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LOCAL HOLDER CONDITIONS FOR THE LOCAL TIMES
OF CERTAIN STATIONARY GAUSSIAN PROCESSES!

By LAURIE DAVIES
Westfilische Wilhelms-Universitdt

A local Holder condition is obtained for the local time of a sta-
tionary Gaussian process with spectral density function proportional to
(@2 + 22)—(a+d), A lower bound for the Hausdorff measure of the zero set
of the process is also obtained.

1. Introduction. Let X(¢, ») be a stochastically continuous separable sta-
tionary Gaussian process defined on the probability space (Q, .5, P) and with
spectral density function f(1). The standard deviation o(k) of the process is
given by '

(1) o¥(h) = E((X(t + h, ®) — X(t, ®))}) = 4 {=,, sin® (bAR)f(3) dA .

We denote by T(a, ¢, w) the amount of time spent by the process below the level
a during the time interval (0, ], i.e.

T(a, t, o) = {§ D(a — X(s, w)) ds

where D(x) = 1 for x > 0 and is zero otherwise.

In a recent series of papers [1, 2, 3, 4, 5] Berman proved that if o(h) ~ |A|%,
0 < a <1, for small h, plus other regularity conditions then there exists a
stochastic process ¢(x, ¢, @), the local time of X(¢, ), jointly continuous in x
and ¢, such that

2) T(b,t,0) — T(a, t, o) = §} ¢(x, t, 0) dx .
Furthermore, for all y < 1 — a, there exist random variables 7 and A such that

(3) SUPy<asiiost, tenst [9(% ¢+ B) — o(x, )] < Alh]7

for all & satisfying || < .
The local time is, for fixed x, an increasing functlon of ¢ whose points of in-
crease coincide with the points of the set

sz{t:X(t‘,w):x}.

In [4] Berman used the uniform Holder condition (3) to show that if, for example,
X(1, w) is ergodic and f(2) ~ [4|-0+* then P(V x,dimQ, = 1 — a) = | where
dim Q, denotes the Hausdorff dimension of Q,.
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This paper is devoted to a two-sided Holder condition for the local time.
Such a condition has a bearing on the exact measure function for the sets Q,
and in Section 6 we show that if X(¢, ) has spectral density function f(2) given
by (4) then the Hausdorff measure of Q, with respect to the function ¢(k) =
h=*(log (—1log h))* is almost surely strictly positive for each given x. This result
gives a more precise lower bound for the Hausdorff measure of Q, than that
obtained by Berman although it should be emphasized that our estimate does
not necessarily hold uniformly in x. The question of an upper bound seems to

be more difficult but in view of the work of Taylor and Wendel [15] it would seem
\ plausible that ¢(h) = h'~%(log (—log %))* is the exact measure function of Q, for
stationary Gaussian processes with spectral density functions of the form (4).

As ¢(x, ) is an increasing function of ¢ which increases only at the points of
the set Q,, it follows that if x = X(z, ®) then ¢(x, t + h) = ¢(x, ¢) for all suf-
ficiently small 2. We therefore consider the behaviour of ¢(X(¢, w), t + k) —
¢(X(#, ), t) for small h. We prove the following theorem.

THEOREM 1. If the process X(t, w) has spectral density function f(2) given by

_ e L@+ 3) o 2\ —(a+3) a< L
“4) f(A) =a W(R—l—a) b, 0<a<i,

then there exist constants ¢, and ¢, with 0 < ¢; < ¢, < oo such that

. X(t, w), t + h) — o(X(¢t, w), ¢

for almost all w. (The normalizing constants in (4) are chosen so that
E(X(t, o)) = 1.) )

The method of proof does in fact provide bounds for ¢, and ¢, in terms of a
and «. However, as ¢, # ¢, except in the limit as « — 1, we do not give them
explicitly. We restrict ourselves to the spectral density function (4), although
the result holds for certain other strictly nondeterministic stationary Gaussian
processes and also for certain processes with stationary Gaussian increments.
One reason for considering the spectral density (4) is that the upper bound in
(5) can then be shown to hold for first passage times. The methods of Taylor
and Wendel [15] can then be applied to obtain the aforementioned lower bound
for the Hausdorff measure of the zero set of X(z, ).

In Section 2 we introduce the necessary notation and state certain results in
the theory of least squares prediction. Section 3 contains some preliminary
lemmas, the upper bound is obtained in Section 4 and the lower in Section 5.
The relationship with the Hausdorff measure of the zero set of the process is
discussed in Section 6.

2. Notation.

2.1. A necessary and sufficient condition that a stationary Gaussian process
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be strictly nondeterministic is that the spectral distribution F(2) should be ab-
solutely continuous with respect to Lebesgue measure and satisfy

o g fAD 42
1o 1+ 2 A < oo

where f(2) = F'(2). This guarantees the existence of the function §(x) defined
below which plays an important role in the paper. For the justification of the
definitions and results listed below see Karhunen [9].

;. o-algebra generated by X(s), s\§ t.

I (o 142w logf(d) o\ 0
2w T T2 > () <9,

gw): g(w) = exp (-
defined for real x by g(x) = lim,,,9(x — iy).
gd(x): Fourier transform of g¢g(x) in | L(—o0, c0) g(x) =
Lim. (2n)7%{>,e*g(u)du. \
X,(s|f): Least squares predictor of X(s) based on F,;
X,(s|t) = B(X,|.57) .
X,(s|t): prediction error; X, (s|f) = X(s) — X,(s]7) .
&(t, w): Brownian motion.

We have the following representations, the integrals being interpreted as in-
tegrals in quadratic mean:

\
(6) X(t, @) = §4u (¢ — u) dE(uy @),
(7) X,(5]1) = 11 (s — u) dE(u, ) .

The function §(x) may be assumed real (f(4) symmetric) and the following hold:

®) §(x) € LH(— oo, o) ,
©) i) =0, x=<0,

(10) E(X(s]0)) = §2, §(—uydu ,
(11) 0(S) = §%u (@(s —4) — G(—u))du.

