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CONVERGENCE RATES AND r-QUICK VERSIONS OF THE
STRONG LAW FOR STATIONARY MIXING SEQUENCES!

By Tz LEUNG LAl

Columbia University and University of
Hlinois at Urbana-Champaign

In this paper we prove a theorem on the convergence rate in the
Marcinkiewicz-Zygmund strong law for stationary mixing sequences.
Our result gives the r-quick strong law and the finiteness of moments of
the largest excess of boundary crossings for such sequences.

1. Introduction. In[1], Baum and Katzhave proved the following well-known
theorem for partial sums S, of i.i.d. random variables X;, X,, ---: Let & > 4,
pa > 1, and assume that EX, = 0if « < 1. Then

1.1) E|X||? < 0o = 37 nP* 72 P[sup;, j7°|S;| = €] < o0 forall ¢>0
= Ny P[|S,| = en*] < oo for some ¢>0.

This result is related to the convergenée rate in the Marcinkiewicz-Zygmund
strong law of large numbers and generalizes an earlier theorem of Hsu and
Robbins [5] and Erdds [4] who considered the special case « = 1 and p = 2.

Series of the type considered in (1.1) are related to the complete convergence
criterion for sample sums of Hsu and Robbins [5] and the r-quick convergence
criterion of Strassen [15] and Lai [11]. We say that a sequence Z, of random
variables converges to 0 r-quickly (r > 0) if

(1.2) E(sup{n=1:|Z,| 2 ¢})" < forall ¢e>0 (sup@ =0).

Obviously Z, — 0 r-quickly for some r > 0 implies that Z, — 0 a.s. The equiva-
lence (1.1) leads to the following r-quick version of the Marcinkiewicz-Zygmund
strong law (cf. [3] and [11]):
(1.3) ElX||? < o0 = n=S,— 0 (pa — 1)-quickly

=n—*X,—0 (pa — 1)-quickly.

The above strengthened form of the law of large numbers has useful appli-
cations in the field of sequential analysis in statistics (cf. [9], [10], [11]). In
view of such applications, it is desirable to extend (1.1) and (1.3) from the i.i.d.
case to other dependent cases. Motivated by applications to sequential analysis
of time series, we shall study in this paper the important case where X}, X,, - ..
form a stationary sequence satisfying certain mixing conditions. We are able to
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prove an analogue of (1.1) and thereby extend the r-quick strong law (1.3) to
such sequences. Our main results are stated in Theorem 1 of Section 2 and
Theorem 2 of Section 4. It is interesting to note that in the absence of mixing
conditions, even when the zero-mean stationary sequence X, is assumed to be
ergodic and uniformly bounded, the ordinary Marcinkiewicz-Zygmund strong
law need not even be true and one may have P[lim,__ n=*S, = 0] = 0 for all
a < 1 in spite of the uniform boundedness of the random variables (cf. [7, pages
135-137]). Some applications of the r-quick strong law for stationary mixing
sequences will be given in Section 5.

2. The moment criterion and other equivalent statements of the r-quick
version of the strong law for stationary mixing sequences. Let X, X,, --. bea
stationary sequence of random variables. We shall assume that the sequence X,
satisfies the classical mixing conditions of Ibragimov (i.e., ¢-mixing) or of
Rosenblatt (i.e., strong mixing). The sequence X, is said to be p-mixing if ¢ is
a nonnegative function of the positive integers such that lim,_ ¢(n) = 0 and
for each k and n,

(2.1) |P(E, N E,) — P(E)P(E,)| < ¢(n)P(E,)

for all E, e ZZ(X,, -+, X,) and E, € (X, > Xyynsr * - ). Without loss of gen-
erality (cf. [2], page 166), we can assume that

(2.2) 12 () 2 0(2) = -

The sequence X, is said to be strong mixing if

(2.3) sup |P(E, N E)) — P(E)P(Ey)| = p(n) |0 as n— oo,

where the supremum in (2.3) is taken over all E e Z(X,, -+, X)), E, €
B (Xyins Xiynsr» -+ ) and over all k = 1,2, .... The function p(n) in (2.3) is

called the mixing coefficient.

