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ON STRONG APPROXIMATION OF THE MULTIDIMENSIONAL
EMPIRICAL PROCESS

By P. REVEsz
Mathematical Institute, Budapest

Let Xy, Xz, - -+ be a sequence of i.i.d.rv’s uniformly distributed over
the unit square /2. Further, let F, be the empirical distribution function
based on the sample Xi, Xz, - -+, Xa. A sequence {B,} of Brownian bridges
and a Kiefer process K is constructed such that

Sup4cq [n4(Fa(4) — A(A)) — Bu(A)| = O(n=1%)
SUpaeq |n(Fa(A) — A(A)) — K(4; n)| = O(nit)
a.s. where Fu(4), Bu(A), K(A; n) are the corresponding random measures

of A, 2 is the Lebesgue measure and Q is the set of Borel sets of I2 having
twice differentiable boundaries.

1. Introduction. The first strong invariance principle for empirical distribu-
tion functions (e.d.f.’s) was formulated in 1969 by Brillinger [1]:

THEOREM A. ([1]). Let X, X,, --- be a sequence of independent U(0, 1) rv’s
defined on a rich enough probability space. Further let E,(x) be the e.d.f. based on the
sample X, X, - - -, X,. Then one can define a sequence {B,} of Brownian bridges
(B.B.’s) such that

SUPyg.<1 |[MH(E,(X) — X) — B,(x)| = O(n~¥(log n)}(log log n)t)
a.s. as nh— oo.

The precise meaning of “rich enough” will not be formulated each time; it
will, however, be enough to assume all the time that independent sequences of
Wiener processes (W.P.’s) {W,} and normally distributed rv’s {N,} which are
independent of the originally given i.i.d. sequence {X,} can be constructed on
the assumed probability space. From now on it will be assumed that the under-
lying probability space is rich enough in this sense.

The following stronger theorem was proved in 1975 by Koml6s-Major-

Tusnady [7]:
THEOREM B ([7]). A sequence {B,} of B.B.’s can be constructed such that
sup, |n*(E,(x) — x) — B,(x)] = O(n~* log n)
a.s.

Kiefer [6] proposed to investigate the empirical process (E.P.) a,(x) =
n(E(x) —x)(0=<x<1;n=1,2, -..)as a process of two variables (x, n) and
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730 P. REVESZ

he proved:

THEOREM C ([6]). There can be constructed a Gaussian process (G.P.) {K(x; y):
0=x=1;0 <y < oo} such that

sup, |nta,(x) — K(x; n)| = O(n¥(log n)%) n— oo
a.s. where K can be generated by a W.P. W(x, y) of two variables as follows:
K(x y) = Wx, y) — xW(1, ).

(For the definition of W see N1 in Section 2 below.)

The G.P. K will be called a Kiefer process (K.P.).

Komlés-Major-Tusnady also proved a stronger result in connection with this
problem, too:

THEOREM D ([7]). There exists a K.P. K such that

sup, |nta,(x) — K(x; n)| = O(log® n) n— co
a.s.

It is natural to ask how these results can be generalized to the multidimen-
sional case. The first result in this direction is the following:

THEOREM E ([3b]). Let X, X, - - be a sequence of independent rv’s uniformly
distributed over the unit cube I° of the d-dimensional Euclidean space. Then one can
define a sequence {B,} of B.B.”s and a K.P. {K(x;y): x€I?; 0 < y < oo} such that

SUp, . ;4 |an(x) _ Bn(x)l — O(n"/‘z““”’(log n)%) s
SUPp, . ;a |nian(x) _ K(X; ”)| — O(n(d+1)/(2(d+2)) lOg’ n)

a.s. where the E.P. a,(X) = a,(x,, X; - + -, X;) = m}(E(X) — X}, Xy, - - -, X,) and E,(x)
is the e.d.f. based on the sample X, X,, - --, X

ne

(The definition of B and K is given in Section 2 for d = 2; for the general case
we refer to [3b].)

