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STRONG LIMIT THEOREMS FOR CERTAIN
ARRAYS OF RANDOM VARIABLES!

By R. J. ToMKINS
University of Regina

A lemma concerning real sequences is proved and applied to sequences
of random variables (rv) Xi, Xz - -+ to determine conditions under which
lim $Upn—see bu~! X7, fim/n)Xm < oo a.s. for all fin a particular collection
of absolutely continuous functions and for nondecreasing positive real
sequences {b»}. Theorems in the case b, = (2rnloglog n)t are proved for
generalized Gaussian rv, for equinormed multiplicative systems and for
certain martingale difference sequences.

1. Introduction. Let X, X,, - .. be random variables (rv) defined on a prob-
ability space (Q, &, P). Let & be the set of real-valued continuous functions
defined on [0, 1]. For fe € and n = 1, define the rv

1) Waf) = Za-fm/m)X,, .

In Sections 3 and 4, hypotheses about f and the rv {X,} will be pre-
sented which will determine an almost sure (a.s.) upper bound for the rv
lim sup, ... b,7'W,(f), where {b,} is a nondecreasing positive real sequence. This
problem has been examined in two of the author’s previous papers (Tomkins
(1971) and (1975)) which respectively examined the case in which {X,} are
independent and in which {X,} form a martingale difference sequence. The
theorems in this article deal with more general rv.

Earlier papers (for example, Gaposhkin (1965) and the two papers just cited)
have tackled this problem with a two-step procedure: (1) for a suitably chosen
integral sequence {n,}, find an upper bound for lim sup, _., b2 W, (f) and then
(2) show that the rv {b,"'W,, n, < n < n,,,} do not vary significantly from
bo W, (f). This method has been utilized successfully to prove limit theorems,
such as laws of the iterated logarithm (LIL), for partial sums S, = Y%_, X,. In
the problem at hand, it is often easy enough to carry out step (1), but, lacking
some Lévy-type inequality, it is somewhat more arduous to perform step (2).

The novelty of this paper lies in the fact shat, it will be shown, step (2) may
be replaced by a procedure which seeks only knowledge about the partial sums
{S.}; the new procedure will be detailed in Lemma 1 (in Section 2). That
lemma is actually a result in the theory of real sequences but will be stated in
terms of rv for purposes of application.

In Section 3, methods used by Gaposhkin (1969), Révész (1972) and Tomkins
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(1975) will be combined with Lemma 1 to determine the a.s. value: of
lim sup,_.., (2n log log n)=tW,(f) when X, X,, - - - form an equinormed strongly
multiplicative system’. Section 4 will employ some known LIL and strong law
of large numbers (SLLN) theorems in conjunction with Lemma 1 to produce
results of the desired type for some rather general classes of rv.

2. Some definitions and a fundamental lemma. Let S and .% be subsets of
& denoting, respectively, the set of polynomials and the collection of absolutely
continuous functions on [0, 1]. For fe .5 let ¥, be the total variation of f over
[0, 1] and define the norm N(f) = V, + |f(1)|. Let &= {fe €: N(f — p;) —
0 as i — oo for some p,, p, --- € &°}. By a remark of Tomkins (1975), <
a7,

Let || f]|, be the L,-norm of fe &. Write “a, ~ b,” when a,/b, — 1. Let [x]
be the integral part of x.

Note that, as shown in the proof of Theorem 1 of Tomkins (1975), if p,e &

satisfy N(f — p,) — 0, then {|p[|, — || /]
The following lemma is basic to the considerations of this paper.

LemMa 1. Let X,, X,, --- be rv and let {b,} be a nondecreasing positive real
sequence satisfying, for some 8 > 0,
2) limsup, .6, X, + -+ + X,| < B as.

Let f e & and define W, (f) by (1).

(i) Then

hm Supn—’m bn_IIWn(f)‘ g ABN(f) a.s.
(i) Suppose f e &, i.e. for some sequence {p;} € F,
3) lim,_. N(f — p) = 0.

Forc> land k = 1, let n, = n,(c) = [c*]. Suppose that, for every y > 0, there
exist a number y = n(y) > 0 and a positive real sequence {a}, i = 1, such that, for
everyce(l,1 + »),

(4) lim SUPg-reo maxwk_1<'n§nk bn-.lank_l+1 + -+ an <7r as
and
5) lim sup,_., b2 W, (p) < «; a.s.  forall large i.