In the present case with f(2) given by (4) we have

(12) mw=w@%ﬁ§fw_@“w
and
(13) _(j(x) — TI%{ xe—tg=o% x>0,

These expressions were first given by Yaglom [16, 17]. We also note that for
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small A

(14) a*(h) ~ M (3a

al'()

which follows from (4) by a theorem of Pitman [13].

|A)*

2.2. Inthe remainder of the paper bold face letters will denote row vectors, e.g.

sm = (Sla tt Sm)
and integrals of the form
S°_°°° °_°°°f(sl, .‘.,Sm)dsl dsm

will be written § f(s,,) ds,,. If the range of integration is not explicitly stated it
will be taken to be R™, an integral over a subset B, of R™ being written as
{5, /(Sw) ds,. Finally, for 0 < d < 1 we define the sets .7,,(9) and _Z,(9) by

(15) @) =[5, 051 —0< 5, < 05, < 1}
and
(16) fm(a)z{smi()é1—5<Sj<1,j:1,...,m}.

3. Preliminaries.
3.1. We first remark that because of the stationarity of the process it is suf-

ficient to prove (5) for + = 0. We shall write X,(s) and X,(s) for X, (s]|0) and
X,(s]0) respectively. Given ¢, > 0 we write

17 h, = exp(—n'tw), h,) = exp(—e¢,n), n=12,.-..
If s,, e .#,(1) we denote the variance-covariance matrix of
Xe(slhnl)’ Xe(s2 hn') - Xe(slhnl)’ Tt Xe(s'mhnl) - Xe(sm—lhn')

by

A(m) = A(sy, + vy Spy b))
The variance-covariance matrix of X,(s,4,, | #,..), X,(SoP, | pir) — X (S8, | Byrr)s - - -5
X (Smhu| Pus1) — Xo(Smorhty| Bnyy) Will be denoted by pe(m) = p(sy, - - Sy, h,). Most
of this section will be devoted to various inequalities involving the matrices A(m)
and g(m). It will also be convenient to take s, = 0.

LeEMMA 1. Suppose that s, € 7, (0) where 0 < d < 1. Then, given ¢ > 0 there
exists a 0, = 0,(s0,¢), 0 < 0, < 1, and an n, = ny(s,, €) such that for all 5, 0 <
0 < 0d,andalln=n,

(18) pus(m) < 0, l<i<j<m,
(19)  Dlns ls(m)] < p550m) — “——"H%L (55— 8), 2<j=m,
and '

(20) S ()] < () — L= DCasika)*

2aI'2a)

The same inequalities hold for the matrix A(m) with h,’ replacing h,.
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Proor. Suppose that i < j. Then s; < s, < 5; < 5;,, and from (7) and (9)
we obtain
—E((Xo(Stirttn | Buia) — Xo(Sih0 | B ))Xo(Sjia | Basr) — Xo(55 0| Basa)))
= Vgt o™t g(sin by — w)(@(s5 00 — #) — G542k — W) du
+ S;ﬁf_:ff(siﬂ—si)h” G(Sipahn — w)(@G(s5h — ) — §(s;420, — u)
= G(iha + (Sis — SOy — 1) + §(Si41h 4 (5140 — S)h, — w)) du.
As s, is bounded away from zero it follows that s,,,4, > k. + (5,4, — ),
for sufficiently large n. Using this together with (13) and the fact that as 0 <
a < %, §(x) is convex and decreasing for x > 0, it follows that both integrals
are positive, proving (18).
From (18) we have
Z:n=1;u$i Iluju(m)| = #jj(m) - E(Xe(smhnIhn+l)(Xe(sjhn|h'n+l) - Xe(sj-lhnlhn+1))) .
Now
E(X(Smh | A (Xe(85 0 | Bnis) — Xo(851Rn] Hain))
= [fnirthaei=oj-1) 9(h, s, — wg(h,s; — u) du
+ Sﬁzijl+h”(sj—sj_1) g(hns; — w)(@(hy5p — u)
- g\(h'nsm + h’n(si - Sj-—l) - ll)) du
= (bni=23-0 G(h, 5, — hppy — WG(h,S; — hyyy — u)du .
From (13) we have g(x) = (2a)*x*~#/T'(2a)t for x > 0 which implies §(4,s; —
hoir — u) > (2a)°h,(s; — hyyy/h,)* T (2a)t for 0 < u < h,(s; — s;_,). Now
lim, ., %,,,/k, = 0and as 5,7 > 1 (0 < @ < } and s,, € #,(9)) we obtain
G(hasm — by — 0)G((has; — hoyy — ) = (1 — ¢)(2ah,)**h, ™ [T (22))
for sufficiently large n. On applying this inequality in the last integral it follows
that this integral is greater than
(1 = &)(2ah,)*(s; — 5;-2)/T'(22)

for sufficiently large n. This proves (19).
To prove (20) we argue as before to obtain

B )] o) — {07 157, (hasy — 05— )7
S () — LT G s, (1 0 sl — 0yt o
S ) — CTAT G, Gulsy — 0t o
- iy~ S (2 - - ().

Now as lim,_, &,,,/h, =0and 1 — 6 < 5, < 5, < 1 we may choose J,(¢,, ¢) and
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ny(¢,, €) such that for all 6,0 < 6 < 0,, and all n > n, the last expression is greater
than (1 — ¢)(2ah,s,)**/(2al’(2a)). This proves (20). The proofs for the matrix
A(m) are similar and are consequently omitted.