The main aim of this paper is to investigate the distance between the empirical
measure a,(A4) and a Brownian measure B,(A), and between that of a,(A4) and
the Kiefer measure K(4; n), where 4 runs over a suitable subset of the Borel
sets of the unit square. The precise meaning of these measures will be formulated
in Section 2, where the main results are also summarized. All the results here
will be formulated and proved in the two-dimensional case only; it appears,
however, that their generalization to higher dimensions is possible via the
methods of this paper.

In some aspects, the results of this exposition were suggested by a conversation
of R. Pyke at Oberwolfach in November 1974 and by a paper of Dudley [4].
In fact here we do not apply Dudley’s ingenious technique; our more classical
definition of the Wiener measure seems to be quite suitable for the purposes
of this paper. Our Theorem 1 could be obtained as a consequence of Theorem
4.2 of Dudley. Here we give a direct proof.
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The proofs mostly follow those of [3b] whose minor oversights are also cor-
rected while going along.

The author is indebted to Professor R. Pyke and to the referee for their valu-
able remarks.

2. Notations and results.
N1. The following G.P.’s will be used frequently:

(1) WP.o W(X) = W(x;, x5 -+, x)0Z x, < 1;i= 1,2, .-+, d)isa separ-
able G.P. with EW(x) = 0, R(X,, X,) = EW(X,)W(X,) = EW(x;;, Xp3, -+, Xy3)
W(Xa1s Xas = -+ Xpg) = MUN (Xyy, Xy) + MUN (Xyg Xpp) + -+« MUN (X, Xyg), ‘

(i) B.B.: B(x) = B(x;, x,) = W(X) — x,x,W(1,H (0 <x, <0< x, < 1),

(iii) K.P.: K(x, y) = K(x;, x5; y) = W(x}, x5, ¥) — x,,W(1, 1, ) (0 < x, < 1,
0<x=10Zy< ).

N2. Let &% = AL, M)(L=1,M=0,1,2, ...) be the set of those con-
tinuous vector valued functions z(f) = (x(f), y(#)) (0 < ¢ < 1) for which

(i) thereexistsasequence0 =1, < , < 1, < --- < t,, < t,,,; = 1 such that

max {[x'()], [y'(1)], [x"()], [y" (O]} = L
for every t#£¢1, (i =0,1,2, ..., M + 1),

(i) 0=x(n<1,0<y <1,

(i) x(0) = x(1), y(0) = y(1),

(iv) (x() = x())* + (¥(s) =y >0if 0= 1 < s < 1.

N3. For any z(f) € % define the domain Q, C [0, 1] x [0, 1] = I* as the set
of those points (x, y) € I* which cannot be joined to any point of the boundary
of I’ without intersecting the curve z(¢).

N4. Q=Q(L,M)={0Q,: ze V(L, M)}.

N5. Let R=2"(r=1,2,...)and let

Ly =57 ={(x ) k|lR = x < (k+ D/R,jIR < y < (j + 1)/R}
(k,j=0,1,2,...,R —1).
N6. For any Borel set B of I’ let
B = Zuk,nzz;fj’cm Ly, B = Zuk.nu,‘;a*o» I7; — B .
N7. Define the Wiener measure (W.M.) of /,; by

o= (5t L) - ) -

k j >
Wi —» =),
+ (R R
The W.M. of a finite sum of I,;’s will be defined by additivity. The W.M. of

a domain Q, € Q will be defined as:
w(Q,) = lim,_, W(Q,") .
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(It is easy to see that the limit on the right exists with probability 1.)
N8. Let A(+) be the Lebesgue measure on /*; then the Brownian measure
(B.M.) resp. the Kiefer measure (K.M.) of a set Q, € Q will be defined as:

B(Q,) = W(Q.) — AQ)W(1, 1)
resp.
K@i y) = W(Q.y) — 2Q)W(1, 1, 7).
Since for any fixed y > 0, y~tW(x; y) isa W.P. of two variables, W(Q,; y) can be
defined via N7.

