A GAUSSIAN CORRELATION INEQUALITY FOR SYMMETRIC CONVEX SETS¹

BY LOREN D. PITT

University of Virginia

If n(x) is the standard normal density on R^2 and if A = -A and B = -B are convex subsets of R^2 then

$$\textstyle \int_{A \cap B} \mathsf{n}(x) \, d^2x \geqq \left(\int_A \mathsf{n}(x) \, d^2x \right) \! \left(\int_B \mathsf{n}(x) \, d^2x \right) \, .$$

1. Summary and introduction. A function h(x) defined for $x \in \mathbb{R}^n$ is called quasi-concave if for any $x_1, x_2 \in \mathbb{R}^n$ and $0 < \lambda < 1$, $h(\lambda x_1 + (1 - \lambda)x_2) \ge \min\{h(x_1), h(x_2)\}$. Our main result is

THEOREM 1. Let f(x) and g(x) be even smooth quasi-concave functions of $x \in \mathbb{R}^2$. Suppose also that the gradients $\nabla f(x)$ and $\nabla g(x)$ never vanish for $x \neq 0$. Then for any nonnegative $\phi(x) = \phi(|x|)$ that is a decreasing function of |x|,

$$(1.1) \qquad \qquad \int_{\mathbb{R}^2} \nabla f(x) \cdot \nabla g(x) \phi(x) \, d^2x \ge 0 \,,$$

provided only that the integral converges. Here $\nabla f(x) \cdot \nabla g(x)$ denotes the scalar product $\sum_{i=1}^{2} f_{x_{i}}(x)g_{x_{i}}(x)$.

From Theorem 1 we deduce

THEOREM 2. Let $n(x) = (2\pi)^{-1} \exp(-|x|^2/2)$, $x \in \mathbb{R}^2$, denote the standard normal probability density on \mathbb{R}^2 . If A and B are balanced (i.e., A = -A and B = -B) convex subsets of \mathbb{R}^2 then

Theorem 2 and the more detailed Theorem 3 represent improvements of the earlier results of Khatri [5], Šidák [10, 11] and others. See especially [4], Section 3, and the references given there.

Our proof of Theorem 1 does not seem to generalize to R^n with n > 2. However, if (1.1) is true in R^n then the deduction of Theorem 2 is also valid in R^n with n > 2.

I wish to thank Professor M. Perlman of the University of Chicago for references on logarithmically concave functions.

2. Proof of Theorem 1. Because f(x) is even and quasi-concave, the set $F(\lambda) \equiv \{x : f(x) \ge \lambda\}$ is for each λ a closed convex balanced subset of R^2 . Moreover from the assumption that $\nabla f(x) \ne 0$ for $x \ne 0$ it follows whenever $\{0\} \ne F(\lambda)$ that the boundary $F'(\lambda)$ of $F(\lambda)$ is either empty or $F'(\lambda) = \{x : f(x) = \lambda\}$ is a

Received June 9, 1976.

¹ Partially supported by DA-ARO-31-124-71-6182 and NSF GP-43011.

AMS 1970 subject classifications. Primary 60G15; Secondary 26A51.

Key words and phrases. Quasi-concave functions, convex sets, correlation inequalities.

smooth balanced convex curve in R^2 . Similar comments hold for the sets $G(\mu) = \{x : g(x) \ge \mu\}$ and $G'(\mu) = \{x : g(x) = \mu\}$.

For each $x \neq 0$ we denote by $\theta(x)$, $0 \leq \theta(x) < \pi$, the angle between the vectors $\nabla f(x)$ and $\nabla g(x)$. Thus $\cos \theta(x) = \eta_1(x) \cdot \eta_2(x)$ where $\eta_1(x) = -\nabla f(x)||\nabla f(x)||^{-1}$ is the outward pointing normal to F'(f(x)) at x and $\eta_2(x) = -\nabla g(x)||\cdot \nabla g(x)||^{-1}$ is the normal to G'(g(x)) at x. Set $A = \{x \in R^2 : \frac{1}{2}\pi < \theta(x) < \pi\}$ and for $x \in A$ define $y = \alpha(x)$ to be the first point of G'(g(x)) which can be reached from x by traversing the curve F'(f(x)) in the counterclockwise direction (see Figure 1).

