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ON A LOCAL LIMIT THEOREM CONCERNING VARIABLES
IN THE DOMAIN OF NORMAL ATTRACTION OF A
STABLE LAW OF INDEX o, 1 < a <2

By Suiit K. Basu

Indian Institute of Management, Calcutta

Let {X.} be a sequence of independent and identically distributed
random variables with EX; = 0. Suppose that there exists a constant a >
0, such that Z, = (an")" Y (X1 + Xz + -+« + Xau) converges in law to a stable
distribution function (df) V(x) as n — co. If, in addition, we assume that
the characteristic function of X; is absolutely integrable in mth power for
some integer m = 1, then for all large n, the df F, of Z, is absolutely con-
tinuous with a probability density function (pdf) f. such that the relation

liMesco %] f(X) — 2(20)| = 0

holds uniformly in x, —co < x < oo, where v is the pdf of V.

1. Introduction. Let {X,} be a sequence of independent and identically dis-
tributed (i.i.d.) random variables belonging to the domain of normal attraction
of a stable distribution function (df) ¥ of index @, 1 < a < 2. We assume
that EX; = 0. This means that there exists a constant a > 0, such that Z, =
(an")"(X; + X, 4+ .-+ + X,) converges in law to V, where r = a~!. Moreover,
if the characteristic function (ch.f.) of X, is absolutely integrable in mth power
for some integer m = 1, then for all large n, the df F, of Z, is absolutely con-
tinuous with a probability density function (pdf) f, such that the relation

(L.1) lim, . | fu(x) — 2()] = 0

holds uniformly in x, —co < x < oo, Where v(x) = d¥V(x)/dx. This follows from
Theorem 2, page 227 in [3]. In the present paper this density convergence result
is further investigated and it is found that, in fact, under the same aforesaid
conditions, it is possible to go a step further to claim that the relation

(1.2) tim, ., |x]|f,(x) — v(x)| = 0

holds uniformly in x, —co < x < oo.

Similar and more sophisticated results of this kind, in cases where the central
limit theorem applies, have been given by Petrov [6], Smith [7], Hoglund [4],
Smith and Basu [8], Basu [1] and [2].

2. Notations and preliminary lemmas. Let Y denote a stable random variable
of index @, 1 < @« < 2, and V(+) and W(.) denote the df and ch.f. of Y re-
spectively. Throughout this paper {X,} represents a sequence of i.i.d. random
variables each with df F(.), ch.f. w(.) and EX, = 0. We assume that F belongs
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to the domain of normal attraction of V. With no loss of generality, the constant
a in the previous section may be assumed to be 1. We then set Z, = n="(X, +
X, + -+ + X,) withr = a7, F(x) = Pr{Z, < x} and W,(r) = Eexp(itZ,) so
that W,(¢t) = {w(tn=")}". For any function g(r) and positive integer k, we shall
write g*'(¢) to denote (d/dr)*g(t), whenever such a derivative exists.

Under these notations and assumptions, we then have the following lemmas.

Lemma 2.1. lim, ., E|Z,| = E|Y]|.
Proor. See Theorem 2 of [5].

LEMMA 2.2. W,%(t) and W (t) exist for all t and W, P (t) converges to W™ (1)
for all ¢.

ProoF. That the derivatives exist is more or less obvious. Now, note that
Wn(l)(t) - W(l)(t) = Dln + D2n + D3'n.
where
D,, = {4, ix exp(itx)F,(dx) — {4, ix exp(itx)V(dx) ,
D,, = {454 ix exp(itx)F,(dx) ,
D, = — .54 ix exp(itx)V(dx) ,
A being a positive number to be suitably chosen later. Since X, belongs to the
domain of attraction of V, D,, converges to zero as n — oo. Also,

[Da| = Siay5 4 |X|Fo(dx)

which, because of Lemma 1, can be made as small as we please by a suitable
choice of 4. D, can obviously be made small by choosing a large 4. This
completes the proof of the lemma.

LemMMA 2.3. For any fixed ¢ > 0
(2.1) {25 enr |X|F(dX) = O(n%) as n— co.

ProoOF. Since F belongs to the domain of normal attraction of ¥, it follows
(see e.g., Theorem 5, page 181 of [3]) that there exists some constant C > 0
- such that F(x) < C|x|~* if x < 0 and | — F(x) < Cx~*if x > 0. On carrying
out the integration in (2.1) by parts, the lemma follows.