N8. The stochastic set functions W(Q,), B(Q.), K(Q,; n) (Q, € Q) are stochas-
tically equivalent versions (or versions) of the “measures” W, B, K(W = W,
B= B, K = K)if (W(Q,) = W(Q.) = P(B(Q.) = B(Q.)) = P(R(Q.; n) = K(Q.;
n)) = 1 forevery Q,e Q,n = 1,2, . ... The versions W (resp. B, K) of W (resp.
B, K) are also called W.M. (resp. B.M., K.M.).

Our first result is the following:

THEOREM 1. For any ¢ > 0 and t > 0 we have

(1) P{sup,. ., [W(Q.)| > 1} = Aexp(=£/(2 + <))
and
(2) P(sup,. , |B(Q,)| > t} = Aexp(—2/(2 + ¢))

where A = (M?LY°"** C = C(e) is a positive constant depending only on ¢ and W
resp. B. are suitable W.M. resp. B.M.

A trivial consequence of this theorem is:
THEOREM 1*. For any ¢ > 0 and t > 0 we have
P{SUPyg,crosyst [W (X, )| > 1} < Cexp(—r/(2 + ¢))
where C = C(¢) is a positive constant depending only on e.

A stronger result of this latter type was obtained very recently by H. C. Chan
(2].

Now we formulate our main theorem, stating that the empirical measure
(E-M.) a,(Q,) = §,, da,(x) (z € %) can be uniformly approximated by a B.M.
resp. K.M.

THEOREM 2. One can define a sequence {B,(Q,)} of B.M.’s and a K.M. K(Q,; n)
(z € 7)) such that

3) sup, . ., |a,(Q.) — B.(Q,)| = O(n™™) n— oo
4) sup,c , 1, (Q,) — K(Q; m)| = O(n#) ' n— oo
a.s.

Up to now we investigated only the case when the sample is coming from
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the uniform law. In the one-dimensional case, Theorems B and D immediately
imply:
THEOREM F. Let Y, Y,, - - be a sequence of i.i.d.rv’s having common continu-

ous distribution function F. Then one can define a sequence {B,} of B.B.’s and a
K.P. K such that

SUP_cocacen |Ba(X) — B (F(x))| = O(n~* log n) n— o
SUP_cocz<eo Inéﬁn(x) - K(F(X); n)l = O(logz n) n— oo

a.s. where the E.P. 8, = n¥(F, — F) and F, is the e.d.f. based on the sample
Y, Y, o, Y,

n

In order to prove Theorem F one only notes that F(Y)), F(Y,), --- are inde-
pendent, uniformly distributed rv’s.

The problem of finding the analogous generalization in the multidimensional
case is not so simple. The first difficulty is to find a transformation 7': R* — I*
mapping the sample Y, = (Y,;, Y,), Y, = (Yy,, Yy), - - - intoasample X, = TY,,
X, = TY,, --- coming from the uniform law. Toward this goal let F be the
distribution function of Y,, satisfying some regularity conditions and let
G(x,|x)) = P(Yy, < X%,| Yy, = X)), H(x,) = P(Y},; < x;). Then define T as follows:
T(x,, x;) = (H(x,), G(x,|x,)). This transformation was studied before by Rosen-
blatt ([8]).

Now we formulate our

THEOREM 3. Let Y, = (Y, Yy,), Y, = (Y, Yy,), - - - be a sequence of i.i.d.rv’s
having a common distribution function F(X) = F(x,, x,). Suppose that F(x,, x;) is
absolutely continuous and

PO, POl o
0x? = 0x, =

(for some L > 0). Then we can define a sequence {B,} of BM.’s and a K.M. K
such that

(5) SUP,c 2 |Bu(X) — B,(TD,)| = O(n~7%)
and
(6) SUP,e p2 |n}B,(X) — K(TD,; n)| = O(n?)

a.s. where B,(X) = n¥(F,(x) — F(x)), F,(x) is the e.d.f. based on the sample
Y, Yy -, Y, and D, = {(a,a,): 0 < a, < x,0 < a, < x,} {Xx = (x;, x,) € RP}.