Theorem 1 below gives the analogues of (1.1) and (1.3) for ¢-mixing and
strong mixing sequences. As we are primarily interested in events of large
deviations, the mixing condition (2.1) or (2.3) can help estimate their joint
probabilities only when such events are remotely separated. To handle events
of large deviations which are not too far apart, we need to reinforce the mixing
condition by requiring that the bivariate probabilities of random variables which
are sufficiently far apart decrease faster than the univariate tail probabilities, i.e.,

There exists 5> 1 and a positive integer m such that
2.4) as x-—oco,
SUPisw P > %, |X,] > x] = O(PA|X,| > x]) .
Condition (2.4) is obviously satisfied with 3 = 2 when the random variables X,
are independent, or more generally are m-dependent, and so (2.4) can be re-

garded as a property of a sequence which is asymptotically independent in some
sense. This condition, however, is also satisfied by sequences which are not
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asymptotically independent. For example, if X, is a stationary Gaussian sequence
with zero mean and unit variance and lim sup,_,, [Cov (X;, X,)| < 1, then it is
easy to see that (2.4) holds. We shall discuss more about this condition in
Section 4 and also drop it by imposing instead a moment condition (on X;)
which is just slightly stronger than the weakest possible moment condition under
(2.4). When a is sufficiently large, the condition (2.4) alone in fact suffices to
give the desired conclusions without the mixing condition (2.1) or (2.3).

THEOREM 1. Let X,, X,, - - - be a stationary sequence such that (2.4) holds. Let
S”=X1—|—---—|—-X”(S(,:X0:0). :

(i) Suppose p > 0 and pa = max {(fp + 1), B}/(8 — 1), where B is as given in
(2.4). Then a > 1 and the following statements are equivalent:

(2:5) X[ < oo
(2.6) ¢ nP*~? Plmax;, |S;| = en*] < oo

for all (or equivalently for some) ¢ > 0;
(2.7) L7 nm 7 P[sup;z, J7%|S;| 2 €] < oo

for all (or equivalently for some) ¢ > 0;
(2.8) n=S, — 0 (pa — 1)-quickly,
(2.9) n~°X, — 0 (pa — 1)-quickly;
(2.10) E{supaz (|Sy] — en)}r=/* < oo

for all (or equivalently for some) &> 0;
(2.11) E{sup,-, (|X,| — en*)}P*=1/* < o0

for all (or equivalently for some) ¢ > 0;
(2-12) 2 nP T P[sUp;a, JTU Xy Z 6] < oo

for all (or equivalently for some) ¢ > 0,
(2.13) ¢ nP*~? Plmax;, |X;| = en®] < oo

for all (or equivalently for some) ¢ > 0.
(ii) Suppose p =2, a >} and pa < (Bp + 1)/(B — 1). Assume further that
the sequence X, is ¢-mixing such that ¢ satisfies
(2.14) o(n) = O(n~?% as n— oo for some 6 > max{p/(p— 1),
(Bp + 2)(p — 2)/Qap(p — 1))} .
Moreover, when a < 1, assume that EX, = 0. Then the statements (2.5), (2.6),
(2.7), (2.8), (2.9), (2.10), (2.11), (2.12), and (2.13) are still equivalent.
(iii) Suppose p > 2, a > 4 and pa < (Bp + 1)/(B — 1). Assume further that
the sequence X, is strong mixing with mixing coefficient p(n) which satisfies
(2.15) o(n) = O(n~? as n— oo for some 6 > max{p/(p — 2),
Bp + 2)/(6 — 1), (pa + 1)/(8 — 1)}
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Moreover, when a < 1, assume that EX, = 0. Then the conclusion of (ii) still
holds.

3. Proof of Theorem 1. The most difficult part of the proof of Theorem 1
lies in showing (2.5) = (2.6) under the assumptions of (ii) and (iii). This will
be given in Lemmas 1 and 2. In the i.i.d. case, the proof of this implication
by Baum and Katz is based on symmetrization and the truncation method of
Erdos (cf. [1], [4], [8]) and effectively exploits the higher moments of the partial
sums of the truncated random variables. For example, in Erdds’s original proof
for the case @ = 1 and p = 2, he computes ES,*, where S, is the nth partial sum
of the appropriately truncated variables with the truncation depending on n. This
leads to rather involved estimates for higher p’s (cf. [8]), and carrying these
delicate estimates over to the general mixing case of Theorem 1 is a formidable
task. By a different approach based on a stopping time technique, Y. S. Chow
and I have recently found a considerably simpler proof in [3] and our method
does not involve any complicated moment estimates. Unforutnately our stopping
time technique depends very heavily on the i.i.d. structure. While each of these
approaches separately does not seem to work for the general mixing case, a com-
bination of certain refinements of both methods works and it constitutes the main
idea of the proof of Lemmas 1 and 2. The proof of (2.5) = (2.6) under the as-
sumption of Theorem 1 (i) is much easier and is given in Lemma 3.

