ON A LOCAL LIMIT THEOREM CONCERNING VARIABLES IN THE DOMAIN OF NORMAL ATTRACTION OF A STABLE LAW OF INDEX α , $1 < \alpha < 2$

BY SUJIT K. BASU

Indian Institute of Management, Calcutta

Let $\{X_n\}$ be a sequence of independent and identically distributed random variables with $EX_1=0$. Suppose that there exists a constant a>0, such that $Z_n=(an^r)^{-1}(X_1+X_2+\cdots+X_n)$ converges in law to a stable distribution function (df) V(x) as $n\to\infty$. If, in addition, we assume that the characteristic function of X_1 is absolutely integrable in mth power for some integer $m\ge 1$, then for all large n, the df F_n of Z_n is absolutely continuous with a probability density function (pdf) f_n such that the relation

$$\lim_{n\to\infty}|x|\,|f_n(x)-v(x)|=0$$

holds uniformly in $x, -\infty < x < \infty$, where v is the pdf of V.

1. Introduction. Let $\{X_n\}$ be a sequence of independent and identically distributed (i.i.d.) random variables belonging to the domain of normal attraction of a stable distribution function (df) V of index α , $1 < \alpha < 2$. We assume that $EX_1 = 0$. This means that there exists a constant a > 0, such that $Z_n = (an^r)^{-1}(X_1 + X_2 + \cdots + X_n)$ converges in law to V, where $r = \alpha^{-1}$. Moreover, if the characteristic function (ch.f.) of X_1 is absolutely integrable in mth power for some integer $m \ge 1$, then for all large n, the df F_n of Z_n is absolutely continuous with a probability density function (pdf) f_n such that the relation

(1.1)
$$\lim_{n\to\infty} |f_n(x) - v(x)| = 0$$

holds uniformly in x, $-\infty < x < \infty$, where v(x) = dV(x)/dx. This follows from Theorem 2, page 227 in [3]. In the present paper this density convergence result is further investigated and it is found that, in fact, under the same aforesaid conditions, it is possible to go a step further to claim that the relation

(1.2)
$$\lim_{n\to\infty} |x| |f_n(x) - v(x)| = 0$$

holds uniformly in $x, -\infty < x < \infty$.

Similar and more sophisticated results of this kind, in cases where the central limit theorem applies, have been given by Petrov [6], Smith [7], Höglund [4], Smith and Basu [8], Basu [1] and [2].

2. Notations and preliminary lemmas. Let Y denote a stable random variable of index α , $1 < \alpha < 2$, and $V(\cdot)$ and $W(\cdot)$ denote the df and ch.f. of Y respectively. Throughout this paper $\{X_n\}$ represents a sequence of i.i.d. random variables each with df $F(\cdot)$, ch.f. $w(\cdot)$ and $EX_1 = 0$. We assume that F belongs

Recived October 21, 1974; revised June 30, 1975.

AMS 1970 subject classifications. Primary 60F05; Secondary 60E05, 62E15.

Key words and phrases. Domain of normal attraction, stable law.

to the domain of normal attraction of V. With no loss of generality, the constant a in the previous section may be assumed to be 1. We then set $Z_n = n^{-r}(X_1 + X_2 + \cdots + X_n)$ with $r = \alpha^{-1}$, $F_n(x) = \Pr\{Z_n \le x\}$ and $W_n(t) = E \exp(itZ_n)$ so that $W_n(t) = \{w(tn^{-r})\}^n$. For any function g(t) and positive integer k, we shall write $g^{(k)}(t)$ to denote $(d/dt)^k g(t)$, whenever such a derivative exists.

Under these notations and assumptions, we then have the following lemmas.

Lemma 2.1.
$$\lim_{n\to\infty} E|Z_n| = E|Y|$$
.

PROOF. See Theorem 2 of [5].

LEMMA 2.2. $W_n^{(1)}(t)$ and $W^{(1)}(t)$ exist for all t and $W_n^{(1)}(t)$ converges to $W^{(1)}(t)$ for all t.

