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DISTRIBUTION ESTIMATES FOR FUNCTIONALS OF
THE TWO-PARAMETER WIENER PROCESS!

By VicTorR GOODMAN
Indiana University

Bounds on absorption probabilities for Banach space-valued Brownian
motion are obtained as expectations of estimates for the conditional pro-
bability given the endpoint of the path. The results are applied to the
problem of computing the tail distributions of the supremum, S, of the
two-parameter Wiener process and the supremum, §’, of its tied-down
version. It is shown that for 2 = 0,

P{S’ = 2} = (222 + 1) exp [—24%]
and
P(Sz21=4 (5 sN(—s)ds

where N(s) denotes the standard normal distribution. A corollary is that
P(S = 2) = 4N(—2) as 2 — +oo.

1. Vector-valued Brownian motion and the N-parameter Wiener process. A
probability measure, p, defined on the Borel field of a real separable Banach
space, B, is said to be mean-zero Gaussian if each element of B* has a Gaussian
distribution with mean zero. One may define transition probabilities for a B-
valued independent increment process, {W(?)},»,, with the formula

(1) Plx + W(1) e B} = p(1™}(E — x))

and as shown in [8] and more recently discussed in [11], there exists a separable
process with continuous sample paths satisfying the above equation. The process
is said to be Brownian motion in B generated by y, and, in particular, we may
consider the process {I(s)}y<,<; Which we refer to as the Wiener process. The
case B = R' with yu the standard normal measure gives the canonical Wiener
process [7], [15].

The N-parameter Wiener process is defined to be a real-valued mean-zero
Gaussian process {X(t):t = (¢, - - -, ty), t; = 0} such that

E[X(s)X(t)] = I3 (s; A 1)
and such that with probability one, X(t) is continuous in t, [12]. Throughout
this paper, the parameter set will be restricted to [0, 1] and thus the process
X(t) uniquely determines a probability measure on the Banach space, C,[0, 1]",
the space of all real-valued continuous functions defined on [0, 1]¥ which vanish
if at least one of the coordinates vanish. A proof of existence of the above
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process is contained in the following theorem, due to Kuelbs [11], which relates
vector-valued Brownian motion and the N-parameter Wiener process.

THEOREM 1 (Kuelbs). A separable, continuous version of the N-parameter Wiener
process is given by the Ci0, 11"~! valued Wiener process generated by the N — 1
parameter process under the correspondence

X(t) = W(t)(ty -+, 1y) -
2. Estimation of absorption probabilities for Brownian motion.

DerINITION 1. Let {W/(t)},5, denote the Brownian motion generated by a
Gaussian probability measure on a Banach space, B. If U C B is a Borel set the
transition probabilities for the Brownian motion absorbed by U’ are the subproba-
bility measures g,(U, x, dy) given by

9. (U, x, EY=P{x + W)€ E, x + W(s)eU Vs <t}

where t = 0, xe B, and E C B is Borel. The above measures form a Feller
semigroup for a Markov process which has been studied by Gross [8]. Follow-
ing the notation of [8], we write p,(x, dy) for the transition probability in the
case U = B and in those cases where the choice of U is clear, we omit the
parameter U when referring to ¢,(U, x, dy). ‘

DEFINITION 2. The transition density of q,(U, x, dy) relative to Brownian motion
is a measurable function
dq,(U, x, +)

v dp(x, +)
given by the Radon-Nikodym derivative. Clearly, for each fixed x in B,
9.(U, x, y) < 1 a.s. relative to p,(x, dy).

Estimates of the absorption probabilities 1 — ¢,(U, x, U) will be made by esti-
mating the corresponding transition densities. The technique is to replace the
set U by halfspaces so that the resulting transition density has an explicit form.
For this purpose we introduce some notation.

An element e € B* is said to be normalized relative to a Brownian motion

{W(D)}izo iff
Let

9.(U, x, }’) =

E[{e, W(1)Y*] = 1.
s(U,e) =sup{<e, y>:ye U} forasubset U of B.

PROPOSITION 1. Let e € B* be normalized for a Brownian motion {W(t)}. The
transition density for the Brownian motion absorbed by {y: (e, y) > 1} is given by

I —exp[—(2/n(e, y) — (e, x) — )]
for x, y such that {e, x), (e, y) < 4.