LeEMMA 1. Under the assumptions of Theorem 1 (ii), if (2.5) holds, then (2.6)
holds for all ¢ > 0.

PROOF. Assume that (2.5) holds. Without loss of generality, we can assume
that ¢ satisfies (2.2). We shall first consider the case p > 2. In view of (2.14),
we can choose 1 > 0 > (p + 2)/(Bp + 2) such that

(3.1) Df nrAmg([nei-h]) < oo .

We note that since pa < (Bp + 1)/(B — 1), a(1 — 9) < 1. Take a positive integer
k such that

3.2) kp(a — %) > pa — 1.
Let ¢ > 0. We shall now estimate P[max;_, |S;| = en®].

For fixed n, define ¢ = inf{j = 1:|S;| = en*/(2k)}. Let S, ; = X;\y + -+ +
X,,; denote the delayed sum. We note that for i = 1, ..., n, on the event
[max,_, |S,;| = en*] N [t = i], if maX,;cppaa-07|Siy,;] < en*/(2k), then since
max;g,_, |S;| < en®/(2k), we must have max,_;., |S; i (naa-ay;| = en*(l — k7).
Hence

P[max;, |S;| = en”]
(3'3) é Z?=1 P[T =1, max, < <ina—87] lSi—l,j} > 5”“/(21()]
+ Xia Plr = i, maxyg; g, [Simystaan-on,g| Z en*(l — k7]
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By the -mixing condition (2.1) and stationarity,
(3.4) 2io Plr = i, maX,g;q, IS;—14pmaa-07,;] = en*(1 — k7]
< X Ple = i){P[max;, |S;] = en*(1 — k)] + ¢([n**="])} .
Let X;' = X; Iz ;i<ena/caim> where m is as given in (2.4), and let S} ; =
X+ -+ XS = X+ + X and Si'(m) = X + Xop1 + Xoyr + -+ -
+ X!;_ymy1- We note that since a(1 — 9) < 1,
2i Pl = i, maX,ggppan-an [Simq ;| > en®[(2k)]
< P[max,e,, X, 2 en/(4km)]
(3-5) + Dt PImax,gjcrpaa-an [Sioy ;| > en®/(2k)]
< 2nP[|X,| = en®[(4km)]
+ nmP[max; ,aa-a7 |S;(m)| > en*[(2km)], by stationarity
= 2nP[|X,| = en®/(4km)] 4+ O(n't2e1=0=fpasy
To see the last relation above, we note that in order that max;_ ,«a-s7|S,;/(m)| >
en®/(2km), at least two of the summands X’ must exceed en®’/(4km) in absolute
value since the absolute value of each summand X’ is less than en*/(4km) and

there are only [n*?~?] such summands. This type of agrument is due to Erdds
[4]. Hence

PIma; gqpea-on |S;/(m)| > en®/(2km)]
(3.6) < (G sups PIIXG| > en®[(4km), |X| > en*?[(4km)]
= O(n*1-P|X|| > en*’/(4km)]) by (2.4)
= O(n**1-9-fred) by the Markov inequality.
From (3.3), (3.4) and (3.5), it follows that
P[max,, |S;| = en*]
(3.7) < P[r < nl{P[max,, IS, = en*(1 — k)] + o([n*"~"])}
+ 2nP[|X,| = en®/(4km)] + O(n**t220=0-fred)
Repeating the same argument as before, we obtain that forv =1, ..., k — 2,
P[max,, |S;| = en*(1 — vk™)]
(3-8) < P[r < n]{P[max,g, |S;| = en*(1 — (v + Dk7)] + o([n**="])}
+ 2nP[|X,| = en®[(4km)] 4 O(n'*t3x1==Frady
Since P[max,., |S;| = en*k~'] < P[c < n], it follows from (3.7) and (3.8) that
P[max; g, |S;| = en’]
(3.9) < PHr < n] + kP[r < n]p([n**="])
+ 2knP[|X,| = en*[(4km)] 4 O(n**?x1=91=fpad)