PROOF. That the derivatives exist is more or less obvious. Now, note that

$$W_n^{(1)}(t) - W^{(1)}(t) = D_{1n} + D_{2n} + D_{3n}$$

where

$$\begin{split} D_{1n} &= \int_{-A}^{A} ix \exp(itx) F_n(dx) - \int_{-A}^{A} ix \exp(itx) V(dx) , \\ D_{2n} &= \int_{|x| > A} ix \exp(itx) F_n(dx) , \\ D_{3n} &= -\int_{|x| > A} ix \exp(itx) V(dx) , \end{split}$$

A being a positive number to be suitably chosen later. Since X_n belongs to the domain of attraction of V, D_{1n} converges to zero as $n \to \infty$. Also,

$$|D_{2n}| \leq \int_{|x|>A} |x| F_n(dx)$$

which, because of Lemma 1, can be made as small as we please by a suitable choice of A. D_{3n} can obviously be made small by choosing a large A. This completes the proof of the lemma.

LEMMA 2.3. For any fixed $\varepsilon > 0$

$$\int_{|x|>\epsilon n^r} |x| F(dx) = O(n^{r-1}) \qquad as \quad n \to \infty.$$

PROOF. Since F belongs to the domain of normal attraction of V, it follows (see e.g., Theorem 5, page 181 of [3]) that there exists some constant C > 0 such that $F(x) \le C|x|^{-\alpha}$ if x < 0 and $1 - F(x) \le Cx^{-\alpha}$ if x > 0. On carrying out the integration in (2.1) by parts, the lemma follows.

LEMMA 2.4. There exist positive constants M_1 and M_2 such that the inequality

$$|n^{1-r}|w^{(1)}(tn^{-r})| \leq M_1|t| + M_2$$

holds for all large n and for all t.

Proof. Let

$$M_n(x) = nF(n^r x) \qquad \text{for } x < 0$$

= $n\{F(n^r x) - 1\}$ for $x > 0$.

Then by the necessary and sufficient conditions for convergence to a stable distribution (see [3], page 116), we know that for all x, $M_n(x)$ converges to M(x)

as $n \to \infty$ where

$$M(x) = c_1/|x|^{\alpha} \quad \text{if} \quad x < 0,$$

= $-c_2/x^{\alpha}$ if $x > 0$

with c_1 , $c_2 \ge 0$ and $c_1 + c_2 > 0$. Now keeping in mind that $EX_1 = 0$, we observe that for A > 0,

$$\begin{split} n^{1-r}|w^{(1)}(tn^{-r})| &= n^{1-r}|\int_{-\infty}^{\infty} ix \, \exp(itx/n^r) F(dx)| \\ &= |\int_{-\infty}^{\infty} y \, \exp(ity) M_n(dy)| \\ &= |\int_{-\infty}^{\infty} y \{ \exp(ity) - 1 \} M_n(dy) | \\ &\leq \int_{-A}^{A} |y| \, |\exp(ity) - 1 |M_n(dy) + 2 \int_{|y| > A} |y| M_n(dy) \\ &\leq |t| \int_{-A}^{A} y^2 M_n(dy) + 2 \int_{|y| > A} |y| M_n(dy) \,. \end{split}$$

Finally, applying Lemma 2.3 to the second integral and using the fact that

$$\lim_{n\to\infty} \int_{-A}^{A} y^2 M_n(dy) = \int_{-A}^{A} y^2 M(dy) ,$$

we easily obtain the result.

3. The main theorem. With all these preliminaries we are now ready to prove:

THEOREM 3.1. Let $\{X_n\}$ be a sequence of independent and identically distributed random variables each with a common df F and ch.f. w. Assume that $EX_1 = 0$. If

- (i) F belongs to the domain of normal attraction of a stable distribution function v of index α , $1 < \alpha < 2$ with $V^{(1)}(x) = v(x)$; and
- (ii) w is absolutely integrable in mth power for some integer m, $m \ge 1$, then for all large n, the df F_n of $Z_n = n^{-r}(X_1 + \cdots + X_n)$ is absolutely continuous with a pdf f_n such that the relation

$$\lim_{n\to\infty}|x|\,|f_n(x)-v(x)|=0$$

holds uniformly in $x, -\infty < x < \infty$.

