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A NOTE ON THE CENTRAL LIMIT THEOREM
IN BANACH SPACES!

By JoEL ZINN
University of Massachusetts

We show how a recent theorem of J. Hoffmann-Jgrgensen and G.
Pisier can be formulated in such a way as to include a theorem of N. Jain
and M. Marcus. We also obtain some central limit theorems on L?[0, 1],
forl <p<2.

In this note we show how the recent results of J. Hoffmann-Jgrgensen and G.
Pisier (see [6], [7]) on central limit theorems can be formulated in such a way as
to provide an alternate proof of a result of N. Jain and M. Marcus [9]. (For
previous results on central limit theorems on C(S) see Dudley-Strassen [3], Giné
[4], and Dudley [2].) In addition the same technique yields a central limit theo-
rem on L7[0, 1] for 1 < p < 2. Finally, some relations to the laws of iterated
logarithm of J. Kuelbs [10], [11] and G. Pisier [14] will be given.

Let G be a Banach space and ¢ a Radon probability measure on G satisfying:

(1) § Ilxllo’(dx) < oo and
(2) § xp(dx) =0.
Now let X;, X,, --- be a sequence of independent G-valued random variables

with distribution g#. p is said to satisfy the central limit theorem on G if there
exists a Gaussian Radon probability y on G such that the distributions, g,, of
X+ -+ X))/ +||-weakly to 7, i.e., for every bounded norm-
continuous real-valued function f on G,

$fdp,—§fdr.
In the following {¢ )7z, will denote a sequence of independent random variables

such that Pr (¢, = 1) = Pr (¢, = —1) = 4. E and F will denote Banach spaces.
As usual E will denote expectation.

DEFINITION. A linear map v: E — F is of type 2 if Y 7_, ¢, v(x,;) converges in
F a.s. for all sequences {x;} S E such that 1%, ||x,]|;* < c. A Banach space
G is said to be zype 2 if the identity map on G is type 2.

The following theorem is essentially contained in [6], Theorems 4.1 and 4.2
(see also [7]). The proof requires only obvious modifications.

THEOREM 1. v: E — F is of type 2 if and only if for every Radon probability p
on E satisfying (1) and (2) above, p1 o v=! satisfies the central limit theorem on F.
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Now let (S, d) be a compact metric space and C(S) the space of continuous
functions on S with the supremum norm. For a d-continuous metric p on S let
N,(S, ¢) denote the minimal number of p-balls of diameter < 2¢ which cover S.
Also let H,(S, ¢) = log, N,(S, ¢). We put

Lip (o) = {xe C(S) : g(x) = supm%@ < oo} .

Also, for x € Lip (p) put
lIxlle = 9(x) + [x(@)],

where a is some fixed element in S.

DEFINITION. A d-continuous metric p on S is said to imply Gaussian continuity
(or p is GCI) if whenever {X(7)},.s is a separable Gaussian process such that
E|X(f) — X(s)]* £ 6%(1, 5), then X has continuous sample paths a.s.

ExampLEs. (i) If p satisfies
3) o+ HA(S, u)du < oo,

then Theorem 3.1 [1] yields that p is GCI.
(ii) If p satisfies

(4) (1, 5) = E|Z(r) — Z(s)]*

where {Z(f)},.s is a continuous Gaussian process, then Lemma 2.1 [13] implies
that p is GCI.

CorOLLARY 1. Let p be GCI and let y be a Radon probability on Lip (p) satisfy-
ing (1) and (2). Then p satisfies the central limit theorem on C(S).

Proor. By Theorem 1, we need only show that the natural inclusion i:
Lip (o) — C(S) is of type 2. Therefore let {x;} = Lip (o) satisfy 3] ||x;]|,> =
C < co. To show {37, ¢, x;} converges in C(S) a.s., it is enough to show that
{>r, »,x;} converges in C(S) a.s., where {7,} is a sequence of independent stand-
ard normal random variables (see Corollaries 3.3 and 4.4 in [5]). We also have

E| X5 75[x,(0) — x;)]1 = 25 [x,(0) — x,(5)°
= D llxllle’, s) = Co’(r, ) .
Hence, since p is GCI, a separable version of X(z, w) = >}, n;(w)x,(¢) has con-
tinuous sample paths a.s. But now Theorem 4.1 [8] implies that the series
5.1 m;%,; converges in C(S) a.s. []

In the first draft of this paper it was erroneously claimed that Corollary 1,
applied to the case where {+ H,}(S, ) du < co, is the Jain-Marcus central limit
theorem. However Lip (o) is rarely separable. Hence if u is a probability
measure on C(S) such that u(Lip (o)) = 1, it may not induce a Radon measure
on Lip (p). The error was noticed by N. Jain, who mentioned it at a conference
in Oberwolfach (July, 1975).
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The gap is filled below. The proof is due to J. Hoffmann-Jgrgensen
(Oberwolfach, July, 1975).

THEOREM 2 (Jain-Marcus [9]). Let p be a d-continuous metric on S satisfying
(3). Also, let p be a Borel probability measure on C(S) satisfying:

(a) § [Ixl,°p(dx) < oo

(b) § xp(dx) = 0
and

(©) p(Lip () = 1.

Then p satisfies the central limit theorem on C(S).

Proor. Since {,+ H (S, u) du < oo, there exists a continuous function g on
(0, @], where a = sup, ,.5 p(s, t), such that 0 < g(u) 1 co as u | 0 and .+ H,(S,
u)g(u) du < oo. Now put h(2) = (¢ g(u/2) du and p'(s, ) = h(o(s, t)). Then p’
is a d-continuous metric satisfying:

®) For ¢ >0 thereexists 0 >0 suchthat p(s,7) <J implies
(s, 1) = eo'(s, 1) -

Hence for a = 0, B,(a) = {x € Lip (p); ||x||, < a} is compact in Lip (¢’). But
then since p(B,(n)) 71, ¢ is supported on a separable subspace of Lip (o’), and
hence is Radon on Lip (o’).

Note it is easily seen that N,(¢) = N,(h~'(2¢)/2), and hence .+ H:(S, u) du <
co. Therefore Corollary 1 applies to Lip (0’). [J

Let us return to the general case. Now for {x,} < E satisfying }; ||x,]|* < oo,
2. &x; defines a cylinder set measure of type 2 (for the definitions of type,
order and Radonifying see [15]). Hence if v is a 2-Radonifying, v is of type
2-Rademacher. Now for Banach spaces E and F, v: E — F is 2-Radonifying if
and only if v is 2-absolutely summing (see Theorems 3.4 and 3.9 [15]). By Theo-
rem4.3 [12] any continuous v from an &, -space to a ., -space (1 < p < 2) is 2-
absolutely summing. But any v: %, — L,, 2 < p < oo is type 2-Rademacher,
since L, is a G,-space (see discussion preceding Theorem 3.1 [6]). Hence we have

CoOROLLARY 2. If u is a Borel probability on C[0, 1] satisfying (1) and (2) then
 satisfies the central limit theorem on L,[0, 1] for any 1 < p < oo.

REMARK. In [14], G. Pisier proves that if G is a type 2 space, then the law
of the iterated logarithm holds for all mean zero Radon probability measures
(on G) with finite variance. He also points out that the techniques of this paper
then allow you to obtain the log log law of J. Kuelbs [10], [11] on C[0, 1]. It is
of course clear that Theorem 2 and Corollary 2 remain valid if one replaces
“the central limit theorem” by the “law of the iterated logarithm.”
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