LEMMA 2. Denote the inverse of p(m) by p~'(m) and suppose that s, € _7,(0)
where 0 < 0 < 1. Then given ¢ > O there exists a 0, = 04(sy, €), 0 < 0, < 1, and
an ny, = ny(&y, €) such that for all 6,0 < 6 < 0y, alln = nyand all x,, - - -, x,, we have

(1 — &)cy(s; hy)~2ox,?
21 < Disv,rsm XXy ()
< (14 e)es(siha) ™% + €ohy ™ i %55, — 8,20)7
where ¢, = 2al’'(2a)/(2a)™.
Proor. Define the matrix 3 by
Do = Hu(M) 5 Iy, smv+y,

(20}1,,)2“(5, - sv—l) s 2 <v<m s
(I + ') -

%» = /’evv(m) -
and
_ . (2as,h,)*
N = (M) _‘—-—"—(1 T 6)2aT (2a)

where ¢ > 0. Then for large enough n Lemma 1 implies that 7 has a dominant
main diagonal and is therefore positive definite [8]. From this one deduces

Zlgu,u'g'm xv xv’ Auuv'(m)

(2aS1 h”)2a . (2ah%)2“ . e
Z My opalaa) T {4 oh@ay Eom (= 5=) -

Now if A and B are positive definite matrices such that x’Ax > x’Bx for all x
it follows that x’A~*x < x’B~'x for all x (see [8]). On applying this we obtain
the second inequality of (21).

To prove the first inequality we this time define » by

Ny = — (M), 1Sy, vV Sm, v+,
vvv=#vv(m), 2§V§m,
and .
€
T = i ()
— &

where 0 < ¢ < 1. This gives
Zisvrsm X Xyt (m) = (1 — &) pn(m)x® + 2 30, %, (m)°
— Zisvrsm X X Do -
Using (11) and (13) we have for large n
(22) fu(m) ~ (2as,h,)/(2aT (2a))
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which, together with (20), implies that » has a dominant main diagonal for
sufficiently large n and is therefore positive definite. As before we obtain

(I = ) (ea(m)7'x® < (1 — )(p(m) 752 + § Ty x, (1, (m))
é le:«,v’gm xu xv’ /’ly_vl’(m) M
The first inequality of (21) now follows from this and and (22) completing the

proof of the lemma.

LEMMA 3. Suppose that s, € 7, (0) where 0 < & < 1. Then given any ¢, 0 <
¢ < 1, there exists an n, = ny(e,, ¢, 8) such that for all n > n,

n al'(a /2 —am T _a
(1= 9 (gt ty) Gk (11 (5 = 5-))
(23) = |p(m)|?
= (1 4 o"(2al'(2a))™*(2ak,) (I (5, — 5,-1)7%)

where |pe(m)| denotes the determinant of p(m) and s, = 0. Furthermore, the same
inequalities hold for |A(m)|~* with h,' in place of h,.

Proor. We first note that
24 |p(m)

= (7/2)"*lim, P(IX (a8, | Byy) — Xe(h,,s,,_;lh"“)[ =y,v=1,...,m .
Y

We set Y, = X,(h,s,| h,,,) and define Y, recursively as Y, = X,(hys, | Byy) —
E(Xe(hnsv Ihn+1)|Y1’ R} Yv—l)’

The Y,, 1 < v < m, are then independent and following the line of argument
on pages 150-151 of Marcus [10] we obtain

P(lXe(hnsvlhn+l) - Xe(hnsv—llhn+l)| = Yy = L .. Ty m)

(25) = [0 2000 = )
= y™((=2)"" IV 0,)
where ¢, is the standard deviation of ¥,. As Y, ..., Y, are &, 1,s,~-M€AsUrable

it follows that
g?= E(X,(h,s, | hpir) — X, (h,s, |Iznsy_1))2) s yv=2,.-,m

where X, (h,s,|h,s,_;) is the least squares predictor of X,(4,s,|4,.,) based on
ﬁ'h”,y_l. For sufficiently large n, ,,, < h,(1 — 0y < h,s,_;,,v=2,..-,mand
hence

X;(hnsy Ihn+1) - Xep(hnsy Ihnsv—l) = Xe(hnsy l hnsv—l) .

We therefore have

0.} = E((X(h,s,|h,s,_))) , v=2,.,m
= Shnty_, G(has, — u)'du

= (1 — ¢)(2ah,)**(s, — 5,_,)*¢/(2al'(2a)), v=2,.---,m,
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for large enough n. This inequality also holds for v = 1 and the second ine-
quality of (23) now follows from (24) and (25).
To prove the first inequality we note that

E((Xo(hS, | Bass) — Xo(huS,—1 [ has1))’) = E(X(Ras,) — X(hys,-1))")
= *(ha(s, — 5,-1)) 5
le(m)| = T1 E(Xo(ns, | Hass) — Xo(BaSyi|Basn))?)
= [0 a(a(s, — 5.-0)

and the desired inequality now follows from (14).
The proofs for the matrix 4(m) are similar and are therefore omitted.

LEMMA 4. Given ¢ and 6, 0 < ¢, 8 < 1, there exists an n, = n,(e,, ¢, 0) such that
foralln=n,and m = 1,

(1 — e)pri-2-1aT(@)I(1 — a) \™2 e
c3( (1 — a)m_“’(ahn)h‘ ) F(m + 1)
(26) < (o0 [(2m)| "t ds,,

1 4 €)0*1-02aT2a)T(1 — a)? >m/2 Cdew
< (X r 1
= c4< (1 — @yi- (2ah. )" (m 4 1)

where ¢, > 0 and ¢, > 0 are constants depending on a, d and e. The same inequalities
also hold for the matrix A(m) with h,' in place of h,.

Proor. We have, with s, = 0,
ra — a=
I'm(l — a) + a)
and using Stirling’s approximation we obtain
¢ < Tl — a) >m m-a+@AT(m 4 [)=0-o
(1 — a)-=
S oo 0o (50 — 5,20) 7" ds,,

oy 1101 (8, — 8,) 7% ds,, = s s79(1 — s)m D07 ds,

where ¢; > 0 and ¢, > 0 depend only on « and 4. The desired inequalities now
follow from Lemma 3.