LEMMA 2.4. There exist positive constants M, and M, such that the inequality
P W ()| < MY + M,
holds for all large n and for all t.

Proor. Let
M, (x) = nF(n"x) for x<O0
= n{F(n'x) — 1} for x>0.
Then by the necessary and sufficient conditions for convergence to a stable dis-
tribution (see [3], page 116), we know that for all x, M,(x) converges to M(x)



488 : SUJIT K. BASU

as n — oo where
M(x) = ¢,/|x|* if x<0,

= —Gy[x* if x>0
with ¢;, ¢, = 0and ¢, + ¢, > 0. Now keeping in mind that EX, = 0, we observe
that for 4 > 0,
n=rlw®(tn=")| = n'=7|{=,, ix exp(itx/n")F(dx)|
= |§2. y exp(ity) M, (dy)|
= |§Z. plexp(ity) — 1}M,(dy)|
< §44 Iyllexp(ity) —'1M,(dy) + 2 §iy15.4 |71 M(dy)
= | -2 Mu(dy) + 2§54 |yIMa(dy) -
Finally, applying Lemma 2.3 to the second integral and using the fact that
lim,_., {2,y M, (dy) = {2, y"M(dy),
we easily obtain the result.

3. The main theorem. With all these preliminaries we are now ready to
prove:

THEOREM 3.1. Let {X,} be a sequence of independent and identically distributed
random variables each with a common df F and ch.f. w. Assume that EX; = 0. If

(i) F belongs to the domain of normal attraction of a stable distribution function
v of index a, 1 < a < 2 with VV(x) = v(x); and

(ii) w is absolutely integrable in mth power for some integer m, m = 1, then
for all large n, the df F, of Z, = n~"(X, + --- + X,) is absolutely continuous with
a pdf f, such that the relation

lim, .. [x[[fu(x) — v(x)| = 0
holds uniformly in x, — oo < x < oo.

ProoF. From the canonical representation of W(r) (see e.g. page 164 of [3]),
it follows that W(r) is absolutely integrable. Also, by (ii), W,(t) is absolutely
integrable for all large n. Therefore, using the inversion formula for Fourier
transforms, both W(¢) and W,(f) can be inverted to obtain v(x) and f,(x) re-
spectively. Moreover, using similar arguments, both W®(¢) and W,*(f) can
,also be shown to be absolutely integrable (recall that « > 1) and hence may be
|inverted. Thus

4fu(x) — x0(0)] = 27) 7§20 (W,O() — WD)} exp(—itx) di]

é Iln + I2n + I3n + I4n’
where

I, = Qr)=t {4, |W,0@) — WO(1)| dt
Ly = (27)7 §1ypa |[WO(0)| dt
Ly = (27)7" S agisonr [WaP(0)| dt
1, = (2n)™ Sz onr |W, 0 (¢) dt
where the positive constants 4 and ¢ will be chosen later.
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Since by Lemma 2.1, W,® and W® are bounded by constants, Lemma 2.2
implies that for any fixed 4 > 0, I,, — 0 as n — co. I,, can be made as small
as we please by choosing a large 4. Also, by the lemma on page 238 in [3] and
Lemma 2.4, it follows that given a sufficiently small § > 0, there exist constants
4, M, and M, such that the inequality

W, ()| < (M,|t| + M,) eXp(—2|t|a)

holds for |¢| < dn and all large n. This would imply that I,, can be made as
small as we please for all large n by a suitable choice of . Further, there exists
a ¢ > 0 such that |w(r)] < exp(—c) for |¢| > 8. Thus forall n > m

L, < W"E|X\| §yy5 50 |W(tn~7)|™ dt exp{—c(n — m — 1)}.
Since the integral on the right-hand side converges as n — co,
l,,—0 as n—oo.
This completes the proof of the theorem.

REMARK. It may be mentioned here that the assumption that @ < 2 is not
strictly necessary; in fact, similar arguments as above with minor and obvious
modifications show that Theorem 3.1 remains true also when a = 2. However,
stronger results are already in existence in such a case and some of these may
be found in [1], [2], [6], [7] and [8].
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