Proor. The result of Fernique [6] implies that E[||W(1)||*] < co. Since the
random vector W(1) has separable range, the Bochner integral

z = E[<e, W(1))W(1)]
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exists. Now the map Px = (e, x)z is a projection onto span {z} since P2x =

e, z)Px and (e, z) = E[{e, W(1))*] = 1. Moreover, I — P is a projection onto

the null space of e since (e, Px) = {e, x). Consider the stochastic process
W'ty = (I — PyW(1) .

It is clear that {W’(r)} is a Gaussian independent increment process with con-

tinuous sample paths. Let {5(¢)},,, denote a one-dimensional Brownian motion
which is independent of the process {W’(r)}. We claim that the process

W'(t)y + b(f)z
is a version of the Brownian motion, {W(f)}. The above process is clearly a

Gaussian independent increment process with continuous sample paths. Thus,
it suffices to check that the distribution of the random vector

w'(1) + b(1)z

agrees with the distribution of W(1). Since both distributions are mean zero
Gaussian, it suffices to verify (see [11]) that the variance of each fe B* is given
by E[{f, W(1))*]. This is a routine calculation which we leave to the reader.

We then have ‘

gux, E) = Plx + W(t) € E, (e, xy + (e, W(s)) < 2 Vs < 1}
=PI —P)x+ W'(t) + Px + b(t)ze E, (e, x) + b(s) = 2 Vs < 1}.

The transition density for one-dimensional Brownian motion absorbed by the
set {r:r > 2} is found from a formula in Feller [5] to be

gu(r, 8) = 1 — exp[—(2/0)(s — 2)(r — 2)]
for r, s < 2. By choosing sets E of the form F ++ Gz where F is a Borel subset
of the null space of e and G C R* one obtains the formula

9% E) = {pape sy {1 — exp[=(2/)(e, y) — D(Ke, x) — H]ipi(x, dy) -
THEOREM 2. If {e,} C B* is a sequence of normalized elements for a Brownian
motion, then the transition density g,(U, x, y) for a Borel absorbing set U’ satisfies

9:(U, x, ) = [1 — exp[—(2/0) inf, (Cew, ) — 5(U, ea))(Cen, %) — s(U, €,))]1u(y)
a.s. relative to p,(x, dy) for each x in U.

Proor. Let U, = {y:<e,, y) < s(U, e,)}. Then U c U, and hence for every

Borel set £ C U, .
4(U, %, E) < 4(U,, %, E) .

In view of Proposition 1, we may express the above inequality as
§z 9:(U, x, y)p(x, dy)
=< §e (1 — exp[—(2/0)(ew y> — s(U, ea))((ews x) — s(Us ea))pi(x, d) -

This yields the desired inequality since the integrands must satisfy the inequality
a.s.
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3. Distribution inequalities for functionals of the two parameter Wiener
process. Let X(s,, s,) denote the two parameter Wiener process. We obtain esti-
mates for the distribution of the functionals

S = sUPog,,<1 X(S15 5) S = SUPyg,,<1 [X(51 52) — 518, X(1, 1)]

The distributions arise as asymptotic distributions in certain limit problems. In
fact, the distribution of 8’ is the asymptotic distribution for a multivariate
analog of the Smirnov statistic; this is discussed in detail in [14].

Let {W(f)} denote a C,[0, 1]-valued Brownian motion as in Theorem 1 so that
W(t)(s) is a version of X(¢, s). Then for 2 > 0,

PIS < 2} = P {suPrcsza - W(s)(s) < 1}

= P{supyg,,<; W(s/2)(s)) < 1}
=P{W(s)eU V¥s < 1/2%
where

@) U= {yeGl0, 1]: suppsici (s) = 1} -

Thus, the calculation of the distribution function for S is equivalent to the
calculation of the absorption probabilities ¢,(U, 0, U) for the above set, U. We
obtain the following estimates which are expressed in terms of the standard
normal distribution, N(2).

THEOREM 3. For 2 = 0,

455 sN(—s) ds < P{S = 1} < 4[N(— )]
and
222 4+ 1)exp[—22*] < P{S" = 4} .

