 ¢ (W, — W, _) is a finite
random variable but will not be finite if ¢, is replaced by any function ¢ such

that ¢(s)/¢,(s) — co as s — 0. The martingale X and the increasing sequence
of partitions Q, exhibited here have the property that

(1.2) limsup, 3o, (X, — X,,_) = 1.
The paths of the martingale are continuous so as the mesh of the partitions Q,

goes to zero, |X, — X, |— 0. Since ¢(s)/s* — 0 as s — 0, (1.2) implies (1.1).
Thus, it is the result (1.2) that will be proved.
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It should be noted that for any right continuous martingale with left-hand
limits
lim Squ ZQ,, ¢1(Xsi - Xai_l) < Q.
This follows from Taylor’s result above and the fact that every such martingale
is a time change of Brownian motion. See [5], Thus in some sense, the mar-
tingale exhibited here is about as bad as a martingale can be.

2. Preliminaries. Let

2.1 i(s) = 5*/2 log* log* s
where log* s = max {1, |log s|}. Lgt Q, be an increasing sequence of partitions
of [0, 1], consisting of s, ,,0 < i< m, where0 =35,,<5,, <+ <S5, =1

(2.2) THEOREM. There exists a continuous martingale (X,, &,) and an increasing
sequence of partitions, Q,, such that almost surely

limsup, 37 (X, , — X,,,.) = 1.

The martingale X, constructed here is a time change of Brownian motion.
The Brownian motion process will be denoted by (W,, & ). A continuous
family of 7, stopping times T, will be defined and X, will be W(T,).

The two processes W, and X, = W(T,) will invite some confusion when dis-
cussing partitions of [0, 1] so the following convention will be followed: parti-
tions of the time parameter of W, will be denoted by P and partitions of the
time parameter of X, will be denoted by Q. Thus if Q={5,8,--+,5,}1isa
partition of the time parameter of X,, then P = {T,o, T,l, cey T,n} is a partition
of the time parameter of W,. However, P is a random variable.

Let Z be the set of partitions P such that:

(a) The only points in P are the form k2= (n not fixed).
(b) Ifte Pand k2" < t < (k + 1)27", then k2~ ¢ Pand (k 4 1)27" ¢ P also.

All partitions of the time parameter of W, will be in

The goal is to select P such that it partitions [0, 1] into intervals [#;, #,,,]
for which

(W, — Wi ) > (1 — o)t — 1) -

In fact, one wants an infinite sequence of such partitions P,, with ¢ — 0 as
v — co. This will be done, almost, in' Lemma (3.2). For this purpose, it is
convenient to introduce some notation. .

Let N, be an increasing sequence of positive integers. Define % to be the
intervals of the form [k2-*, (k 4- 1)2-"] such that n > N, k < 2", and

¢'1(Wk2—” - (k+1)2—”) > (1 - Nl_l)z_n *
Let 57 * be the intervals of the form [k2-", (k + 1)2-"] which are

(a) either in %7 or of length 2-%1+1, and
(b) not properly contained in any interval of the type described in (a).
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Note that the intervals in .%7}* are disjoint and cover [0, 1]. The endpoints
of the intervals in .9} * therefore form a partition of [0, 1] which in turn defines
S *. Thus it simplifies matters to consider % * at once to be both a cover of
[0, 1], and a partition of [0, 1].

For Ny < n< N,,,and k < 27, let

I,,=1 if [k27", (k + 1)27"]m ¥
=0 otherwise.

Finally for each 7 = j2-™ with j odd, j < 2™, N, < m < N,,,, let &, , be the
o-field generated by the functions 7, ,, n < N,,, and (k 4 1)2-* < (j — 1)2-™.
Let &, be the o-field generated by all functions 7, ,, n < N,,,.

We will later use the fact that if k is odd, k < 2=, then &, , € F | 1.

Observe that if F is an atom of &, then % *(w) is the same for all w ¢ F.
Thus one can write without ambiguity .%7;*(F). In the same way, .%7;* n [0,
(j — 1)2-™] depends only on the o-field & ,,, so, if F is an atom of & ,, one
can write 7 *(F) n [0, (j — 1)2™].