To ease the notation we shall in future write ¢(k) for ¢(X(0), #). The next
lemma gives a bound for E(¢(f)*™) and also an expression for the conditional
expectation E(p(1)™™ | .5,). '

LEMMA 5. Forallm = 1 and n = 1 we have

@7) E(p(h,'y™) < % s JAQ@m)|H sy
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Furthermore, given 6, 0 < 8 < 1, there exists an ny = ny(s,, ) such that for all
nz=ng .

E((phs) = ¢((1 = h)F" |5,
(28) = @m! (2)"s o lu@m)
X exp(—% Dizvrzim Zv 2, ,u;,},(Zm)) ds,,,

T

where
Z, = Xy(hos, | hpr1) — Xp(hosSy_y | Bury) s v=1,...,2m.

Proor. In [4] Berman showed (under weaker conditions than (4)) that for
eachm,m=1,2,...,

eu(%, 1) = o %, (14 exXp(u(X(s) — %)) ds) du

converges in 2mth mean to ¢(x, ). Berman’s argument requires little change
for the present case (with X(7) in place of x) and elementary manipulations give

(@) ™) = @m! (275, 0 (§ Eexp(i £im, 0,(X(h/s, )

- X(h‘n,sv—l)))) dv2m) dSZm .
As X(h,'s,) = X,(h,'s,) + X,(h,'s,) and the X,(h,’s,) are independent of the
X,(h,'s,) we have
|E(exp (i 321 vv(X(hn,Sv) - X(hn,sv—l))))l
é exp(_% Zlév,v’gz'm vvvv’ ﬂuu’(zm)) .

On using this in (29) and integrating with respect to v,, we obtain (27).
We now turn to (28). For each m,

¢ (h) — o(1 — O)h,) = % V2, Vo, eXp(iu(X(s) — X(0))) ds du

converges in 2mth mean to ¢(h,) — ¢((1 — d)h,) and hence
(¢u(ta) — ¢.((1 — O)h,))™  converges in mean to  (¢(h,) — ¢((1 — d)h,))™ .
This implies
(30) E(pu(ha) — o((1 — DA™ [F )
—w E(p(hn) — o((1 = )y |5, )

where (r) denotes covergence in rth mean.
As X,(s|t) is independent of .5, it follows that

E(exp(i 232, u(X(hys,) — X(0)|F,,.)
= exp(—% Zlév.v'é?m uvu»’pw’(zm) + i 21241:1 uu(Xp(svhnlhn+1) - X(O)))

where p(2m) is the variance-covariance matrix of X,(s,4, |, .,), - - -, X,(Samhn | Busr)-
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This yields
E((p.(h,) — @((1 — O)R))™ [ F4,,,)
= @m)t (B Y750 (52 1 Eep (D (K (has)
— X(0)) | Fh,,,) AUsn) dSa
— (2m)! (

+ 20 U (XS, b | Bair) — X(0))) dy) dSy -

h 2m
- > szm(d) (S”—» SR exp(—% Zlév,v'szm u, uv’touv'(zm)

On writing
= @m)t (B Y50 (5 Elexp(i Z2m 1,(X(hys)
— XO)|-F5,.,) du) dss
= @m)t ()7 ) (§ XP(—F Dicursan 0 000i(2)

+ i Zz—l v(X (S h Ihn+1) - X(O))) d“m) dszm

we obtain
Yo — E((pu(ha) — (1 — 5)’%))2’” | i)
= (zm)! —” ngm(d) (Sffzm(v) exp(—% ZlSv,v’gzm uuuv’low'(zm)
2n
+ i 321 uv(Xp(sv h'n | h'n+1) - X(o))) duﬁm) dsz'm,
where &,,,(v) = {4y, : |4;] > v for at least one j, 1 < j < 2m}. This implies
Yo — E((9(ha) — (1 — )™ [F 4, )]
(31) < (2m)! (_;’Lf’"

T

X S/zm(ﬁ) (Sggm(x«) eXP(—% Zlév,u’§2m uu, pw'(zm)) duzm) dszm .
From the definition of Y,, we have

= @m)! (Y7 § ) (§ Elexp Bt w(Xu(has, o)
Xy (5, | ) = KO 575,.,) )
(D) =em (2 )T, (5 Eexp( Tl 0Kk, )

— Kbl h)) + D0, Z) [T, ) dY,) s

= @m)! (2n )7 o) (§ XP(—F Drcuwrcon 0.0, 1 (2)
+ i v, Z)dv,,)ds,, '

= @m)! (2 Y" 5 o L)

X exp(—-— ZISv v'<am Z Z ,le (2m) dsm .
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Now :
§rymr (§ €XP(—3% Disu,vrsom U, 4,0 0,,/(2m)) duy,) dS,,,
= 2n)" {0 lo(2m)|~* ds,,,
= (2m)" S.;mm |pe(2m)|~ ds,,,

as p(2m) may be obtained from p(2m) by row and column operations. The last
integral is finite by Lemma 4 and hence

limv—m S/zm(ﬁ) (S?ZM(") exp(_% ZlSv,v'szm uvuu’pw’(zm)) du2m) dSZm =0.

This combined with (31) implies that E((¢(k,) — ¢((1 — d)h,))*"|F, ) tends
almost surely to Y,, for each m and hence from (30) we have

Yo = E((¢(ha) — (1 = Oh))™|F,,) 2.

hnt1
The lemma now follows from (32).

3.2. The next two lemmas are not directly concerned with the stochastic pro-
cess X(#). The first is a generalized Borel-Cantelli lemma whilst the second gives
estimates of tail probabilities derived from estimates involving the even moments
of a random variable.

LEMMA 6. Let (F,)>,, be an increasing sequence of sub-o-fields of a probability
space (Q, &, P) and let (A,)>,, be a sequence of events such that A,e F ,, v =
0, +1, &2, .-.. Then almost surely

{o: we A infinitely often} = {0: Y} _. P(A,,| F,) = oo}.