Let a = liminf,_, a;. Then
limsup,_., b, ' W,(f) < aff a.s.

(iii) Assume f ¢ & and that (3) holds. Let {n,}, k = 1, be an increasing sequence
of positive integers satisfying ny,, ~ n,. If (5) holds and if
lim,_, max,  cugu, 007Xy _a+ -0 + X,|=0 as.,
then
lim sup,_.. b,”'W,(f) < fliminf,_, «a;, a.s.
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Proor. Part (i) can be obtained by letting a,,, = f(m/n) for n = 1, m < n and
applying Lemma 3 of Tomkins (1975).

Consider parts (ii) and (iii). In either case, it will be shown first that, for all
large i,
6) limsup,_.. 0,7 'W,(p;) < ;8 a.s.

Since we may replace X, by X, 3" and p, by 8p,a,™*, there is no harm in assum-
ing a; = 8 =1 for all i. Moreover, one may assume throughout that (5) holds
foralli > 1. Fix i > 1, temporarily. Suppose p,(x) = };%_,4a;x’. Since (6) is
trivial if a; = 0, 0 < j < p, assume otherwise and let 4 = }}?_,|a;| > 0. For
brevity, let S, = Y%_, X,, n=1. Note that n,,, ~cn, in case (ii), so
lim,_, n,,:/n, < c in either case.

Now, let 0 < ¢ < A4 and define y = A~%. Choose c to satisfy

M 1<e<l+09p, (1 —7n <1 and 2(1+4¢) 32, la;|(1 —c) <e.

There exists an event E € & such that P(E) = 1 and (2), (4) and (5) hold for
all we E. For each w ¢ E, there is a number K = K(w) > 0 such that, for all
k=K,
(8) nk—l < n, ma‘x'nk_1<n§nk bn-llsn - Snk_ll é T ’

Wnk(pi) é (1 + e)bnk ’ Supngnk bn_llsnl < 1 + €.
Assume k > K hereafter. For brevity, define
L={nn_,<n=nj,

T, = max, ., b, 25kt {p(m/n) — p(m[n,_1)}X,]
and

Uk = maxne[,, bn_l|2nk_1<m§npi(m/n)Xml *
Moreover, for each 0 < j < p, let
Vk(]) = ma‘xnslk bn—ln_lenk_1<mSn miXm| M
Suppose 0 < j < pand ne I}; let

Pn = an_lént.(n {mj - (m + 1)]}Sm ’
Q,=niS,— S

pey)
and -

R, = (ni — nj_)S
It is evident from (8) that

-1 "

IPnl é (1 + e)(nj - ni—l)bn )

|Q.| < ynib,
and
R, £ (nf — ni_))(1 + €)b, .

Now, by rearrangement of terms, it is easy to see that, forn > 1,

) TroamiX, = Yut {mf — (m + 1)i)S,, + niS, .
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From (9),
Vi(j) < max,.;, b, (P, + 10, + [R,) < 21 + o)1 — (mfm)) + 7 -
Hence, by (7),
limsup,_.. Vi(j) £ 2(1 + e)(1 — ¢™9) + r < 3(1 4 &) .
But U, < >1%_,|a;|Vi(j), so that
(10) lim sup,_., Uw) < 3(1 + ¢)yd = 3¢(1 + ¢) .
By (9) and (8),
lim sup, _,, n=7b,7'| 33", m'X, | < 2(1 + ¢),
from which it follows that
lim sup, ., T'(®)
(11) < limsup, o 25 |a;|(m? — ni_)minid bl | Sk miX,|
<21+ ¢) Dao (1 — ) <e.
Thus, for @ € E and all large k, if n e I, then, by (8), (10) and (11),
b, W (p) < b, W, _ + 0,7 \W(p) — W, _(p)
SU+)+ T+ U< (1+¢) + ¢+ 3e(l +¢)
for all 0 < ¢ < 4. Hence (6) holds under the hypotheses of (ii) or (iii).
Hence, in either case, (6) and part (i) combine to yield, for all large i,
lim sup,_., b,7*W,(f) < limsup,,_., b,7' W, (p;) + limsup,_.. b, W,(f — p,)
< a8+ N(f— p;) as.