Since SUP_.< <. B(F(X)) = sup,g.<, B(x) (F is continuous), a simple conse-
quence of Theorem F is the fact that the limit distribution of sup_.,,<. B8.(x)
does not depend on F. On the other hand, Theorem 3 shows that in the two-
dimensional case the limit distribution of sup, . z2 8,(x) does depend on F. This
is the reason that there is no appropriate analogous version of the Kolmogorov—
Smirnov test in the two dimensional case.
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3. Proof of Theorem 1. At first we introduce some notations:
N9. Let &= Ak, 7) ( 0< < 1,6 =3,4,5, .. -) be the set of these poly-
gons P for which

(i) AP) =<,
(i) Pc P, and
(iii) the number of vertices of P is not more than «.

N10. &7 = &"(x, ) = {P": Pe Pk, t)}, where P" is defined in N6.
NIl. Let Pr = P™*' — P~ and

FPr = Pk, t) = {P: Pe Ak, 1)},

N12. For any finite set Z let C(Z) be the number of elements of Z.
Now we formulate some lemmas.

LemMma 1.

() C(F(k, 7)) < R*,

(i) C(F"(x, 7)) < (2R)* ,

(iii)y A(P7) <t (PePk,t);r=1,2,---),
() 2Py = 25 (Pe e, 0ir=1,2, ),

where R = 27,
ProoF. Let
Py={(xy):0=x=<1,0<y <min(l, mx + b)}

and P, , is called r-equivalent to P, if P, = Pr, . Each equivalence class
can be represented by a line y = mx + b joining two lattice points (i/R, j,/R)
and (iy/R, jo/R) (0 < iy, iy, ji, , < R). Since the number of the pairs of lattice
points is less than R* we get (i).

(ii) and (iii) are trivial. (iv) follows from the fact that at most 3 of the 4 cells

of width 27! which comprise a cell of width 2= will be in P~.

LemMMA 2. For any pp > 0O there exists a C = C(p) such that

(7) P{supsc s,y [W(P) — W(PT)| = CkR~¥(log R)}} < R™*
and
(8) P(SUPpe o [B(P) — B(P7)| = CrR-4(log R)}} < R+

Proor. By (ii) and (iv) of Lemma 1 we have

- .. (-] 3 %

S 2 X5 (2MR)(1 — @(zy)) -
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Choosing z; = (8kj + Cyx log R)} with an appropriate C, > 0 we get
P{Zi5-0supsrii [W(P+9)| Z CR-¥(log R)}} < R+
This clearly implies
m, . > 7,sup [W(P™+9)| =0 a.s.

Hence there exists an event of probability 1 where lim,_,,, W(P") exists for every
Pe Ak, r). Since

SUPpe e, [W(P) — W(P)| = 50 SUPpresesres [W(PTH)]
we have (7). (8) easily follows from (7).
LEMMA 3. For any t > 0 and ¢ > 0 we have

) P{SUPre yiv,e) [W(P)| = i} < A exp(—7F(2 4 ¢))
and
(10) P{SUPpe ic,o) |B(P)| = tH} < A exp(—1(2 + ¢))

where A = (kv7')°* and C = C(¢) is a positive constant depending only on .
Proor. For any integer r we have

P=Pr 4 P4 P+t ...
and

SupPG.Q(x,r) IW(P)I é SupP'ey-T |W(Pr)| + Z;‘;o Supf”‘*ie?'*i IW(PH—J)I .
Further for any x; y,, y,, - - - we have

P{suppre r |[W(PT)| = tix} < 2R*(1 — O(x)),

_ 3 4
P {supsosseomss WP 2 (225 V' )} < 2Ryt — 03)
whence
SUPpe., [W(P)| = tix + S50 (Y y,
Pres i=0 2’+2R Vi
S 2R*%(1 — ©(x)) + 2 170 (7P R)*(1 — D(y;))
é 2R4;[x—1e-22/2 + bl ;_o:o 243jyj—le—llj2/2] .
Let