Proor. This is a two-sided version of the extended Borel-Cantelli lemma
given in Neveu [12]. The proof given there can easily be adapted to the present
situation and is therefore omitted.

LemMMA 7. Let c,, ¢, and 8 be positive constants satisfying 0 < ¢, < ¢; < co and
0 < B < 1 and suppose that X is a real random variable such that for all ¢, 0 <
¢ < 1 the inequality '
(33) (c(1 — &))" I'2n + 1) < E(X™) < (cg(1 + ¢))™T'(2n + 1)#

holds for all n = ny(c). Then for all ¢, 0 < ¢ < 1, there exists an x; = x,(¢) such
forall x = x,

(34) — (1 4 &)B(ru[r)? 7 (x[c’™ < log P(|X] = x)
< —(1 — 9B(x/e)™™,
where 0 < r, < 1 < r, < co are the two positive roots of the equation
(9) Befe) ™ — 2 4 (1= §) = 0. |
Proor. The proof of this lemma is to be found in [7].

4. The upper bound. The upper bound can now be easily obtained. Combining
Lemmas 4, 5 and 7 we obtain that for all ¢ > 0 there exists an x, = X,(&,, ¢) such
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that for all x = x, and n = ny(s,)

Po(h,)[(h,')' 7 = x) < exp(—(1 — e)(x/cg)"®)
where

Sy

. I'(l — a) < al’'(2a) >i
(1 = a)*(2aa)" x ’

If we now set x = ((1 4 ¢)/(1 — ¢))c,(log (—log A,"))* a simple application of the

Borel-Cantelli lemma gives

lim sup ¢(hy) <gc,.
" (hy)=e(log (—log 7)) T

On noting that ¢(#) is a nondecreasing function of % and that ¢, in (17) may be
taken to be arbitrarily small we obtain

) o(h)
1m sup, h-a(log (_log h))= =6

which proves the first part of the theorem.
5. The lower bound.

5.1. The lower bound is somewhat more difficult. The first problem is to
show that the quadratic form occurring in (28) is small. This is then used to
obtain a lower bound for

E((p(hs) — ¢((1 = 0ha))™ [ F4,.,,)
which together with Lemma 7 gives a lower bound for

P(p(h,) — o((1 — O)h,) = b} *x|F, ).

Byt

An application of Lemma 6 then completes the proof of the theorem.

LeEMMA 8. Suppose ¢ > 0and 3, 0 < 6 < 1, are given. Then for almost all
there exists an ny = ng(e,, €, 0, w) such that for all n = n,

d
(36) SUP1_s5es1 s X, (shy | husy)

= (1 + e)(1 — 0)**eyh,*(log (—log h,))}

where

clO

_ oy (Ti-a))
@+ HIG — a) \ al(@)

Proor. We first note that (4) implies that
[ X(—h) — X(O0)] _

37 lim sup, |, #(log (—Tog )l = ¢y a.s.,
and
(38) limsup,.... X0 <1 as,

Q2log )t =



LOCAL HOLDER CONDITIONS 289

where

e =200 (4 )

(see [11, 14]).
According to Yaglom ([16, 17])
Xp(Shn | hn+l) - X(O)

— e (sh. — B e+ (o EXP[—@(shy — Byiy + PIX(Ayin — p) — X(0) 4
Cm(s n n+1) So Pa+é(5hn — hn+1 + P) P

where ¢, = (I'(} + &)I'(} — @)~
Because of (38) we may differentiate inside the integral and a short calcula-
tion shows that for all n = n,(e,, ¢, 9, ®)

d
(39) EE’ Xp(‘ghn | h'n+1)
- o |X(hyn — p) — X(0)]
< B)ga—tp ati [ X(Ayir — p dn .
= (1 + e)ep(a + B)s BT P i(sh, + p) /4
We now obtain an upper bound for the last integral. We have
$5
peti(sh, + p)

(et (e Kl — p) = XO)
= (80 1 4 SZ,.H + Sh”é) P:lé(slz” + P) dp

dp

=L+1+ 1.
An application of (37) yields

_ Byt1 hy i, (log (—log k}n+1))i
heo s )

= O(h5 41k, 7' (log (—10g h,p,))* §ints p=(<+¥ dp)

as s is bounded away from zero. We therefore obtain

I, = O(h},,h, }(log (—1log &,,,))})
= O(hn_i)

on using (17).
We turn now to /;. From (38) it follows that
1 b
L=0(§5, Hlog P dp)

pa+§p

=0 <h”—(a+é)/2 i |log g/* ‘|‘+§|10g At dq)
qa

= o(hn_%)
asl<a<i.
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Finally we consider 7. We have

I, < (it |X(—=p) — X(0)| dp
B pe(sh, + p)
log (—log p))*

< (1 + e)e, ’m*_(_g__,d_

( ) So p*(sh,, T P) 74
< (1 + 26)ey(sh,) (gt (08 (Zlog L))t 4
=+ 5) ( ) § P*(I-I-P) p
< (1 + 3eymeyy(sh,)~t(log (—log h,))?

for all n = (e, ¢, 5, ®) where the second inequality follows from (37) and last
inequality is obtained by an application of Lebesgue’s dominated convergence
theorem. On substituting these inequalities for 7;, 7, and I, into (39) we obtain
(36) and this proves the lemma.

LEMMA 9. Suppose ¢ > O is given. Then for almost all w there exists an ny =
ny(ey, €, ) such that for all n = n,

(40) Xy (tn| i) — X(O) = (1 + €)essh,*(log (—log b))

where

= (4(%0)2“1“(1 —a) _ (a™ >;‘
) aF(a) aF(Za)

Proor. We have
E((Xp(hy| harr) — X(0))7)
= E((X(h,) — X(0)))) — E(X,(hs|hasr))

N 20¢T(1 —a)  (2a)™
= (4o, ( 22l (a) 2aF(2a)>

by (10), (13) and (14). The result now follows from the Borel-Cantelli lemma
and the usual estimate for the tail of the normal distribution.