But (3) holds, so the proof is concluded by taking limits inferior as i — oo on
both sides. []

3. A LIL for multiplicative systems. Recall that sequence X, X,, --- of rv
is called an equinormed strongly multiplicative system (ESMS) if EX, = 0, EX,* =1
foralln = 1and E(X72X72 - - - X7b) = T, EX[i foralll <4 <4, £ - £ iy,

all sets {r,, r,, -+, r,}suchthatr, = lor2,1 <j< k,andall k > 1.
THEOREM 1. Let X, X,, - - - be a uniformly bounded ESMS.
(i) For every fe &,
lim sup,,_., (2n loglog n)=t 3% _, f(m/n)X,, = ||f|l. a.s.
(ii) For every fe &, _
lim sup, ., (2nlog log n)=t 3~ _, f(m/n)X,, = ||f|, a.s.

ProOF. Suppose feZ. Both parts are obvious if |[f], =0, so assume
[|fll, = 1 without loss of generality.
By hypothesis, there exists M > 0 such that |X,| < M a.s. for all .
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To prove (i), generous doses of some techniques due to Révész (1972) will
be infused into the general method used in the proof of Theorem 2 of Tomkins
(1975).

For x e [0, 1], let /(x) = §§ f*(r)dt. Let0 < ¢ < 1. Choose a positive integer
¢ so large that
(12) I(c™) < )2 + ¢).

Define v = I(c~*) and note that v < ¢ < 1.

Now let ny, = 0. For all kK > 1, define n, = c*, and

I, = {n|n is an integer, n,_, < n < n},
U = s fim[n) X,

Vk = Zmelkf(m/nk)Xm ’

u' = E(UY) = Xnkst fY(m/ny)

v = EWV,}) = Zme,kfz(m/nk) .
Clearly u,’ + v, ~ ny|f]l.* = n,. Indeed,

and

(13) wliln, —v and, hence, Vi, —1 —v as k—o0.
Therefore,
(14) log log u,* ~ log log n,, , if v>0.

Define f* = sup,,, | f(x)| and, for k > 1, 2, = (2 log log n,)}/u,.

Suppose, first, that v > 0. Then 2, —0 by (14). If k is so large that
AMf* <1, 22, M3* < ¢, and (using (13)) u,? < 4vn,, then Lemma 4 of
Gaposhkin (1969) yields

P, = P[|U,| > 2¢(2n, log log n,)}]
=< P[|Uy| > eu,v=4(2 log log n,)t]
= Plexp(4,|U,|) = exp(ev—t log log n,)]
=< 2exp{—(ev7t — 1 — ¢)loglog n,}
= 2(k log c)=—»H+ire
But ev=* — 1 —¢> 1 from (12). Hence 3 i, P,/ < oo so that by the Borel-
Cantelli lemma,

|Usl < 2¢ a.s.

15 I U Y R
(13 Pk o Tog log my)? —

Note that (15) is trivial if v = 0, because f = 0 on [0, ¢~'] in that case.
Now define a sequence of rv {£,} as follows:
&n = f(m/ny)X,, if n_,<m<n,.

This sequence satisfies all the requirements of an ESMS except E(£,?) =
f*(m/ny), meI,. Furthermore, |£,| < Mf* a.s, so {£,} is a uniformly bounded
sequence too. Note that V, = 37,.. 1, Eme
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For the remainder of the proof of (i), i = (—1)}. Following Révész (1972),
for j, k = 1 and all numbers ¢, define

7 = Vil s

ak(t) = Hmelk (1 + itémvk_l)
and

B =V Ximer, m’ -

Let K = (1 4+ M?)(f*)? and K* = 2-K. Note that E(a,(s)a,,;(?)) = 1 for all
real s, t.