Proor. The upper bound on the tail distribution of S follows from a com-
ment of Kiefer [10]. We derive the lower bounds. Let {r,} denote an enume-
ration of the rationals in the unit interval. Then since the distribution of W(1)
in the absorption problem above is the canonical Wiener measure, the linear
functionals e, = r,~#3, are normalized and s(U, e,) = r,”*. Theorem 2 implies
that the transition density g,(0, y) satisfies

9,0, y) = [1 — exp[—(2/1) inf, (1 — y(ra))/ru]lu(y)
= [1 — exp[—(2/r) infog,g; (1 — y(5))/s11u(y)
= 1 — exp[(2/1) supyges: [0 A (¥(5) — 1)/s]]
a.s. p,(0, dy). Hence, a lower bound on the absorption probability 1 — ¢,(U, 0,
C,[0, 1]) is obtained by integrating the above estimate with respect to p,(0, dy).
For this, it suffices to compute the conditional distribution of
SUPo<es1 [0 A (§(s) — 1)/5]

with respect to p,(0, dy) restricted to the o field, o(y(1)), generated by y(1).
Let {b(s)} denote the canonical one-dimensional Brownian motion. Then it
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is immediate from equation (1) that the distribution of the process rt5(+) on
G[0, 1]is p,(0, dy). Hence,
PO, {supog,<: [0 A (y(s) — 1)/s] = r}| a(y(1)))
= P{sUpsgis: [0 A (£25(s) — 1)/s] = r|a(26(1))} -
Without loss of generality assume that » < 0. The above conditional probability
may then be written as
P{b(s) < rt7ts + 17} Vs < 1]a(t2b(1))} .
Such probabilities are well known. From [9], page 284, we have
Plb(s)y < rts™t + t7F Vs < 1| e2b(1) = a}
=1—exp[-2t(r+1—a)] a—1=r<0
=0 r<a-—1.
Thus, the conditional density, p(r,a), of the random variable supyg<, [0 A
(y(s) — 1)/s] as a function of a = y(1) is found by differentiating the above
formula. Then
3) p(rya) =2t7texp[—2t7(r+ 1 —a)] a—1=r<0
=0 r<a-—1
and we have
.U, 0, G[0, 1]] y(1) = a)
4) < (-1 {1 — exp [207r]}p(r, a) dr
=1—exp[2t}a — 1)] + 2t7%(a — 1) exp[2t7}(a — 1)]
a.s. in a, relative to the distribution of y(1).

An argument in Billingsley [1], page 84, with an obvious reformulation, yields
the result the family of measures

PXeA|0Z X(1,1) < ¢} e>0
converges weakly on [0, 1]* as ¢ — 0 to the measure P’ for the process X(s,,
5) — 55,X(1, 1). Since 4 = {y: supg, < ¥(s:, 5:) < 4} is open in G[O0, 1%, we
have

P'(A) < lim,_,inf P{X e 4]0 < X(1, 1) < ¢},
and in view of (4), we may take @ = 0 and t = 2~* in the right-hand side of (4)
to obtain
P <A <1 — (22 + 1)exp[—247].

To obtain the lower bound on the tail distribution of S we use the fact that

y(1) has a mean 0 Gaussian distribution with variance ¢. The integration of the
estimate in (4) against this distribution yields

1 — ¢,(U, 0, G[0, 1]) = (2/x)t {54 {1l + t7*(tta — 1)} exp[—a’/2] da .
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If the substitution ¢ = A~? is made in the right-hand expression, one finds that
the derivative with respect to 2 is equal to the derivative of

4 (3 [sN(—s) ds] .

Hence, the above expression is a lower bound for P(S = 2).

COROLLARY. lim,_ . P{S = 2}/4[N(—2)] = 1.

Proor. The elementary inequality

(2n) i[5 — 5] exp [—5/2] < N(—9)

combined with Theorem 3 yields

(1]
[2]

B3]
4]
1]
[6]
iyl
(8]
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[10]
[11]
[12]
[13]
[14]

[15]
[16]

12 P(S = D/AN(—2) = M(—2)7@n) §5 [1 — s~ exp[— /2] ds
1 — 2172,
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