= (8xj + xH?}, x = Cit + Cuet, r = [log, Cykt™Y]

where C, = 1 — ¢/6, C, = ¢/18, C, = iO‘/e. Since £77' > 3 our statements hold
if t < «* provided that C = C(¢) > 1. Hence we can assume that ¢ > !, Then

w 3 6
T 2 (2::;1() y; = T+ 25 °<2:+,:c
< tix(1 + 6C, %) + (k7)IC,~150
= oH{(C, + C)(1 + 6C;7Y) + 50C,%) < e

) 186yt + 1]
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and
2R4x[x—1e—z2/2 4 2t Z;‘Lo 24:jyj—1e—yj2/z]
Cyr \** —22/2 4 I 4k j p—22/2 _a22n [(Cart \**
éz kil [e z4/! +2'Zj=0(2/e)”e _/]ée z/2<__3__> [I+24:+1]
T T
< e—C1t¥2) (9_35)4‘ (1 4 2%+ < e“z/‘““(/w“)“ .
= . =

N13. For any z = z(f) e (L, M) = % and for any s = 1,2, ... let P* be
the polygon having vertices
z(t; + jS7tip — 1))
=Z§j(i=0, la2’ ""M;j=0,1,2,“"s— l;S=2")
Further let Tj,(z) = T,; be the triangle with vertices 235, 25 0 Zihh e -
LEMMA 4. For any z e (L, M) and for anyi=0,1,2, ..., M; j=0,1,2, ...,
S—1;s=1,2, ... we have
(1) A(T3(z)) < LiS—3,
(i) A(Q, A P?) < MLS-
where AN B = (A — B) + (B — A), and S = 2.
LEMMA 5. For any p > 0 one can find a C = C(p) > 0 such that
(1)  P{E7, ¥, N3 sup.. , [W(Ti(2))] = CMLIS-i(log S)}} < MS-+.
Proor. Clearly we have
P{Zie Lo X320 sup,e , |W(TiY(2))]
= Nme (M + 1)@ + 1y, L2-1e+h)
< Do (M + D@ 4 D@HOLemntaso
Choosing y, = (C,/ + C, log S)} with appropriate C, and C, we get (11).
Now we define the W.M. W(Q,) (Q, € Q) for which our statements hold. Let
W(Q,) = lim,__ W(P;).

Lemma 5 implies the existence of an event of probability 1 where lim,_,, W(P,?)
exists for every Q, € Q.

The relation P(W(Q,) = W(Q,)) = 1 for any fixed Q, e Q is also immediate by
Lemma 5. '

The processes B and K can be defined similarly.

Using this definition and the trivial inequality

SUP.e ., [W(Q.) — W(P)| £ Xizo Tizo N30 sup,e ., [W(Ti(2)|
we get
LEMMA 5*. For any pr > 0 one can find a C = C(p) > O such that
(1) Plsup..,, [W(Q.) — W(P)| = CML*S-}(log $)'} < MS~
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and
(12) P{sup,. ., |B(Q,) — B(P;)| = CML*S-}(log S)}} < MS-*+.

Proor orF THEOREM 1. For any z e (L, M) and for any s = 1,2, ... we
have

Q.= P’ + I Do 13 &, Ti'(2)
where ¢,; can be +1 or —1.
Since W(Q,) = lim,_,, W(P,*) we have
W(Q,) = W(P;) + Xt Lite ZH e, W(Ti}(2)) -

Our last relation implies

Supzey |W(Qz)| é Supzsy IW(P'S)l + Z;‘;O Z28+l Supgey IW(T‘H.l(Z))l *

Then by Lemma 3 we have
P{sup,. , |[W(P,")| > x} = (SM)*" exp(—x*/(2 + ¢))
and
P{sup,. . [W(Tif'(z))] > pLR273e+0) < (224D L*)C exp (—/(2 + ¢))

if C is big enough whence

P{Sup,., [W(Q.)| > x + S (M + 1)@+ 4 1)y, L2-1er0)

< (SM)CSMe—zz/(He) + (M + 1)(23+l + 1)(23(8+l)L—4)Ce—yl2/(2+e) X

Let
¥ = (Cd + X, x=Cy 4+ C,, S = C,(ML?:?

where C,, .- -, C, are appropriate real constants.
Then
X+ Do (M + 1)@+ 4 1y, L2-1040 < ¢
(SM)CSMe—zZ/(He) + ZT:O (M + 1)(2s+l + 1)(23(s+z)L-a)ce—vz2/<2+e)
§ (M3L4)C”13L4e'”2/(2+” s

which proves (1). (2) easily follows from (1).