We can assume that EX, = 0 without loss of generality since E|S,| = o(n®)
when a > 1 and by hypothesis EX; =0 when a« < 1. Since |EX,X,| =<
2EIX, ) {p(k — 1))#=2/7 for k > 1 (cf. [2], page 170), Dz, [EX,X,| < oo by
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(2.14), and so
(3.10) ES?*~ o'n  where o*=EX?+23)5v,EX X, <
(cf. [2], page 172). By a theorem of Ibragimov ([6], page 361), the finiteness
of E|X,|? then implies that E|S,|» < Mn*”* for some M > 0, and so by stationarity,
(3.11) E|S; ,|? < Mn*? forall i=1,2,.-- and n=1,2,....
Since p > 2, it follows from (3.11) and a theorem of Serfling (cf. [14], Corol-
lary B1) that
(3.12) E max,, |S;|? = O(n*7?) .
Therefore by the Markov inequality,
(3.13) P[r < n] = P[max,, |S;| = en®[(2k)]
< (2k/(en)PE max,, |S,[? = O(n?r=<) .

In view of (3.2), it follows that ;3 n?*~?P¥[r < n] < oo. Furthermore, by (3.1)
and (3.13),

L nr*Ple < njp([n?7"]) < oo .

Noting that § > (p + 2)/(Bp + 2), Y5 nire-d+ataa-t-ppead) £ oo, Since E|X;|? <
o0, )¢ nP*~'P[|X,| = en®/(4km)] < oco. Hence the inequality (3.9) implies that
(2.6) holds. ,

We now consider the case p = 2. Let 1 > 0 > (p + 2)/(Bp + 2) as before.
By (2.14),

(3.14) 27 nY(log n)*o([n*=9]) < oo .

By stationarity and a theorem of Serfling (cf. [14], Corollary A3.1), (3.10)
implies that

(3.15) Emax;, |S;|* = O(n(log n)*) .
The rest of the proof is then similar to that before.

LEMMA 2. Under the assumptions of Theorem 1 (iii), if (2.5) holds, then (2.6)
holds for all ¢ > 0.

PROOF. Assume that (2.5) holds. To prove (2.6), we can assume as in Lemma
1 that EX, = 0 without loss of generality since E|S,| = o(n*) when a > 1. We
first note that ‘

(3.16)  ES,)~onm  where o' = EX} + 2 Y5 ,EX,X, < co.

To see this, since |[EX, X;| < 10(E|X,|?)**{o(k — 1)}»-2/? for k > 1 (cf. [13], page
82) and p(n) = O(n~?) with @ > p/(p — 2) by (2.15), X7, |EX,X,| < co. Hence
(3-16) follows (cf. [2], page 172).

We now modify the proof of Lemma 1 to the present strong mixing case. By
(2.15), p(n) = O(n=?) with & > (Bp + 2)/(f — 1) and therefore we can choose &
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such that 1 > 6 > (p + 2)/(Bp + 2) and

(3.17) T wetp([n<19]) < oo .

Since pa < (Bp + 1)/(B — 1), (1 — 8) < 1. Take a positive integer k such that
(3.18) kQa — 1) > pa — 1.

Let ¢ > 0 and define = and S, ; as in the proof of Lemma 1. We note that
relation (3.3) still holds, and in place of (3.4), we now have

(3.19) i1 Pt = i, maX,g;g, [Sioyiaa-a,i| = en*(1 — k71)]
< Bt Ple = iP[Max,g;.,|S;| = en*(1 — k] + no([n=i=27).
Also relation (3.5) still holds. By (3.3), (3.5) and (3.19), we obtain in place of
(3.7) the following inequality:
P[max;y, |S;| = en°]
(3.20) < P[r < n]P[max;_, |S;| = en*(1 — k7Y)]
+ np([n**=2]) + 2nP[|X,| = en®/(4km)] + O(n*+2e-0-ppad)