3. Lemmas. The following simple variant of the law of the iterated logarithm
is needed.

3.1) LemMMmA. If (W,, &) is a Brownian motion process, t, € (0, 1), and ¢ > 0,
then almost surely there are infinitely many n such that
¢1(sz—n - W(k+l)2"") > (1 - 6)2_7‘
where k27" <ty < (k + 1)2-".
Proor. Choose a sequence n,, — oo such that n,/n,_ ., — 0. Choose k,, such

that k,27"» < ¢, < (k,, + 1)27"=, and, for convenience, denote k,2~"= by ¢,
and (k,, + 1)2-"=» by 1,’. Let

Z’”‘ = W‘m' - W“,m-H + th-H - W‘m
=W, —W,)— (W, /4

tm+1) :
The random variables Z,, are independent and the usual Borel-Cantelli argument
shows that for infinitely many m

|Z,| > (1 — ¢/2)(27"n*! log* log* 2mm)} .

See for instance [1], page 264. Moreover the law of the iterated logarithm says
that for n,, sufficiently large

Wepr — Weppol <2(1 4 €)(2 - 27"m+1 log* log* 2*m+1)t .

m+1

’ _—
m+1

Since n,,/n,, ., — 0, it follows that
(Wi — W | > 1Z,] — [Wy,

m+1

— Wil > (1 — §)(27"n" log* log* 2+m)}
for infinitely many m. Since
(2t log* log* 1)) ~ ¢ as t— oo,

Lemma (3.1) follows.
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Lemma (3.1) allows us to modify an argument given by Taylor [6].
3.2) LEMMA. The sequence N, can be chosen so that
P(Ztieyl* ¢1(Wti - W‘i—l) > 1 - Nl_l) > 1 - Nl_l .

Proor. By induction, suppose that N, has been selected. Lemma (3.1) and
Fubini’s theorem say that almost surely, .&7] is a Vitali cover of [0, 1]. Thus
if € denotes the intervals in %] which are not contained in any other interval
in .97, then almost surely

Ditaplee i(We — W) > 1 — N1

It is thus a simple matter to select N,,, so large that

P(Ztiey,* ¢1(Wti - Wti—l) >1—-NH>1-—-N"!
which proves (3.2).

4. Definition of stopping times. In order to define the process X, = W(T,)
it is only necessary to define the stopping times 7.

4.1) LEMMA. There is a countable set E C [0, 1] and a family of stopping
times T, s € E, such that T, is nondecreasing in s and

(a) The set E = Uy, E, where E, is an increasing sequence of ﬁnzte sets. For
each n + 0, E, is the union of disjoint sets E,' and E," and E,_, C E,”. If the
elements of E, are arranged in increasing order, the elements of E,' and E,'" alternate.
That is, an element of E,' is preceded and followed by an element of E,". If se E,/,
the preceding element (in E,') is denoted by o(s) and the following element (in E,')
is denoted by 7(s).

(b) As s ranges over E,, T, takes on every value k2-", 0 < k < 2*. Thus if s,
and s, are successive elements in E,, T, —T, s either 2= or zero.

(¢) For each se E,’, there is a unique odd k < 2" denoted by k,. The set H,
defined by

Hs = {Tr(s) i TP(s)} = {Tﬂ(s) = (ks - l)z—n, Ts = ksz_n’ Tr(s) = (ks + 1)2—1»}

is an atom of &, . That is, if N, < n < Ny, the functions I; ,, (j + 1)27" <
(k, — 1)2=" and m < N,., are constant on H,.

(d) ForseE,, let s =max{veE, ,,v<s}and s" =min{vekE, ;v > s}
If se E,!, either T,, =T, or T , =T,., and, on H, both are true. For s¢
E'E,_,, either Ty =T, or T, =T,..