To complete this paragraph we formulate two further lemmas.

In the proof of the next lemma the following inequality will be used:

BERNSTEIN’S INEQUALITY (see e.g., [10] pages 387-389). For any Borel set
Q c I’ we have

P((AQ)(I — Q) Han(Q)] > x) < 2e77
provided that 0 < x < (nA(Q)(1 — A(Q))):.

LEMMA 6. Let 0 < ¢), 65, 65,6, 6, < 1, R< 01, § < nl, ¢ > nsl, Then for
any ¢t > 0 one can find a C = C (¢) > 0 such that

(13) P{SUPP€K/(:,1) |an(P) - a'n(Pr)l Z CR_&(log R)Q} é R_# b
(14) P{sup,. . |,(Q.) — a,(P.7)| = CML*S}(log S)}} < MS~+,
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and

(15) P{SUD pe ey [@u(P)| 2 7H} = A exp(=F/(2 + <)),
where A = (kt7')%, C = C(¢,) is a positive constant depending only on ¢, and 0 <
[< ne3/2—e4'

Proor. Clearly

Sup [a,(P) — au(P)| < sup | (P)| + -+ + sup Jay(Pr)
+ ntsup § sr+i+1 dE,(X) 4 nt sup A(Pr+ity)
(P was defined in N6.)
Choose j = [log, n*~*/?R~']. Then

(16) nt sup 2(Pr+i+1) < R-#(log R)? ,

17 P(nt sup § sr+i+1dE,(x) = R™}(log R)}) < (R29)* O(exp (—in?),
pr+1 3k ¥ . —2;2/6

(18) P(sup lan (P = (o)’ 7)) 5 O,

where z; = (20xj + C,« log R)t (C, > 0).

Now (13) can be obtained from (16), (17) and (18) in the same way as we ob-
tained (7). In order to prove (14) resp. (15) we can follow the method of proof
of (11*) resp. (9).

LEMMA 7. For any p > O there exists a C = C(y) > such that
(19) P{sup,c ., .1si<n |[K(Q,; k)| = C(nlog n)t} < An~*
and
(20)  P{sUP.c o insksm |K(Qus k) — K(Qu; m)| 2 C(m — n) log (m — n))}}

< A(m — n)™*
where A = (M3L*)°¥3L,
Proor. Clearly we have
P{sup.c ,usesn |K(Qs k)| = C(nlog n)t} < nP{sup,. ., |B(Q.)| = C(log n)}}.
Then (19) follows from Theorem 1. (20) follows in the same way.

4. Proof of Theorem 2. At first we recall a lemma proved in [3b].

LEMMA A ([3b]). Let , be a Poisson rv with mean 2 > 1. Then for any con-
stant C > 1 there exists a polynomial B(x) of second order (depending only on C) such
that for any x (|x| £ C(log A)}) we have

R = P( 5t s x) = @) + TRCER

where | f(x, 2)| < B(x) and
Fi(x;) = O(x) 1 — Fi(x) = 1 — Q(x,)
provided that |x,| < C(log 2)t.
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NI14. Let X be a discrete rv with distribution function F where F is a step

function with
F(x) = p; if x, <xZx,, i=0,+1,+2,....
Further let ..., Z%,, ZF,, ZF, ZF, Z,F, . .. be a sequence of independent rv’s
being also independent from X with distribution function
P(ZF<x)=0 if x < O (F(x,)
D(x) — F(x,) . _ -
=7 ) if O@YF(x)) < x < OV (F(x,
e = He) (F(x)) S x < @7H(F(x,.)
=1 if x = O (F(x;4) -
Define the rv N(X) by
NX)=ZF if x<X<x,.
The following lemma is trivial again:

LeMMA 8. P(N(X) < 1) = ¢(1) .