Repeating the same argument as in Lemma 1, this leads to
P[max;_, |S;| = en®]
(3.21) < PHc < n] + knp([n=e-"))
+ 2knP[|X,| = en®[(4km)] 4+ O(n**2x(-8-frad)
By stationarity and Serfling’s theorem (cf. [14], Corollary A3.1), (3.16) implies
that E max;., S;> = O(n(log n)?). Hence by the Chebyshev inequality,
(3.22) Pe < ] = Pmax;, |S;] = en*/(2K)]
= O({n~?*tY(log n)*}*) .
From (2.5), (3.17), (3.18), (3.21) and (3.22), (2.6) follows easily.

LEMMA 3. Let p>0,a>1. Let X, X,, .- bea stationary sequence such that
(2.4) holds with § satisfying pa = (Bp + 1)/(B — 1). If (2.5) holds, then (2.6) holds
foralle > 0.

Proor. Let 0 = (pa + 1)/(Bpa). Since pa = (Bp+ 1)/(8 — 1), (a — 1)/a = 0.
Let Xj’ = XjI[lXj|<en“/(2m)]’ Sa', = Xl’ + i+ Xj, and Sj’(m) = Xl’ + X:n+l + .-
+ X{;_1ms1» Where m is as given by (2.4). By stationarity, we have

P[max;g, |S;| = en”]
(3.23) < P[max;g, |X;| = en*/(2m)] + P[max,g, |S;'| = en”]
< nP[|X,| = en*/(2m)] + mP[max;, |S;/(m)| = en*/m] .

We now apply an Erdds-type argument as in (3.6). Since |X,| < en®/(2m) and
n+* < p*, in order that max;, |S,(m)| = en®/m, at least two of the summands
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X,;’ must exceed en*’/(2m) in absolute value. Hence
Plmax,, |S,/(m)| = en/m]
(3.24) < (3) sup,sn P[|Xy| > en®?[/(2m), |X,| > en*?[(2m)]
= O(n*P*[|X,| > en*’/(2m)]) by (2.4)
= O(nree 122 P[|X,| > en*?/(2m)]) ,
since PP-[|X,| > en*’/(2m)] = O(n~'#-V?=?) by the Markov inequality and Spad =
pa + 1. Obviously the finiteness of E|X;|? is equivalent to } ; n?*~'P[|X,| >

en®/(2m)] < oo and also to X5 n?*?-! P[|X,| > en*?/(2m)] < oo. Therefore from
(3.23) and (3.24), (2.6) follows.

LemMA 4. Let Z,, Z,, - - - be an arbitrary sequence of random variables and let
Z, = 0. Then for any positive constants ¢, p, a with pa > 1,
(pa — 1)etre—vie (o tpa=2Plsup, ., k=%|Z,| = 2¢] dt
= E{sup,z (|Z,] — en®)}revre
< (Feve — 1)y Y pa — 1)etra-b/a (@ ype—2P[max, ., |Z,| = §et*] dt;
E(sup {n: |Z,| = en*})* < (pa — 1) {¢ t***P[sup,,, k=*|Z,| = €] dt .
Proor. See [3], page 63.

From Lemma 4, it follows that (2.6) = (2.10) = (2.7) = (2.8) and (2.13) =
(2.11) = (2.12) = (2.9). Since P[max,, |X,| = 2¢n*] < P[max,, |S;| = en“]
and P[sup;.,., j~%|X;| = 2¢] < P[sup;, j~¢|S;| = ¢], it is obvious that (2.6) =
(2.13), (2.7) = (2.12) and (2.8) = (2.9). Since (2.5) = (2.6) by Lemmas 1, 2,
and 3, it remains to show that (2.9) = (2.13) = (2.5). This is done in the
following lemma.

LeMMA 5. Let X,, X,, - -- be a stationary sequence. Let a > 0 and p > 1/a.
Set Xo = 0.

(i) Foralle>0, E(sup {n:|X,|=¢(n/2)*})P* 1= (pa—1) {5 t?*~*P[max
et*] dt.

(ii) If the sequence X, is @-mixing, then

ise | Xi|=

(3.25) 2 nP**P[max;, |X;| = en*] < oo
for some ¢ > 0= E|X||?* < co.