Form = 1,1et{, = ¢, — E¢,?. Then|{,| < Ka.s.and E(C,-1 sz cee Cjn) =
0 for all integers 0 < j, < /o, < -+ + < J,-

Let y, = v*(n, — n,_,)"%2 and B = (1 — v)’(1 — ¢™)~%8. In light of (13),
Yii ~ (2B)(n, — n,_))* and 2ty (n, — n,_))"t ~ 27¥1 — v). If k is so large that
¥ > B(n, — n,_y)* and 2y, < (n, — n,_,)t, then, by Lemma 1 of Takahashi
(1972),

P18 — 1] > K*(ny — my_y)7¥]
= P[|Zmer, Gl > KQ@m — my)yi]
< Ae v < Aexp(—B(n, — n,_)¥)
for some A4 > 0 independent of k.

By following Révész’ method, making a few obvious modifications, it turns
out that

Pln, = ((2 — ¢) loglog (n, — n,_,))* i.0.]=1.
This is tantamount to
lim sup,_., 7,/(2loglogn,)t > 1 —¢/2 a.s.
Noting (13) and the fact that v < ¢,

. vV,
16 limsup, .o ——* > (1 —e)¥(1 — ¢/2) a.s.
16) e G ogrogayy Z (1~ 01— <)
(15) and (16) immediately yield (i).
Now Lemma 1 will be utilized to prove (ii). Forn > 1,let S, = >%_, X,

r, = (2 loglog n)t and b, = nir,. Note that (2) holds with 8 = 1 by a theorem
of Gaposhkin (1969).
For ¢ > 1, to be specified later, let n, = [c*] for kK = 1. In addition, define

M,* = max |S, — S

np—1<nSnp ”k—ll

for all k so large that n, , < n,. By Lemma 3 of Gaposhkin (1969), 4 > 0
exists such that

E exp(AM,*) < 2 exp(A2(n, — n,_,))
for all 0 < 4 < 4 and large k. Therefore, if ¢ > 0, and if k is so large that
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er,, < A(n, — n,_;)t, we have
P[M* = ¢b, ] = Plexp(er,, (m — ne1)"IM*) = exp(e’ry (1 — er/1) )]
< 2exp{—er;, (1 —n _ [n)~t + Ae’r} )
= 2exp{—(r2,/2)2) (1 — mea/m)™* — A)} .
But (1 — n,_y/m)"* — A— (1 — ¢~ — 4. Thus, if ¢ > 1 is chosen so close
to 1 that (2¢°)((1 — ¢t — A) > 2, then P[M,* = e¢b, ] = O(k~%). Hence

Die P[M* = ¢b,, ] < oo, from which (4) follows readily.
Now let p, ¢ FPsatisfy (3). Lete > 0. Fori > 1, define

Pi* = SUPygez | Pi(¥)] 5
a, = ||pdl + ¢
n=2a;—1—¢,
and forn > 1,
w, (i) = Xiha piX(m/n) .
For k = 1, let 2,(i) = r,, w;(i). Hence

T "k
w,X(i) ~ nl|pils* »
2, — 0and a; — 1 + ¢. Moreover, 7, — 1 4 ¢, so », > 1 for all large i.

Now |X,| < M a.s. for some M > 0 and all » > 1. Suppose k is so large that
42,(Hp*M < 1 and 24,(i)p,*M*® < e. Then, by Lemma 4 of Gaposhkin (1969),

Pk*(l) = P[Wnk(xpi) g aiwnk(i)rnk] = P['zk Wnk(Pz) 2 a;r, ]

1N
< exp{—a;ri, + (1 + ¢)r3 /2} = exp{—n;r},/2} = O(k~7i) .

If i is so large that », > 1, then X7, P,*(i) < oo, so (5) holds by the Borel-
Cantelli lemma. Since ¢ > 0 is arbitrary, Lemma 1 (ii) implies

lim sup,_.. (2nloglog n)~t 33~ _, f(m/n)X, <1 a.s.
In view of part (i), the theorem is proved. []

4. Some other consequences of Lemma 1. This section presents two one-
sided LIL results and a general theorem about a.s. stability.

The first LIL holds for certain sequences of uniformly bounded rv and for
some sequences of rv with weighted sums which are generalized Gaussian.
Following Chow (1966), a rv X is called generalized Gaussian with parameter ¢
if E exp(tX) < exp(#’r?/2) for all real ¢.