LEMMA 9. |[N(A~¥(z, — 2)) — 2¥(w; — )| = O(A~tlog A) as A — co, provided
that |2~¥(z; — 2)| < C(log A)t where the O depends only on C.

This lemma can be proved easily using Lemma A and the method of proof
of Lemma 3 of [3a].

N15. Let = = =, be an rv of Poisson distribution with parameter n and in-
dependent from the sample {X;}. Further let a,; = a;(n, r) resp. B,; = Bi;(n, 1)
be the number of the elements of the sample X;, X,, - .., X, resp. X, X, -+, X,
lying in the square I ;.

N16. n~¥a,; — nR™*) = uy;, n¥(B,; — nR7*) = vy,

WPT) = Dikintfyern Bei>  BPT) = Ll ern Ves
for any P" e F"(k, 7) (see N9).
Now we can formulate
LemMA 10. For any p > O there exists a C = C(u) > 0 such that
(i) P{Suppreoric,o, [M(P7) — B(P)| = Cn¥(log n)i} < n™# if R* = o(n),

(ii) the rv’s B,; (k,j=0,1,2, ..., R — 1) are independent with Poisson law of
parameter nR~*.

This lemma can be proved in the same way as Lemma 3 of [3b] applying (i)

of our Lemma 1.
We recall two lemmas of [3b].

LeMMA B ([3b]). Let R be an integer and let {N;} (@, j=1, ---, R) be adouble
array of independent standard normal rv’s defined on a probability space {Q, &, P}.
Then there existsa W.P. W(x,y) (0 < x < 1,0 <y < 1) on Q such that

W(i[R, jIR) = R™* Xlasiipsi Nas
#j=0,1,2,..-,R).
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LEMMA C. Let 0 = £, < t, < t, < --- be a sequence of real numbers and let
{B,(x)} be a sequence of independent B.B.’s defined on a probability space {Q, &, P}.
Then there exists a K.P. K(x; y) on Q such that

K(x; 1) = t2B(X) + (t, — t)!By(x) + -+« + (t; — t,_)IB(X) .
Now we prove our
LemMA 11. For any p > 0 one can construct a sequence {B,(x)} of B.B.’s such that
P{SUP e v, 0| Bu(P) — a,(P)| = Crn~i(log n)l} < n~*

where C = C(y) is a positive constant depending only on .

Proor. Let R = O(nt) and define the process B,(x) as follows: N;; = N(Rv;;)
(see N14 an N16). Then by lemma B there exists a W.P. W(x) such that

W(i[R, jIR) = R™* Xasispsi Nes

and let B(x, y) = W(x,y) — xyW(1, 1).

By Lemma 9,

|N;; — Rv,;;| = O(Rn~*log n)
< C(log n)t. Since
P(sup, ;Rlv,| > C(log n)i} < n~*

if C is-large enough, we have

provided that R|v,

w‘l

P{sup, ; [N;; — Rv;;| > CRntlogn} < n™*.
Let ¢;; = N,; — Rv,; and
&‘;kj = ¢

if |e;| < CRntlogn

=0 otherwise.

ij

Then
(i) the rv’s ¢} are independent, and
(i) |Ee¥| = O(n7Y).
Hence
P{”Q(R log 1) SUPpre orie,1) |Z((k,i):]£jcP") (e85 — Es,’fj)| = CR(x log n)Q} =nt
if C is large enough. This implies
P{n*(R log n)~'sup | Y ei;| = CR(x log n)t} < n~*
and .
P{sup |T¢,;| = CriR*n~t(log n)}} < n~*.
That is
P{suppre orie,1) IR~ Z((k,i):lzjcpf) Ny — Z((k,i):l;‘jcPﬂ Vi
> CrtRn*(log n)} < n*.
Especially if P = I* we have
P{{W(1, 1) — n"}(x — n)| = CRn~}(log n)}} < n~r.
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These last two relations imply
(1) P{SUPpre oric.ny |B(PT) — B(P")| = 2CkiRn~Y(log n)i} <-nx.
Now making use of Lemmas 10 and 2 one has Lemma 11.