(iii) If (2.4) holds with B/(B — 1) < pa, then the implication (3.25) still holds.

(iv) If (2.4) holds and the sequence X, is strong mixing with mixing coefficient
p(n) = O(n~%) for some 6 > max {1/(pa — 1), (pa + 1)/(B — 1)}, where § is given
by (2.4), then the implication (3.25) still holds.

ReMARK. In Theorem 1 (iii), since 6 > max {p/(p — 2), (pa + 1D} — 1)}

and p/(p — 2) > p/(p — 1/a) > 1/(pa — 1) for a > 4, 6 also satisfies the as-
sumptions of Lemma 5(iv).
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Proor. To prove (i), letting L = sup {n: |X,| = &(n/2)*], we have
ELr*-' = (pa — 1) (& t?**P[L = t] dt
= (pa — 1) (¢ 2 2P[|X,| = ¢(n/2)* for some n = f]dt
= (pa — 1) {7 122 *P[max, ., oy |X,| = et*] dt
> (pa — 1) (¢ t#*-? P[max,, |X,| = et*]dt, by stationarity.
We now prove (ii). Assume that for some ¢ > 0,
(3.26) Yi¢ nPe?P[max;, |X;| = e(n/2)*] < oo .
Then as n — co,
(3.27) n?*-1P[max;, |X;| = en®]
= O(Ziz, kr*—*P[max;g,; |X;| = e(k/2)*]) — 0.
Hence we can choose positive integers n, and v such that
P[max,, |X;| < en*] — (v — 1) = % forall n>n,.
We note that for n > n,,
P[max;z, |X;| = en’]
> P[|X,| = en®, max,_;, |X;| < en®]
(3.28) + P[|X,| = en®, max,,g;c, |X;| < en*] + - -
+ Pl Xyl = en]
Z [np]P[IXy] = en®){P[max;s, |X,| < en] — ¢(v — 1)}
= $[np]PIX] = en].
Therefore from (3.26), > n**~'P[|X,| = en*] < oo and so E|X;|? < co.
We now prove (iii). Let m be as given by (2.4). Then
P[max;g, |X;| = en*]
2= P(Uisistam [[Xmd = en®])
(3.29) > [nfm]PX,| 2 en"]
— Zsi<istnm Pl Xl Z en% | Xp;| = en”]
= [n/m]P[|1X;] 2 en]{1 — O(nPF1[|X,| Z en])} .
The last relation follows from (2.4). Assume that (3.26) holds for some ¢ > 0.
Then by (3.27), nPf-'[|X,| = en*] = o(n'~#=2®*=V) = o(1) since pa = /(8 — 1).
Therefore from (3.26) and (3.29), E|X,|* < co.
We now use a combination of the argument for (ii) and (iii) to prove (iv).

Assume that (3.26) holds for some ¢ > 0. Then (3.27) holds. If pa > 2, then
obviously (3.27) implies that

(3.30) nP[|X, = en*] — 0.

We now show that (3.30) still holds when pa < 2. Since 1 < pa < 2, if we set
r = pa — 1, then 0 < r < 1. Letting v = [n"], we obtain by an argument like
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(3.28) using strong mixing instead of ¢-mixing that
P[max;e, |X;| = en*]
(3.31) 2 [npP[|X)| = en]P[max;, |X;| < en] — o(v — D)}
= in'~"P[|X)| = en*] — 2n*"p([n"] — 1) for all large n.

Since r = pa — 1 and p(n) = O(n~’) for some ¢ > 1/(pa — 1), (3.30) follows
easily from (3.27) and (3.31).

Clearly (3.29) still holds. If B8 =2, then (3.29) and (3.30) imply that
P[max;, |X;| = en*] = (1 + o(1))[n/m]P[|X,| = en*], where m is given by (2.4).
Now assume that 8 < 2andlets = 8§ — 1sothat0 < s < 1. Then asin (3.29),

(332)  Plmax,, X, = en] = [nm]P[|X;] = en]
— Xisi<isin/m] P[|X,,| = en®, |X,,;| = en*].

By the strong mixing condition,

Zgi/lm] 1?[:]{-?[]”3] P[|Xmi| Z ena, Iijl g 5na]

(3.33) < 2mPY|X,| = en] + 2n%o([n°])
= o(nP[|X,| = en<]) + O(n*=*) by (3.30).