Such a class of sets and stopping times T,, s € E,, is easﬂy defined by induc-
tion. One starts with £, ={0,4,1} and T, =0, T, =% and T, = 1. If E,_
and T, have been defined for se E,_;, one proceeds as follows. Let s’ and s”
be any two successive elements in E,_;. By (c) and (b), there is an odd k < 2"
such that on the set {T,, + T,.}, T, = (k — )2~ and T,,, = (k + 1)2-". Now
{T, + T,.}isin ﬂ“(kﬂw w1 if (kK 4+ 1)/2 is odd and {T,, # T,.} is in 5 ,_) 5.0
if (k —1)/2 is odd. In either case we have {T, + T,.} is in & ,,. Write
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{T, # Ty} = U, A, where the sets A; are disjoint atoms in .5, ,. Select
2m — 1 points in the interval (s’, s”), say 5, < 8, < +++ < Syp_ye

For we A, T, = (k =12 if i <2l -1, T, = (k + )27 if i > 2] — 1
and T,, = k2=~ if i = 2] — 1. Then for we A,, T, will increase only on the
interval (s,_,, s,). The points s, s,, - - -, 5,,_, are placed in E,’ and the points
S35 S4s **+5 S,y are placed in E,” as are all the points in E,_,. The properties
(@), (b), (c) and (d) are easily verified.

This defines the stopping times T, for all se E. For any other se[0, 1], let
T,=inf{T,: ve E,v > s}. Since T, increases in increments of 2-" as s ranges
over E,, the stopping times thus defined are continuous. Thus the martingale
X, is defined.

5. Definition of partitions. The partitions Q, are subsets of E. In fact there
is an increasing sequence v, such that le = ENl. Starting with sz’ the elements
of Uffi‘;}l +1 E, will be added in an order that will be described shortly.

Toward the goal of defining Q,, order & as follows. If P, P,e &,

P, < P, iff min ((P\P,) U (P\P))) € P, .
Let se E,’, N, < n < N,,,. Consider the set H,. On H,, T, = k,27" and the
partitions %% n [0, (k, — 1)27"] are constant, as has been noted. Define
P,.=N{PeF Pn]0,(k,— 1)27"] = ¥ *(H,) n [0, (k, — 1)27"]
and k,27"¢ P}.
For se E,”"\E,_, define (inductively)
I’8 = P’/ U Psll

where s’ = max{veE, ;v <slands”" =min{vekE, ;v > s}
Order se |J ,’fi}f}l w1 E, by

8 < Sy if P, <P, orif P, =P, and 5 <s,.
This is the desired order in which the partitions will be augmented.
(5.1 LEMMA. Let F be any atom of the o-field 5. Let

Qp={seE; P, < Y *(F)}.
Then
{T(); s € 0y, 6 € F} = S/ (F).
(Here, P, < P, means either P, < P, or P, = P,.)

Proor. To show that & *(F) C {T(w); s € Qp, © € F}, let k27" e &7/ *(F). We
can assume that k is odd. Then for some sc E, with n < N,,,, kK = k, and
H,> F. 1t follows easily that P, ¢ . *(F) so P, < % *(F). Thatis, se Qp
andon Fc H,, T, = k,2-" = k2",

To show that {T(»); s € Q,, ® € F} C % *(F), suppose the contrary. Choose
the smallest n such that for some k < 2", k2-" ¢ %7 *(F) but T(w) = k2" for
some scQ,and we F.
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Then either se E,’ or se E,”\E,_,. Butif se E/\E,_,, by (d) of (4.1) either
T,=T, or T,=T,, where s’ = max{vekE,_;;v < s}and s” = min{veE,_;
v > s} which contradicts the choice of n, since T,, and T, take on values of the
form j2-*-», Thus s e E,’. Moreover, F C H,. Otherwise, F n H, = ¢, since
F is an atom, and T, = T, on F. But again by (d) of (4.1) either T, = T\,
or T, = T, contradicting the choice of n. Thus F C H,.

Now it follows that k = k, and
SHF) 0 [0, (k — 1)27"] = S7%(H,) n [0, (k — 12%]

*° P, 0 [0, (k — 1)2-"] = 7*(F) n [0, (k — 1)2-7].

But k2-" = k,2-" ¢ P, and P, < % *(F). Thus there is a r € .%*(F) such that
(k — 1)2=" < t < k2", But since ¥} *(F) ¢ &, this means that k2" ¢ .7 *(F)
which contradicts the original assumption on n. Thus {T,;s€ Qp 0w € F} C
7 (F).

The proof of Theorem 2.2 is now immediate. For any atom F in F, let
s, = sup_ Qp and observe that

‘ {58 <5} =0p.
Thus Q, = Q, for some v and Lemma 5.1 says that
2 i X(s,,0) — X(s,,4-0)) = Ztieyl' H(W(t) — W(1,y)) -

Lemma 3.2 completes the proof.
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