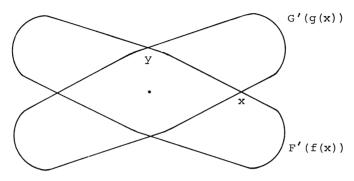


Fig. 1.

Elementary geometric considerations now show for each $x \in A$ that:

$$(2.1) |y| \le |x| \text{and hence} \phi(x) \le \phi(|y|).$$

(2.2) The angle $\theta(y)$ is acute with $\cot \theta(y) \ge -\cot \theta(x) > 0$.

Define $A_0 = \{x \in A : \theta(\alpha(x)) \neq 0\}$ and consider the map $\Phi : R^2 \to R^2$ with $\Phi(x) = (f(x), g(x))$. The Jacobi determinant of Φ is

(2.3)
$$|J_{\Phi}(x)| = |f_{x_1}(x)g_{x_2}(x) - f_{x_2}(x)g_{x_1}(x)|$$
$$= |\nabla f(x)| |\nabla g(x)| \sin(\theta(x)).$$

For $x \in A$, $\Phi(\alpha(x)) = \Phi(x)$ and thus $\Phi(A - A_0) = \Phi(\alpha(A - A_0))$ contains only critical values of the function Φ . By the theorem of Sard and Brown (e.g., [6]), $\Phi(A - A_0)$ has zero Lebesgue measure. But (2.3) shows $|J_{\Phi}(x)| \neq 0$ for $x \in A$ and hence $A - A_0$ has zero Lebesgue measure.

When restricted to A_0 the function $\alpha(x)$ is easily seen to be continuous. Applying the chain rule to the identity $\Phi(\alpha(x)) = \Phi(x)$ we find $\alpha(x)$ is differentiable on A_0 and its Jacobi determinate $|J_{\alpha}(x)|$ satisfies

$$|J_{\alpha}(x)| = |J_{\Phi}(x)| |J_{\Phi}(\alpha(x))|^{-1}.$$

We can now prove the inequality (1.1). The sets A_0 and $\alpha(A_0)$ are disjoint. Because $\nabla f(x) \cdot \nabla g(x) \geq 0$ unless $x \in A$, and because $A - A_0$ has measure zero, (1.1) will follow if we show

$$(2.5) \qquad \int_{A_0} \nabla f(x) \cdot \nabla g(x) \phi(x) d^2x + \int_{\alpha(A_0)} \nabla f(x) \cdot \nabla g(x) \phi(x) d^2x \ge 0.$$

Using in order (2.4), (2.3), (2.2) and (2.1) we have

$$\begin{split} & \int_{\alpha(A_0)} \nabla f(x) \cdot \nabla g(x) \phi(x) \, d^2x = \int_{A_0} \nabla f(\alpha(x)) \cdot \nabla g(\alpha(x)) \phi(\alpha(x)) |J_{\alpha}(x)| d^2x \\ & = \int_{A_0} \nabla f(\alpha(x)) \cdot \nabla g(\alpha(x)) \phi(\alpha(x)) |J_{\Phi}(x)| \, |J_{\Phi}(\alpha(x))|^{-1} \, d^2x \\ & = \int_{A_0} \cot \left(\theta(\alpha(x)) \phi(\alpha(x)) |J_{\Phi}(x)| \, d^2x \\ & \geq - \int_{A_0} \cot \left(\theta(x) \right) \phi(x) |J_{\Phi}(x)| \, d^2x \\ & = - \int_{A_0} \nabla f(x) \cdot \nabla g(x) \phi(x) \, d^2x \, , \end{split}$$

thus proving Theorem 1.

COMMENT. The inequality (1.1) may be extended to a wider class of functions f(x) and g(x) than quasi-concave. Following Sherman [9], we bring in the norm $||u||_* = \max{\{||u||_1, ||u||_{\infty}\}}$ on bounded integrable functions and the $||\cdot||_*$ closed convex cone $\mathscr C$ generated by the indicator (= characteristic) functions $1_A(x)$ of balanced convex sets $A \subset R^n$. Sherman showed $\mathscr C$ is closed under convolution. More recently Davidovic, Karenbljum and Hacet [3], Prékopa [7], [8] and others have shown that the convolution u * v of two logarithmically concave functions is also log concave. This shows that indicator functions of balanced convex sets may be approximated by smooth log concave functions f(x) with $\nabla f(x) \neq 0$ for $x \neq 0$. Since even log concave functions are also quasi-concave we may state

COROLLARY 1. The inequality (1.1) holds for smooth Sherman functions f and g in \mathcal{C} .