Since s = 8 — 1 and (3.30) holds, it follows from (2.4) that
(3.34) XM DI P Xo| Z en®, | Xo,| Z en”]
< WP X, = en®] = o(nP[|X,| = enc]) .
From (3.32), (3.33) and (3.34), we obtain
(3.35)  Plmax,, [X;| = en] = (1 + o())[n/m]P[X,] Z en] + O(m*~*) .

Since 8 > (pa + 1)/(8 — 1), 217 n**~% < oo and so from (3.26) and (3.35), the
implication (3.25) follows.

4. Remarks and a variant of Theorem 1. One of the beauties of the Hsu-
Robbins-Erdos-Baum-Katz theorem (1.1) lies in the fact that the simple moment
condition E|X,|* < co is not only sufficient to guarantee the convergence of the
series ) 5 n**~*P[|S,| = en®], but it is actually necessary as well. Thus in (1.3),
a simple moment condition on X, is both necessary and sufficient for the r-
quick strong law in the i.i.d. case and so the form of the result bears a close
resemblance to the usual strong law. In Theorem 1, we have been able to
generalize this definitive result to stationary mixing sequences by not only ex-
ploiting the mixing property but also using the assumption (2.4) on bivariate
tail probabilities. Assumption (2.4) first was needed in our proof of the necessity
of the moment condition E|X,|? < oo in Lemma 5 (iii) and (iv) where we had
to bound P[max;, |X;| = en*] below by (1 + o(1))nP[|X;| = en*]. It is some-
what reminiscent of the assumptions on bivariate tail probabilities that one usually
finds in the literature on the asymptotic distribution of the maximum of a station-
ary mixing sequence (see, for example, [12] and [16]). Also in our proofs of
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the sufficiency of the moment condition in Lemmas 1, 2, 3, the assumption (2.4)
was crucial to the Erdds-type argument in (3.6) and (3.24) involving the bivariate
tail probabilities. In the following theorem, we shall drop assumption (2.4) and
impose instead a slightly stronger moment condition, i.e., E|X;|? < oo for some
g > p. With this moment condition, we do not need the delicate Erdos-type
argument and can therefore drop assumption (2.4) but still get the (pa — 1)-
quick convergence of n=*S,.

THEOREM 2. Let a > Y and p > lja. Let X,, X,, - - - be a stationary sequence
andlet S, = X, + --- + X,. Assume that E|X||? < oo for some q > max {p, 2},
and in the case a < 1, assume that EX, = 0.

(i) Suppose the sequence X, is strong mixing with mixing coefficient p(n) =
O(n~?) for some 6 > max {q/(g — 2), pg/(q — p)}. Then as n— oo, n=*X, —0
and n==S, — 0 (pa — 1)-quickly. Furthermore the statements (2.6), (2.7), (2.10),
(2.11), (2.12) and (2.13) hold (for all ¢ > 0).

(ii) Suppose the sequence X, is p-mixing such that ¢(n) = O(n~’) for some 0 >

max {g/(g — 1), g(p — 2)/(4a(q — p)) (p — 2)/(2a)}. Then the conclusions of (i)
still hold.

Proor. To prove (i), we need only show that (2.6) holds for all ¢ > 0. (See
Lemma 4 and the discussion following it.) Without loss of generality, we can
assume that EX, = 0. Since § > q/(q — 2) and p(n) = O(n~?%), 37 (o(n))*~""* <
oo and so (3.16) still holds. Since 6 > p and pf/(f — p) < g, we can choose
8 > 0 such that g6 > pand d < (f — p)/6(< 1). Therefore

(4.1) Z;o pra-1-gas < 0.
Also since p(n) = O(n~?) and 1 — 6 > p/6,
(4.2) Zyneelp([n?=7]) < oo

We now argue as in the proof of Lemma 2. Take a positive integer k such that
(3.18) holds. Define r and S, ; as in Lemma 1 and note that the relations (3.3)
and (3.19) still hold. Instead of (3.5), we now have
.y Ple = i, maXygjgpmea-) [Simy 5| > en®/(2k)]
(4.3) < P[max,g;,, |X;| = en*’/(2k)]
< 2nP[|X,| = en*’[(2k)] = O(n*~1%%).
From (3.3), (3.19) and (4.3), we obtain
(4.4) P[max;_, |S;| = en*] < P[r < n]P[max,, |S;| = en*(1 — k7")]
+ np([na(l—ﬁ)]) + O(nl—qaﬂ) .
In view of (4.1), (4.2) and (4.4), the rest of the proof that (2.6) holds is exactly
analogous to that of Lemma 2.

