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A GAUSSIAN CORRELATION INEQUALITY
FOR SYMMETRIC CONVEX SETS*
By Loren D. PiTT
University of Virginia

If n(x) is the standard normal density on R?and if 4 = —4 and B =
— B are convex subsets of R? then

§ 40z nx)d2x = (§ 4 n(x) d2x)(§ 5 n(x) dzx) .

1. Summary and introduction. A function A(x) defined for x € R* is called
quasi-concave if for any x;,, x,eR* and 0 <2< 1, h(Ax, + (1 — )x,) =
min {A(x,), A(x,)}. Our main result is

THEOREM 1. Let f(x) and g(x) be even smooth quasi-concave functions of x € R*.
Suppose also that the gradients Vf(x) and Vg(x) never vanish for x # 0. Then for
any nonnegative ¢(x) = ¢(|x|) that is a decreasing function of |x|,

(1.1) Va2 Vf(x) - Vo(x)¢(x)&x = 0,
provided only that the integral converges. Here Vf(x) - Vg(x) denotes the scalar
product 333 f,i(x)g,i(x).

From Theorem 1 we deduce

THEOREM 2. Let n(x) = (2m)~' exp(—|x|*/2), x.€ R?, denote the standard normal

probability density on R*. If A and B are balanced (i.e., A= — 4 and B = —B)
convex subsets of R® then
(1.2) §405 n(x) &x = (§4 n(x)d'x)(§ 5 n(x) d’x) .

Theorem 2 and the more detailed Theorem 3 represent improvements of the
earlier results of Khatri [5], Sidak [10, 11] and others. See especially [4],
Section 3, and the references given there.

Our proof of Theorem 1 does not seem to generalize to R* with n > 2.
However, if (1.1) is true in R* then the deduction of Theorem 2 is also valid in
R* with n > 2.

I wish to thank Professor M. Perlman of the University of Chicago for refer-
ences on logarithmically concave functions.

2. Proof of Theorem 1. Because f(x) is even and quasi-concave, the set
F(2) = {x: f(x) = 4} is for each 1 a closed convex balanced subset of R>. More-
over from the assumption that Vf{(x) = 0 for x = 0 it follows whenever {0} = F(2)
that the boundary F’(2) of F(2) is either empty or F'(2) = {x: f(x) = 4} is a
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smooth balanced convex curve in R®’. Similar comments hold for the sets
G(p) = {x: 9(x) = ¢} and G'(p) = {x: 9(x) = p}.

For each x = 0 we denote by #(x), 0 < 6(x) < =, the angle between the vectors
Vf(x) and Vg(x). Thus cos 8(x) = 7,(x) - 7,(x) where »,(x) = —Vf(x)||Vf(x)||~* is
the outward pointing normal to F'(f(x)) at x and »,(x) = —Vg(x)||- Vg(x)|| is
the normal to G’(g(x)) at x. Set 4 = {xeR*:in < 0(x) < =} and for xe 4
define y = a(x) to be the first point of G’(g(x)) which can be reached from x by
traversing the curve F’(f(x)) in the counterclockwise direction (see Figure 1).

G'(g(x))

F'(£(x))

FiG. 1.

Elementary geometric considerations now show for each x € A that:
(2.1) |yl = |x|  and hence ¢(x) < ¢(|y])-
(2.2) The angle 6(y) is acute with cotf(y) = —cotf(x) > 0.

Define A4, = {xe A: 6(a(x)) + 0} and consider the map ®: R* - R* with
D(x) = (f(x), 9(x)). The Jacobi determinant of @ is

(23) Mo()| = 1f2(¥)9a,(x) = f(x)92, ()]

= [Vf(x)| [Vg(x)| sin (6(x)) -
For x € 4, ®(a(x)) = ®O(x) and thus O(4 — 4,) = O(a(4 — A,)) contains only
critical values of the function ®. By the theorem of Sard and Brown (e.g., [6]),
(4 — A,) has zero Lebesgue measure. But (2.3) shows |J/y(x)| # O for xe 4
and hence 4 — A, has zero Lebesgue measure.

When restricted to A4, the function a(x) is easily seen to be continuous.
Applying the chain rule to the identity ®(a(x)) = @(x) we find a(x) is differ-
entiable on 4, and its Jacobi determinate |/ (x)| satisfies
(2.4) Va(*)| = Vo(x)[ [Ja(x(x))| ™" -

We can now prove the inequality (1.1). The sets 4, and a(4,) are disjoint.

Because Vf(x) - Vg(x) = O unless x € 4, and because 4 — A, has measure zero,
(1.1) will follow if we show

2-3) $4, V(%) - VI()P(x) @'x + Saiay VA(X) - Vo(x)$(x) d’x = 0 .
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Using in order (2.4), (2.3), (2.2) and (2.1) we have

Yo Vf(X) - Vo(x)$(x) d’x = §, Vfla(x)) - Vg(a(x))p(a(x))l/o(x)|dx
= V4, VA(@(x)) - Vg(a(x))$((x))Vo(x)| [Jo(x(x))| ™ &
= J4, c0t (0(a(x))p(a(x))Vo(x)| &
2 — 4, 0t (0(x)$(x)|Jo(x)| &*x

— 4y V(%) - Vo(x)p(x) &x

thus proving Theorem 1.