A more detailed exposition of the proof of Theorem 1 may be found in Antell [2].

3. Proof of Theorem 2. We begin by stating a more detailed and general theorem. Let the random vector $(X_1, \dots, X_n, Y_1, \dots, Y_n)$ be normally distributed with mean zero and covariance matrix Σ where

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{12}^* & \Sigma_{22} \end{pmatrix}$$

and $\Sigma_{11} = (EX_iX_j)$, $\Sigma_{22} = (EY_iY_j)$ and $\Sigma_{12} = (EX_iY_j)$. Set $X = (X_1, \dots, X_n)$ and $Y = (Y_1, \dots, Y_n)$ and for balanced convex subsets A and B of R^n set

$$p(\Sigma) = P\{X \in A; Y \in B\}$$
.

For each λ , $0 \le \lambda \le 1$, the matrix

$$\Sigma_{\lambda} = egin{pmatrix} \Sigma_{11} & \lambda \Sigma_{12} \ \lambda \Sigma_{12}^* & \Sigma_{22} \end{pmatrix}$$

is also a normal covariance matrix and we may consider the probability $p(\Sigma_{\lambda})$ as a function of λ , $0 \le \lambda \le 1$.

THEOREM 3. Under the above conditions, if rank $(\Sigma_{12}) \leq 2$ then $p(\Sigma_{\lambda})$ is an increasing function of λ , $0 \leq \lambda \leq 1$.

REMARKS. The probabilities $P\{X \in A\}$ and $P\{Y \in B\}$ do not depend on λ . Moreover, $\lim_{\lambda \to 0} p(\Sigma_{\lambda}) = P\{X \in A\}P\{Y \in B\}$. Thus Theorem 3 implies

$$(3.1) P\{X \in A; Y \in B\} \ge P\{X \in A\}P\{Y \in B\}.$$

If one takes n=2 and $\Sigma_{11}=\Sigma_{12}=\Sigma_{22}=I$, then (3.1) becomes (1.2) and we see that Theorem 2 is a special case of Theorem 3.

The proof of Theorem 3 is conceptually simpler in the special case when n=2 and $\Sigma_{11}=\Sigma_{12}=\Sigma_{22}=I$. We advise considering only this special case on the first reading.

PROOF. Without loss of generality we may assume rank $(\Sigma_{11}) = \operatorname{rank}(\Sigma_{22}) = n$. Then by introducing canonical variates (see [1], Chapter 12), we may further assume that $\Sigma_{11} = \Sigma_{22} = I$ and that Σ_{12} is diagonal with nonnegative entries. Let $\Sigma_{12} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $1 \ge \lambda_1 \ge \lambda_2 \ge \dots \ge 0$. Since $\operatorname{rank}(\Sigma_{12}) \le 2$ we have $\lambda_3 = \lambda_4 = \dots = \lambda_n = 0$.

The functions $1_A(x)$ and $1_B(y)$ are both even and log concave. By the results of Davidovic et al., we may approximate 1_A and 1_B by smooth even log concave functions. Thus it suffices to show for arbitrary smooth even rapidly decreasing log concave functions F(x) and G(y) that the expectation

$$\mathcal{E}(\lambda) = EF(X)G(Y)$$

corresponding to the covariance matrix Σ_{λ} is an increasing function of λ , $0 \le \lambda \le 1$.