We now prove (2.6) for the p-mixing case in (ii). Again assume that EX, =
0. Since p(n) = O(n~?) and 6 > g/(q — 1), L7 (¢(n))*~?/* < co. Noting that
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g > 2, we obtain by an argument as in Lemma 1 that
(4.5) E max;, |S;|* = O(n??).

This result and the ¢-mixing condition itself enable us to sharpen the argument
we just used for the strong mixing case. Since (¢ — p)/g > (p — 2)/(40a) and
p — 2 < 20a, we can choose 0 < d < 1 such that

(4.6) 1-6>(p—2))Q20a) and 1+ 6> 2p/q.

Take a positive integer k such that (3.2) holds and define ~ and S, ; as in Lemma
1. In place of (4.3), we now make use of (4.5) and the Markov inequality to
obtain that

(4.7) 7y Pt = i, max,_;ppea-a [Si—y ;| > en®/(2k)]
< nP[max,; nea-a |S;| > en®/(2k)] = O(n*+iee-0-ax)
We note that relations (3.3) and (3.4) still hold. From (3.3), (3.4), (4.7), we
have
(4.8) P[max,_, |S;| = en*] £ P[r < n]P[max,_, |S;| = en*(1 — k)]
+ Pe < nlp(In0=0]) + O(i-tees)
Clearly (3.13) still holds, so P[r < n] = O(n?/*~*?). Therefore in view of (4.6)

and (4.8), we can use an analogous argument as that of Lemma 1 to show (2.6)
for the ¢-mixing case.

5. Applications to renewal theory and first passage times for stationary
mixing sequences. Let X, X,, ... be i.i.d. random variables with EX, = ¢ > 0
and E(X;")? < oo. Let S, =X, + .-+ + X, (S, = 0). The elementary renewal
theorem states that

5.1) e P[S, Zc] ~ ple as ¢-—o0o.
Making use of Theorem 2, we can extend (5.1) to stationary mixing sequences.

THEOREM 3. Let X,, X,, --. be a stationary sequence with EX, = p > 0 and
E(X,")! < oo for some q > 2. Assume that the sequence X, is strong mixing with
mixing coefficient p(n) = O(n~?) for some 6 > 2q/(q — 2). Then (5.1) still holds.

Proor. Since the strong mixing property implies ergodicity,

(5.2) lim,  n7'S, =p as.

n—00

Let N(¢) = Xw o fis,<- It follows easily from (5.2) that
(5.3) lim,_, pN(c)/c =1 a.s.

Therefore to prove (5.1), we need only show that the dominated convergence
theorem is applicable. Choose b large enough so that EX,’ > 4u, where we
define X = Xl 4, and S,/ = X/ + .-+ + X,). Let L =sup{n >1:8'<
un/3}. We note that if n > max (L + 1, 3p¢"%), then §, =S,/ > un/3 = c,
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and so
(5.4) Ne) < L+ 3pc.

Since E|X,/|* < oo, it follows from Theorem 2 (where we set p = 2 and @ = 1)
that n-1S,’ — EX,’ (1-quickly). Hence EL < oo and (5.1) follows from (5.2),
(5.4) and the dominated convergence theorem.

For another related application of Theorem 2, consider the first passage time
T(c) = inf{n = 1: S, = c¢}. From Theorem 2, (5.2), (5.4) and the obvious in-
equality T'(c) < N(c) + 1, it follows that

(5.5) ET(c) ~ p'c as ¢— oo

under the assumptions of Theorem 3. A straightforward modification of Theo-
rem 3 also yields the asymptotic behavior of the moments ET"(c) and EN"(c).
Furthermore by using similar ideas, one can obtain asymptotic approximations
for the expected sample sizes of certain sequential procedures in time series
analysis. Details of these statistical problems will be presented elsewhere.
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