LemMA 10. For all ¢ < O there exists a 0, = 04(s,, €) such that if s,, € #;,(0,)
the following holds. For almost all w there exists an nyy = nyfe,, €, ) such that for
all n = ny,

Cohu (X (o | ) — X(0))" = ¢ log (—log h,).

(41) § lev,v’swn Zva’ #;vl'(zm)
= 6l (Xp(ha| Burs) — X(0))" + ¢ log (—log 4,
where
Z, = X (S, | bnrr) — Xp(Sy_1h0 | i) v=1,...,2m.

Proor. Suppose's,,, € #,,(9). Then by Lemma 8 we have for n = ng(s,, ¢, 3, 0)
IZuI = |X1)(svhw|hn+l) - Xp(su—lhnlhnﬂ)'
= (1 + 6)(1 - 5)a_lclohna(10g (_log hn))é(sv - sv—l)
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forv =2, ...,2m. This combined with Lemma 2 gives
(I — e)eg(s h,) 23
(42) ‘ é Zlgu,y’gwn Zva’ ﬂv_‘zl’(zm)
= (1 + o)eg(sihy) 2022
+ (1 + e)(l - 5)“—1c4c10(10g (_log hn))(,Z:LZ'(Su - s»——l))
< (1 4 )ey(sih) ™2 4 (1 4 €)(1 — )*"e,, log (—log k)
for all 9, 0 < & < dy(ey, €), and for all n = ny (s, ¢, J, ®) by Lemmas 8 and 9.
It remains to consider Z,. We have
1Z.* — (Xp(hn | Bays) — X(0))7]
S (Xp(ha | Bos) — X8Ry | By 1))’
+ 21X, (R | harr) — Xp(S1h0 | Byt || X (B | Bayr) — X(0))]
= (1 + &)1 — 9)*~*h,* log (—log ,)(9(1 — 9)*~'cly + 2¢,4¢y5)
for n = ny(ey, ¢, w) by Lemmas 8 and 9.

On using this inequality and the fact thats,** = 1 4+ O(d) we obtain from (42)

(1 — e)esh,*(Xp(hy | hyry) — X(0))* — O(5) log (—log h,)
é Zlgu,»’sﬂm Zu Zv’ﬂ:vl’(zm)
< (1 + )k, (X, (| Byys) — X(0) 4 0(3) log (—log 1)
and the lemma follows on choosing 4 sufficiently small.
LeMMA 11. Supposee, > Oande,, 0 < ¢, < 1, are given and let 6, = 0,(c,) be the
0; of Lemma 10 with ¢, in place of e. Then there exist constants ¢,; and c,; depending
on a, ¢ and ¢, and also, for almost all w, an integer n;; = ny(sy, ¢, &,, ®) such that
foralln = ny;and m = 1
€15 €XP(—5C5 1,2 (X (R | By yr) — X(0))?
— g log (—log h,))((1 — e)ey,)™I'(2m + 1)

@) = B[ Z B o, )

= ¢ exXp(—5¢h, (X (hy | 1o yr) — X(0))
+ ¢ log (—log A,)((1 4 &)cy)™'(2m + 1)«

where

2a-1 ( al'(@)I'(1 — a) )*

Cip =
T = a)-ea” T

and

18

_ 'l —a) al'(2a) \}
(- a)l“"(Za)"‘( 2z ) ’

Proor. This lemma follows from Lemmas 4, 5 and 10.
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LemMMA 12. Suppose ¢ > 0 is given. Then there exists a 0, = 0,(¢,, €) and, for
almost all o, an integer n,, = ny(e,, ¢, ®) such that for all n = n, and x =
¢(log (—log h,))* we have

P(p(h,) — o((1 — 0)h,) = (3,h,)' x| F5, )
(44) = exp(—4¢h, (X, (R, | Byyy) — X(0))? — ¢ log (—log &,)
— (I + e)a(n/ry)'*(x[eig))'*)
where 0 < r, < 1 < r, < oo are the two positive roots of the equation
aleyfegert’* —z 4+ 1 —a=0.

Proor. We may assume that the conditional probability occurring in (44) is

a regular conditional probability and we write
Fu(x, 0) = P(p(h,) — (1 — 0)h,) = (0,h,)' x| F, ) -

The proof of the lemma is now similar to that of Lemma 7. As the expression

eXP (=3¢ (X (B | Bia) — X(0))?)
appears on both’sides of (43) its presence causes no problems. The only prob-
lem is caused by the presence of the expressions exp(—e¢, log (—log#,)) and
exp(e, log (—1log 4,)) on the left and right-hand sides of (43) respectively. How-
ever, as ¢, may be taken to be arbitrarily small, the proof goes through with
minor modifications if it is assumed that x > ¢(log (—log A,))=.

5.2. We are now in a position to obtain the lower bound. It follows from
Lemmas 9 and 12 that for all n = ny(s,, ¢, w)

P(p(h,) — ¢((1 — 0)h,) = (3,h,)'~*(log (—log h,))* | F,, | )
= eXp(— (3¢l + O(e)) log (—log ,)) .
Now
_ 4l — ol'Q2a)
2'T(a)
_I'd—al(a+4%) 1
2T (3)
AsT(1 — a)T(a@ 4+ }) < T'(}3) < 2*T'(3) for 0 < a < & it follows that L, ¢l < 1.
We may therefore choose ¢ sufficiently small S0 that $escls + O(e) < (1 — 2¢)
for some ¢, > 0. This gives

P(p(h,) — ¢((1 — d9h,) = &(3,h,)'~*(log (—log h,))* |7, , ) = n~0-*ra+e

_c3 13 -

for all n = ny(ey, €, w). As ¢, may also be taken to be arbitrarily small we have
for some ¢, and ¢,

P(p(h,) — o((1 — 0,)h,) = e(d,h,)'~*(log (—log &,))*|.F, ) = n~0~
and hence
Din=1 Ple(h,) — (1 — dy)h,) = &(9,h,)~*(log (—log k,))*|F, ) = oo
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almost surely. Now ¢(h,) is &, -measurable and we therefore have from
Lemma 6

lim sup e(h,) — o((1 — d)h,) o e>0
" @k —(log (—log h,))* =

almost surely and this completes the proof of the theorem.