When conditioned on X_1 , X_2 , Y_1 , Y_2 the variables F(X) and G(Y) are independent. Moreover,

$$E\{F(X) \mid X_1, X_2, Y_1, Y_2\} = E\{F(X) \mid X_1, X_2\}$$

= $f(X_1, X_2)$,

where

$$f(x_1, x_2) = (2\pi)^{-(n-2)/2} \int F(x) \exp(-\frac{1}{2} \sum_{3}^{n} x_j^2) dx_3 \cdots dx_n$$

and

$$E\{G(Y) \mid X_1, X_2, Y_1, Y_2\} = E\{G(Y) \mid Y_1, Y_2\}$$

= $g(Y_1, Y_2)$,

where

$$g(y_1, y_2) = (2\pi)^{-(n-2)/2} \int G(y) \exp(-\frac{1}{2} \sum_3^n y_j^2) dy_3 \cdots dy_n$$

Thus

$$\mathscr{E}(\lambda) = Ef(X_1, X_2)g(Y_1, Y_2).$$

Now Prékopa [8] has shown that if $H(x_1, \dots, x_k, y_1, \dots, y_l)$ is log concave then $h(x_1, \dots, x_k) = \int H(x_1, \dots, x_k, y_1, \dots, y_l) dy_1 \dots dy_n$ is log concave. Thus, both of the above functions $f(x_1, x_2)$ and $g(y_1, y_2)$ are log concave.

The conditional density of (Y_1, Y_2) given $(X_1, X_2) = (x_1, x_2)$ is

$$p(\lambda, x_1, x_2; y_1, y_2) = \prod_{j=1}^{2} \left[2\pi (1 - (\lambda \lambda_j)^2) \right]^{-1} \exp \left\{ -\frac{1}{2} \frac{(\lambda \lambda_j x_j - y_j)^2}{1 - (\lambda \lambda_j)^2} \right\}.$$

Setting $n(x_1, x_2) = (2\pi)^{-1} \exp\{-(x_1^2 + x_2^2)/2\}$ and

$$g(\lambda, x_1, x_2) = \int p(\lambda, x_1, x_2; y_1, y_2) g(y_1, y_2) dy_1 dy_2$$

we find

$$\mathscr{E}(\lambda) = \int f(x_1, x_2) g(\lambda, x_1, x_2) \mathsf{n}(x_1, x_2) \, dx_1 \, dx_2 \, .$$

Let $\lambda = e^t$, $-\infty < t \le 0$. Then direct computation gives

$$\frac{\partial}{\partial t} g(e^t, x_1, x_2) = \left(\sum_{j=1}^2 \frac{\partial^2}{\partial x_j^2} - x_j \frac{\partial}{\partial x_j} \right) g(e^t, x_1, x_2)$$

and an easily justified integration by parts yields

(3.2)
$$\frac{d}{dt}\mathscr{E}(e^t) = \int \nabla f(x_1, x_2) \cdot \nabla g(e^t, x_1, x_2) \mathsf{n}(x_1, x_2) \, dx_1 \, dx_2 \, .$$

Since $p(\lambda; x_1, x_2; y_1, y_2)$ is log concave in (x_1, x_2, y_1, y_2) the results of Prékopa show that $g(e^t, x_1, x_2)$ is log concave in (x_1, x_2) . Since n is a radially decreasing function, Corollary 1 of Theorem 1 implies $(d/dt)\mathcal{E}(e^t) \geq 0$ and completes the proof of Theorem 3.

REFERENCES

- [1] Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
- [2] Antell, R. H. (1975). The normal probability content of convex symmetric sets. Master's thesis, Univ. of Virginia.
- [3] DAVIDOVIC, Ju. S., KORENBLJUM, B. I. and HACET, B. I. (1969). A property of logarithmically concave functions. Soviet Math. Dokl. 10 477-480.
- [4] DAS GUPTA, S., EATON, M. L., OLKIN, I., PERLMAN, M., SAVAGE, L. J. and SOBEL, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. *Proc. Sixth Berkeley Symp. Math. Statist. Prob.* 2 241-264. Univ. of California Press.
- [5] KHATRI, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38 1853-1867.
- [6] MILNOR, J. (1965). Topology for the Differentiable Viewpoint. Univ. Press of Virginia, Charlottesville.
- [7] PRÉKOPA, A. (1971). Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32 301-316.
- [8] PRÉKOPA, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 335-343.
- [9] SHERMAN, S. (1955). A theorem on convex sets with applications. Ann. Math. Statist. 26, 763-766.
- [10] ŠIDÁK, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 626-633.
- [11] Šidák, Z. (1968). On multivariate normal probabilities of rectangles. Ann. Math. Statist. 39 1425-1434.

DEPARTMENT OF MATHEMATICS SWAIN HALL EAST, Rm. 317 INDIANA UNIVERSITY BLOOMINGTON, INDIANA 47401