THEOREM 2. Let X, X,, - -+, be rv and define S, = >, ™*, X; for n = 1,
m = 0. Let 8 > 0. Suppose, for all n = 1, either (a) S,,, is generalized Gaussian
with parameter (Bn)} for each m = 0 and, for each pe &, W,(p) is generalized
Gaussian with parameter (3, _, p'(m/n))}, or, (b) EX, = 0, |X,| < B a.s., P[|S,,| =

t] £ 2 exp{—12*/(28°n)} for all t > 0,
(17) PIW,(p) Z {(X 5= P(m/n))] < K exp{—1'/2}
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for some K > 0,alln =1, allt > 0andall pe &, and
(18) E|S,.|" < A,n"
for all v > 1, m = 0 and for some positive real sequence {4,}. If fe &, then

lim sup,_... (2n log log n)~ 3:n_, f(m/m)X,, < BI|f]l, a.s.

ProoF. Forn > 1, let S, = S,, and b, = (2nlog log n)t. Note that (2) holds
in case (a) by Theorem 2.1 of Stout (1973) whereas Theorem 4.1 of Serfling
(1970) implies (2) in case (b).

Now, if (a) holds, then (17) holds by expression (3) of Chow (1966), and (18)
holds for v > 2 by Lemma 2.1 of Stout (1973). We shall assume only (17) and
(18) hereinafter.

Let ¢ > 0 and choose 6 < 1 such that (1 + ¢)d > 1. For k = 1, define n, =
[¢¥’] and M, = max,,  cugm, Our_,[Su — Su,_ |- NOte n,y ~ . Choose v > 2
such that (1 — &)y > 2. Since (18) holds, an argument in the proof of Theorem
4.1 of Serfling (1970) establishes )7, E(M,*) < . Hence M, — 0 a.s.

If f = 0 on [0, 1], then the theorem is trivial. Henceif p,e &, i = 1, satisfy
(3), there is no harm in assuming ||p,||, > O for all i > 1. For each i = 1 and
k =1, (17) implies

PV, (p) 2 Q21 + €) Xk, pi(m/n,) log log n,)t]
< K(log n,)~0+9 < K(k=0+97) .

But 3k, pXm/n,) ~ n,||p|l,>. Hence, by the Borel-Cantelli lemma, (5) holds
with a, = (1 + €)!|[p,ll,» But [|p;lls — [|f],» so the theorem is a consequence of
Lemma 1 (iii). [

The following theorem generalizes Theorem 1 of Tomkins (1975) and yet,
because Lemma 1 is employed, its proof is shorter than that of the earlier
result.

THEOREM 3. Let (X,, & ,, n = 1) be a martingale difference sequence. Suppose
a number N > 0 and a positive sequence c, = o((loglog n)~%) such that, for all
n = N and all real numbers a,, a,, - - -, a,,

(19) E{exp(((Zn=19n") " D=1 @ Xu)}t < exp{(2/2)(1 + lt]c,)}
provided |tlc, < 1. Then, for every fe &,

lim sup,_, (2n log log n)=t 3% _, f(m/m)X,, < ||f]l, a.s.

Proor. Lete >0, 8 =1 and b, = (2nloglogn)t for n > 1. Taking a, =1
for m = 1, Lemma 1 of Tomkins (1975) yields (2). Using (19) and taking j = 0
in the argument used to prove (9) of Tomkins (1975), (4) results, whereas the
procedure used at the top of page 311 of Tomkins’ paper (modified to make use
of (19)) establishes (5) with a; = (1 + ¢)||p||,- An application of Lemma 1 (ii)
concludes the proof. []
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The final theorem concerns a.s. stable rv (cf. Loéve, page 252); it is an easy
consequence of Lemma 1 (i).

THEOREM 4. Let X,, X,, ---, be any rv satisfying lim,_ b, '(X; + ---
+ X,) =0 as. for some nondecreasing positive sequence {b,}. Then
lim,_., 6,7 23%_, f(m/n)X,, = 0 a.s. for every function f of bounded variation (BV).

In particular, if X, X,, - - -, obey the SLLN (i.e. n”}(X; 4+ - .- + X,) — 0 a.s.),
then n=* 3% _, f(m[n)X,, — 0 a.s. for all f of BV.
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acknowledged.
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