Proor oF (3). Let {B,(x)} be the sequence of B.B.’s constructed in Lemma
11. Then

sup, e |x(Q.) — Bu(Qu)| = sup [a,(Q.) — au(Py)| + sup |a,(P.7) — B,(P.)|
+ sup [B,(P,") — B,(Q.)| -
Let S = O(n?); then by Lemmas 6, 5 and 11:
P{sup [a,(Q) — a,(P,})] = CML!S~}(log S)} = Cn~rs(log n)}} < n~* .

P{sup [B,(Q.) — B,(P.})| = Cn~s(log n)}} < n~*,

P{sup |a,(P,*) — B,(P,)] = CMSn~t(log n)} = Cn=rs(log n)t} < n=*.
which proves (3).

LEMMA 12. For any u > 0 one can construct a K.P. K(x; y) (xe I} 0 < y < o)

such that

(22) P{SUPp ¢ (r 1) P2, (P) — K(P; n)| = Ck(log? n)ni} < n~#
where C = C(u) is a positive constant depending only on p.

ProoF. Consider the sequence 0 = n, < n; < n, < --. of integers where
n, = [k®] (@ > 1) and let n, — n,_, = m,. Denote by &,(x) be the E.P. based on
the sample X,, _, ---, X, . Further let B,(x) be a B.B. for which

P{suppre oric,ny [B(PT) — @ (P7)| = Cx*Rm,~}(log m)} < mye

where r = r, = [log, k] and 8 > 1/4(a — 1) (see (17) and Lemma 10).
By Lemma C there exists a K.P. K(x; y) for which

K(x; n,) = 2%, m*By(X)
and clearly
nla, (X) = 24, mita(x) .
Hence we have
P{lnda, (P7) — K(P"; n)| = Crtk(log k)t - ki(log )} < ny~r .
By Lemma 1
P{SUPpre prieny |midet, (P7) — K(P7; ny)| = CrtkP+ilog? k) < kv .
Lemmas 3 and 6 imply
P{SupPEQ(x,l) Ink%ank(P) - K(P; nk)l
> Crtkf*tlog?k + Crk'*~P7logk} < k*.
Choose 8 = §(a — 1). Then
P{sUppec o) |n,}ank(P) — K(P; n,)| = Cr(log? k)k®«+v/8} < f~#
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By Lemma 7
P{Suppc o 1) M, (P) — K(P; n)|
= Cr(log? nynetv/oa 4 (log n)tn‘a-1/2a} < p=r
Choosing @ = 4 we get (22).
Proor of (4). Clearly we have
SUP.c ., [, (Q,) — K(Qu; n)| < sup,e, |mia,(P) — K(P.; n)
+ sup,., |nta,(P?) — nta,(Q,)
+ sup,. ., |K(P,5; n) — K(Q,; )| .
Choosing s = [log, n"] where y = § by Lemmas 5, 6 and 12 we get (4).
5. Proof of Theorem 3. The next lemma is straightforward and known.
LEMMA 13. The transformation T has the following properties.
(i) F(A) = \,dF(x) = A(TA) for any Borel set of R?,
(ii) A(B) = F(T-'B) for any Borel set of I*,
(iii) X, =TY,, X, =TY,, - .. is a sequence of i.i.d. rv’s uniformly distributed
over I*,

(iv) B.(x) = a,(TD,)(x € R*) where «a, is the E.P. based on the sample X,,
X,, - -+, X, and B, is the E.P. based on the sample Y, Y,, ---, Y

(V) au(x) = B(T7'D,) (x e I’) .
Proor oF (5). By Lemma 13
(Bu(x) — BA(TD,)) = (an(TD,) — B,(TD,)) .

Since TD, € Q(L, 4) (x € R?), by Theorem 2 we have (5).
The proof of (6) is the same.

no
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