ComMENT. The inequality (1.1) may be extended to a wider class of functions
f(x) and g(x) than quasi-concave. Following Sherman [9], we bring in the norm
||u]|, = max {||u||,, ||u||} on bounded integrable functions and the || ||, closed
convex cone & generated by the indicator (= characteristic) functions 1,(x) of
balanced convex sets 4 C R*. Sherman showed & is closed under convolution.
More recently Davidovic, Karenbljum and Hacet [3], Prékopa [7], [8] and others
have shown that the convolution # x v of two logarithmically concave functions
is also log concave. This shows that indicator functions of balanced convex
sets may be approximated by smooth log concave functions f(x) with Vf(x) + 0
for x # 0. Since even log concave functions are also quasi-concave we may
state

CoROLLARY 1. The inequality (1.1) holds for smooth Sherman functions f and g
in &.

A more detailed exposition of the proof of Theorem 1 may be found in
Antell [2].

3. Proof of Theorem 2. We begin by stating a more detailed and general

theorem. Let the random vector (X, ---, X,, Y;, ---, Y,) be normally distri-
buted with mean zero and covariance matrix £ where
Z — <211 Zl2>
I Zy
and I, = (EX,X;), 2, = (EY,Y;)and Z,, = (EX,Y;). Set X = (X,, - - -, X,)and
Y = (Y, ---,Y,) and for balanced convex subsets 4 and B of R" set

p(Z) =P{XeA; YeB}.
For each 2, 0 < 2 < 1, the matrix |

ZZ e < Z11 2212)
ALE 2y
is also a normal covariance matrix and we may consider the probablllty P(Z)
as a functionof 2, 0 < 2 < 1.

THEOREM 3. Under the above conditions, if rank (ZH) < 2 then p(X,) is an in-
creasing function of 2, 0 < 2 < 1.
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REMARKS. The probabilities P{X e A} and P{Y € B} do not depend on 2.
Moreover, lim,_, p(2,) = P{X € A}P{Y € B}. Thus Theorem 3 implies

(3.1 P{Xe A; Ye B} = P[Xe A)P[Y e B} .

If one takes n = 2 and X,, = X, = X,; = I, then (3.1) becomes (1.2) and we see
that Theorem 2 is a special case of Theorem 3.

The proof of Theorem 3 is conceptually simpler in the special case when
n=2and X, = X, = 3,, = I. We advise considering only this special case on
the first reading.

Proor. Without loss of generality we may assume rank (Z,;) = rank (2,,) =
n. Then by introducing canonical variates (see [1], Chapter 12), we may further
assume that 2, = X,, = 7 and that X, is diagonal with nonnegative entries. Let
Z, = diag (4, -+-,4,) with 1 = 2, =2, > --- = 0. Since rank (Z,) <2 we
have 4, =2, = --- =4, =0. (

The functions 1,(x) and 1,(y) are both even and log concave. By the results
of Davidovic et al., we may approximate 1, and 1, by smooth even log concave
functions. Thus it suffices to show for arbitrary smooth even rapidly decreasing
log concave functions F(x) and G(y) that the expectation

£) = EF(X)G(Y)

corresponding to the covariance matrix X, is an increasing function of 2,
o<a1g1.

When conditioned on X, X,, Y,, Y, the variables F(X) and G(Y) are inde-
pendent. Moreover,

E[F(X)| X,, X,, Y,, Y;} = E[F(X)| X,, X,}

= f(Xl’ Xz) ’
where
fxss x3) = (2m)="27 § F(x) exp(—§ 13 x;°) dxq - - - dx, ,
and
E(G(Y)| X,, X,, Yy, Y} = E{G(Y)| Yy, Y3}
= g(Yp Yz) )
where
91 ya) = (27)~92§ G(y) exp(—% D2y dys -+ Ay, -
Thus
Z(2) = Ef(X;, X))9(Y1, Yy) .
Now Prékopa [8] has shown that if H(x,, - -+, X, y», - -+, y;) is log concave

then A(x,, -+, x,) = § H(xy, -+, X, Y1» -+ =5 y1) Ay, - - - dy, is log concave. Thus,
both of the above functions f(x,, x,) and g(y,, y,) are log concave.
The conditional density of (Y;, Y,) given (X, X;) = (x,, x,) is

. — T2 1 — (A1) _g (Myx; —y)? .
P8 % 553 1) = Tl3es [25(1 — (A1 exp{ = G220
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Setting n(x,, x,) = (27)~' exp{—(x,* + x,’)/2} and

9(As X35 X5) = § P(A, X15 X35 Y15 Y2)9(Y1s Ya) Ay dy,

we find

Let

and

E(A) = § flx1, x3)9(4, x5, x)n(xy, X,) dx, dx, .
A =¢é', —co < t < 0. Then direct computation gives
0 o ]
5; 9(e', x;, x;) = < 3’:1 _3—;3 — X; —37]) g(et, x,, xy)

J

an easily justified integration by parts yields

(3.2) dit &(e') = § Vf(x1, x,) - Vg(e, xy, x5)n(xy, Xx5) dx, dx, .

Since p(2; x;, X3 1, y,) is log concave in (x,, x,, y;, y,) the results of Prékopa show
that g(e‘, x,, x,) is log concave in (x,, x,). Since n is a radially decreasing
function, Corollary 1 of Theorem 1 implies (d/dt)Z£(e') = 0 and completes the
proof of Theorem 3.
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