where

PROOF. From the canonical representation of W(t) (see e.g. page 164 of [3]), it follows that W(t) is absolutely integrable. Also, by (ii), $W_n(t)$ is absolutely integrable for all large n. Therefore, using the inversion formula for Fourier transforms, both W(t) and $W_n(t)$ can be inverted to obtain v(x) and $f_n(x)$ respectively. Moreover, using similar arguments, both $W^{(1)}(t)$ and $W_n^{(1)}(t)$ can also be shown to be absolutely integrable (recall that $\alpha > 1$) and hence may be inverted. Thus

$$\begin{aligned} |xf_{n}(x) - xv(x)| &= (2\pi)^{-1} |\int_{-\infty}^{\infty} \{W_{n}^{(1)}(t) - W^{(1)}(t)\} \exp(-itx) dt| \\ &\leq I_{1n} + I_{2n} + I_{3n} + I_{4n} , \\ I_{1n} &= (2\pi)^{-1} \int_{-A}^{A} |W_{n}^{(1)}(t) - W^{(1)}(t)| dt \\ I_{2n} &= (2\pi)^{-1} \int_{|t| \geq \delta n^{r}} |W_{n}^{(1)}(t)| dt \\ I_{3n} &= (2\pi)^{-1} \int_{|t| \geq \delta n^{r}} |W_{n}^{(1)}(t)| dt \\ I_{4n} &= (2\pi)^{-1} \int_{|t| \geq \delta n^{r}} |W_{n}^{(1)}(t)| dt \end{aligned}$$

where the positive constants A and δ will be chosen later.

Since by Lemma 2.1, $W_n^{(1)}$ and $W^{(1)}$ are bounded by constants, Lemma 2.2 implies that for any fixed A>0, $I_{1n}\to 0$ as $n\to\infty$. I_{2n} can be made as small as we please by choosing a large A. Also, by the lemma on page 238 in [3] and Lemma 2.4, it follows that given a sufficiently small $\delta>0$, there exist constants λ , M_1 and M_2 such that the inequality

$$|W_n^{(1)}(t)| \le (M_1|t| + M_2) \exp(-\lambda|t|^{\alpha})$$

holds for $|t| < \delta n^r$ and all large n. This would imply that I_{3n} can be made as small as we please for all large n by a suitable choice of δ . Further, there exists a c > 0 such that $|w(t)| < \exp(-c)$ for $|t| > \delta$. Thus for all n > m

$$I_{4n} \leq n^{1-r} E|X_1| \int_{|t| > \delta n^r} |w(tn^{-r})|^m dt \exp\{-c(n-m-1)\}.$$

Since the integral on the right-hand side converges as $n \to \infty$,

$$I_{4n} \to 0$$
 as $n \to \infty$.

This completes the proof of the theorem.

REMARK. It may be mentioned here that the assumption that $\alpha < 2$ is not strictly necessary; in fact, similar arguments as above with minor and obvious modifications show that Theorem 3.1 remains true also when $\alpha = 2$. However, stronger results are already in existence in such a case and some of these may be found in [1], [2], [6], [7] and [8].

Acknowledgments. I wish to express my thanks to the referee for his helpful suggestions.

REFERENCES

- [1] BASU, SUJIT K. (1974). On the rate of convergence in a local limit theorem. *Proc. Cambridge Philos. Soc.* 76 307-312.
- [2] Basu, Sujit K. (1974). Density versions of the univariate Central Limit Theorem. Ann. Probability 2 270-276.
- [3] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1968). Limit Distributions for Sums of Independent Random Variables (revised ed.). Addison-Wesley, Reading, Mass.
- [4] Höglund, Thomas (1970). On the convergence of convolutions of distributions with regularly varying tails. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 263-272.
- [5] OWEN, WILLIS L. (1973). An estimate for $E(S_n)$ for variables in the domain of normal attraction of a stable law of index α , $1 < \alpha < 2$. Ann. Probability 1 1071-1073.
- [6] Petrov, V. V. (1964). On local limit theorems for sums of independent random variables. Theor. Probability Appl. 9 312-320.
- [7] SMITH, WALTER L. (1953). A frequency function form of the Central Limit Theorem. *Proc. Cambridge Philos. Soc.* 49 462-472.
- [8] SMITH, WALTER L. and BASU, SUJIT K. (1974). General moment functions and a density version of the Central Limit Theorem. *Proc. Cambridge Philos. Soc.* 75 365-381.

Indian Institute of Management Diamond Harbour Road P. O. Joka via Calcutta 27 Dist. 24 Parganas West Bengal, India