6. The Hausdorff measure of the zero set. In [15] Taylor and Wendel ob-
tained the exact measure function for the zero set of a stable process. Their
proof involved using an iterated logarithm law similar to (5) for the local time
of the process. However, their proof also made use of the strong Markov prop-
erty and is consequently not directly applicable in the present situation. In
spite of this the obvious conjecture to make, in the light of their result, is that
h(x) = x'~%(log (—log x))= is the correct measure function for the zero set of
stationary Gaussian processes with spectral density function f given by (4). A
closer examination of the proof given in [15] shows that full use of the strong
Markov property is only made in order to obtain an upper bound for the
Hausdorff measure. Its use in obtaining the lower bound is restricted to de-
ducing that, in our notation, the Holder condition

45 li o(x, t + h) — o(x, 7) <
(45) im sup,, |, H(log (—log hYy* = €y < 00

also holds for stopping times r. It turns out that for the stationary Gaussian
processes of Theorem 1 we can prove (45) directly for stopping times. The de-
duction of the lower bound for the Hausdorff measure of the zero set is then
the same as that given in Section 5 of Taylor and Wendel for stable processes.
We first prove:

LEMMA 13. Let © be a stopping time for the process X(t) and let 5 _ denote the
o-field associated with . Then

(46)  E(exp (i Ziu,u, X(s,))|-F )
= eXP(—% Disy,vrsm Ul 0(S, — T, 8, — ) + 1 200, 4, X (s, [ 7))
where p(s, t) = E(X,(s)X,(?)) and X, (s,|7) is X (s,|?) evaluated at t = <.
Proor. We have for # > 0
E((Xs|t + B) = X(s[0)7) = {1+ (s — w* du

(2a)* (& utet dy
I'Ca)

_ (2ah)*™

"~ 2aT(2q)

IA

which implies that for fixed s the separable version of X,(s|#) has continuous
sample paths almost surely (see [12], page 98). As X(s) = X,(s|#) + X, (s]?) it
follows that X, (s| ) also has continuous sample paths for fixed s. This in turn
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implies (as X,(s|7) is & ,-measurable for each 7) that X (s|r) is & -measurable
(see [12], page 101).
From the definition of p(s, f) we have
los, 1) — o(s', )]
= [E(X()(X(1) — X(1))) + E(X()(X(5) — X(s"))]
S E(X()E(X () — X))} + E((X())VE((X(s) — X)) -
As X(t) = X, (1) + X,(¢r) and X,(5) and X,(r) are independent for all s and ¢
E(X(s)") < E(X(s)) = 1 and hence E((X,(s) — X(s")") = E((X(s) — X(5))) =
o*(|s — s'|). We therefore obtain

lo(s, 1) — p(s"s )] < o(ls = 5'l) + a(jr = 7))
and (14) now implies that o(s, ) is jointly continuous in s and ¢.

- Let F be any set in % .. For each positive integer N we define the random
variables Z, by

Zy = TpwtF 0 (k277 S 0 < (K + 127
(47) X €XP(—H(Drgsorsm llhyo 05, — (k + 127, 5, — (k + 1)277))
+ i D Xo(s, [ (k + 1)27Y))
where y(E) denotes the indicator function of the set E. The continuity of (s, 7)
and X (s|f) implies
limy_, Zy = y(F) eXp(—3(Zisv,vrsm B8y (S, — T, 5,0 — 7))
+ 1 D, X,(s, | 7))

and as |Z,| < 1 we may apply dominated convergence to obtain

(48) limy ., E(Zy) = {p eXp(—3(D1ss,ursm Bty 0(S, — T, 5, — T))
+ N, X,(s, ] ) dP .
Now,
§pexp(i 20 u, X(s,)) dP
= 2w Vrna-Nse<isna-n) OXP (20, #,(X(s, | (k + 1)277)
+ X,(5,| (k + 1)277))) P
= Diemw OXP(—% Digs,vzm Wty p(s, — (k + 1)27%, 5, — (k + 1)2°7))
X §raa-Nge<rsna-n) XP( 200 4, Xo(s, [ (k + 1)277)) dP
= E(Zy).
The next to last step follows from the stationarity of the process X(r)
(Xe(s:]2)s + - -5 X(5.|7) have the same joint distribution as X, (s, — 1), - -,

X,(s, — 7)), the fact that F n {k27% < = < (k + 1)277} belongs to &, 1.-n
(F is in &) and finally the fact that X,(s|¢) is independent of .5 ,.
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On combining this with (48) we obtain
§rexp(i Xm, u, X(s,)) dP
- SFexp(_f le_v,y’sm uvuv’ p(su — T, Sv’ - T) + i u 1 y (S IT)) dP

forall Fe F.. Asp(s, — 7,5, —7), 1 <v,’ < mand X,(s,|7), | <v < mare
# -measurable because of the continuity properties, this implies the statement
of the lemma.

LemMma 14. If ¢ > 0 is a stopping time for the process X(t) then

49) B0 7 + b)) = o0 )™ 5 @t G am-s ds,,

where (h,')y and A(2m) are as in Section 3.1.

ProoF. Writing ¢(r) for ¢(0, #), an argument similar to that in the previous
lemma yields, as ¢(#) has continuous sample paths,

(30)  E((e(z + k) — o(2)™) = lim, o T3 EG((j — 1)27% < © < j27%)
X E((9(j27" + b)) — p(j27R)m )

Now (¢,(j27* + h,') — ¢,(j27%))* tends in mean to (¢(j27* + h,’) — @(j27F))m
and hence E((¢,(j27% 4 k') — ¢,(j27%))™| % ",) tends in mean to E((¢(j2°* +
k') — o(j27F))*™| ). We therefore have

G Eq((j = 127" = = <J279E(e(j27 + k) — (j274)y" | 57))

= lim, o EG((j — 127" < = <j27)E((.(j27* + k)

— @ (J27))™ [ F) -
To evaluate the last expression we use Lemma 13, we write
E (V) = Wt U] S v, 1 < j < 2m)

and
/Qm(a,b):{sm:OSags-gb,l§j§2m}.

With this notation we have
WG — 127 < v < J2E(9,(j27% + R)) — ¢, (j27F))™ | 577))
1\ , ,
= (55) " Vetmor (pypsrmtiimtnny 2 = 12 S 7 < 27

2

X E(exp(i 212, u, X(s))) | &) ds,,,) du,,,

1 2m . )
=(5=) Seim (SJZm(j2‘k.j2_k+hn’) W —D2F =0 < j27h)

2

X eXP(—4 Xisi,vrzam Wy 0(5, — 7, 8, — 1)
+i 200w X, (5, ] 7)) ds,,,) du,,, ,
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and hence
((j — D27 < = < J279)E(9.(j27* + k) — ¢,(j27 0| .F)]
1 2m . _ i~
= (-2;) Seog (S;muz—k,:’z—kwnl) wJ— D27 <0 < j27k)
X eXP(—3% Xizi,irsam Yl (S, — T, 8, — 7)) ds,,,) du,,

1 2m , . _ i~
= (—) Sc,/mm (S/zm(j2—"—f,j2-k+h,,,’—r) W —D2* =0 < j2F)

27

X eXP(—% X1zt irsam Wity 05y, 5,1)) ds,,,) du,,

1 \2m . ) _
= (2—71-) Sepmer (§_rppon—tang 2((J — 1)27F < 7 < j27%)

X eXP(—3F Xizi,irsam Wity 0(5y5 ;1)) ds,,,) du,,

1 2m . o~
(‘2’?) (SS/m(o,z—an') wWJ— D=2t

X eXP(—3% Dict,irzam WUy 0(8;5 511)) dS,y,) dy,,
1 2m . _ o~
= ) (5)" S pmoamron (2 — D27 < 7 < j27%)
X eXP(—3% Xict,vrzam YUy O(5y5 5,)) dU,,,) ds,,,

where 7,,(a,0) = {8,,: 0 < a <5, < -+ < 8, < B}
On integrating out the #,’s we obtain

K = D2 < <PIE(pU27 + b)) = p.(27)" )
< Ot (5-) 20 = D2 S £ <20 T pnaany o 50)] dos

IA

= (2m)! ((2 ))m w((J— 1D27F = v < j27k) § s ameoa—kan,n-ten [0(Ra'S), B'sy) S,y

Now the matrix 2(2m) may be obtained from the matrix p(2m) = (o(h,'s,, h,'s;.))
by row and column operations and hence

(= D27 = = <J27OE(pu(/27% + b)) — o.(j275)™ |57

h, .
= (2m)! ((2 ))m w((j— 127F <0 < j27k) § s am0,3-k,n-141) |[A(2m)| 72 ds,,, .

Substituting this inequality into (51) gives
EQ(( = 127" = = <J279E((9(j27* + h') — o(j275)™ | 57)
< (2m)! ((2 ))m E(((j — 1)27* = = < j27k) S.fm(o,z—"(h,,'wn |4(2m)|~ ds,,,

and on substituting this into (50) we obtain

Ellple = ) = (0™ = Q! GT im0 i (A s,

= et G a7
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The last equality follows from an application of dominated convergence which
may, for example, be justified by appealing to the inequality of (23). This com-
pletes the proof of the lemma.

Lemmas 4, 7 and 14 may now be combined and the method of Section 4 gives

THEOREM 2. Suppose the stationary Gaussian process X(t) has spectral density
function f given by (4) and let t be a stopping time for the process which is almost
surely finite. Then for almost all

li o(x, v + h) — o(x, 7) < )
P T og (—Tog Ay = S %

To obtain a lower bound for the Hausdorff measure of the zero set we follow
Taylor and Wendel. We define

7, = min {u: go(O, u) = 1}

and as ¢(0, 7) is & ,-measurable, r, is a stopping time for the process X(f). To
show that 7, is almost surely finite we proceed as follows. A trivial modifica-
tion of the formulae given on page 295 of Berman [1] gives

E(¢(0, 1)) = 1/(27)!
and
E(p(0, 1)) = 2n)™ 14 §5 (1 — r*)~ dudv
where
r=r(u,v) = {2, cos (A(u — v))f(2)da

where f{(2) is the spectral density function of the process X(¢). This yields
(@0, ) = 2m)7" §§ S5 (1 — r)7F — 1) dudv

for the variance F(¢(0, f)) of ¢(0, ). With spectral density function f(1) given
by (4) the Riemann-Lebesgue theorem tells us that lim,_ r(s) = 0. This im-
plies that (1 — r?)=* — 1 ~ r?/2 for large u — v and hence

V(¢(0, t)) = O(§¢ St r*dudv) = o(?) .
Tchebychev’s inequality then gives
lim, ., P(j¢(0, 1) — 1/(27)}] = 1/3) = O

which implies P(lim,_,, ¢(0, f) = o) = 1. From this it follows that r is almost
surely finite. We may therefore apply Theorem 2 to obtain

li 90, 7, + k) — ¢(0, 7)) <
B T ia(og (g =4S

almost surely. The remainder of the proof is then identical to that in [15], pages
176-177, and gives

THEOREM 3. Suppose the stationary Gaussian process X(t) has spectral density
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function f(R) given by (4). Then with probability one the set of zeros of the process
has positive, possibly infinite Hausdor{f measure with respect to the function

g(h) = K=(log (—log k))* .
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