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ALMOST SURE APPROXIMATION OF THE ROBBINS-MONRO
PROCESS BY SUMS OF INDEPENDENT
RANDOM VARIABLES!

By GOtz KERSTING
Universitit Gottingen

It is shown in this paper that the sample paths of a Robbins-Monro
process with harmonic coefficients may be approximated by weighted sums
of independent, identically distributed random variables. A law of iterated
logarithm and a weak invariance principle follow from this result.

1. Introduction. Let H,, xe R be a family of probability measures on the
real line and assume that

M(x) = § yH (dy)
exists. Assume that the equation M(x) = 0 has a unique root §. Robbins and
Monro (1951) gave a statistical method for the estimation of §. They chose an
arbitrary random variable X; and defined random variables X, recursively by

Xppn =X, —cn'Y,,

n
n

given X; = x;, ---, X, = x,, is Hx”. Several authors proved convergence of X,

to 0 under suitable conditions. Blum (1954) proved almost sure convergence

of X, to 6 if X, has a finite second moment and the following conditions are

satisfied:

¢ > 0, where Y, is a random variable, the conditional distribution of which,

ConpiITION 1. There are ¢, d € R* such that

M(x)| < ¢ + d|x| forall xeR.
ConDITION 2. M(x)(x — 6) > 0 for all x + 6.
CoNDITION 3. inf; ¢ \,_p <5, |M(x)] > 0 forall 0 < 4, < 6, < oo.
ConDITION 4. §=_ (y — M(x))*H (dy) < 7* < oo for all x ¢ R.

We assume these conditions throughout this paper.

The rate of convergence of (X, — 6) is studied by several authors. An essential
condition in these papers is that a« = M’(f) > 0. If 2ca > 1, then under suita-
ble conditions Chung (1954), Sacks (1958), Fabian (1968) and others proved
asymptotic normality of n#(X, — 6). Révész and Major proved asymptotic nor-
mality of (n/log n)}(X, — 0) in the case 2ca = 1, and almost sure convergence
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of n**(X, — 6) in the case 2ca < 1. Under rather restricted conditions Major
(1973) was able to prove a weak form of the law of the iterated logarithm in
the case 2ca > 1, which was strengthened by Révész (1974). We give a theorem
about the structure of the Robbins-Monro process from which we can, inci-
dentally, obtain results like those mentioned above.

2. Results. We need three other conditions to formulate the main theorem.
ConpITION 5. If x — y in R, then H, — H, in the weak topology.
CONDITION 6. a = M'(6) > 0 and there is a 8 > 0 such that
IM(x) — a(x — )] = O(]x — 0'+)
for x — 6.

For the formulation of the last condition we have to define the “inverse” F,~!
of the distribution function F, of H,: for all z ¢ (0, 1) define

F,%(z) = sup {t| F,(t) < 7},
where F,(t) = H ((— o0, 1)).
ConpITION 7. There is a 7 € (0, 2] such that
$o (F.7(2) — Fy7X(2))* dz = O(|x — 0]")
for x — 4.
Condition 6 is satisfied if M’ (6) exists, as follows from the Taylor expansion.

In this case one may choose 3 = 1. Condition 7 is a statement on the “distance”
between H, and H, as x — 0.

THEOREM 1. Let conditions 1-7 be satisfied for the family (H,), x e R. Then
there exists a probability space (2, U, P) and random variables X, and V (n = 1,
2, -..) on it such that

(i) X, is a Robbins-Monro process belonging to the family (H,). X, may have
an arbitrary distribution with finite second moment.

(ii) V, is a sequence of independent, identically distributed random variables with
distribution H,.

(iii) If ca > § then there exists an ¢ > 0 such that

M(Xops = 0) + = Do (k)Y = O(n™)
almost surely.
(iv) If ca < %, then
n(Xpyy — 0) + ¢ L k27,
is almost surely convergent.

The proof of the theorem is given in the next section. Of course, Condition
7 is the most severe of the conditions. But in many cases Condition 7 is fulfilled
if M'(0) exists. We discuss two examples:
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ExaMpLE 1. Assume that H, may be obtained from H, by translation, i.e.,

Fy) = Fy — M(x)) .
Then
F.7Y(2) = F,7(2) + M(x)
so that
$o (F.7%(2) — Fy7Y(2))* dz = M(x)*.
Thus, Condition 7 follows from Condition 6.
ExAMPLE 2. Assume that there is an L < oo such that

F(M(x) —L)=0, FM(x)+L)y=1.
Thus
IF,7(2) — M(x)| < L
for all z¢ (0, 1). Because of Condition 1 we have that
[F,"%(2) — F, (7)) £ C <
for all z¢ (0, 1) and all x in a neighbourhood of #. Further assume for all y ¢ R
F,(y) = Fy(y) forall x <@
F.(y) £ Fy(y) forall x> 0.
Then we get
() = Fi(n) x <0,
F Y (2) = Fyi(2) x> 0.
Thus in a neighbourhood of § we get
W (F.7(2) — Fymi(2)*dz = C R |[F.7Y(2) — FoY(2)] dz
= C|\; F,"Y(2) dz — \} F,~Y(2) dz|
= C|M(x)| .
Again Condition 7 follows from Condition 6.
We now give two corollaries of Theorem 1. Denote o> = (= Y?H,(dy).
CoRrOLLARY 1. Under Conditions 1—7 (with log, n = log log log n, etc.)
(1) if ca > %, then
n¥(X, —6) _ ca2t

lim sup,_,, = a.s.,
(log, n)? (2ca — 1)}
(ii) if ca = %, then
limsup, . Xa =0 _ o g
(log n log, n)t

Corollary 1 follows from Theorem 1 and a result of Chow and Teicher (1973)
which givesa law of the iterated logarithm for weighted averages of independent,
identically distributed random variables.
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A second application is an invariance principle. Let W(f) be a Brownian
motion. Define the random function Y(f) by

. Y(1) = W(tre?)
if ca > 4.

COROLLARY 2. Under Conditions 1—17, if ca > % then the random function

— 1)
(2ca — 1)t rand(X;,y — 0)
co
0 <t £ 1, converges weakly to Y(t), as n — oo.
Because of Theorem 1, one only has to prove that the random function
— 1y
o= p DY et 53] (kv

converges weakly to Y(f). This may for example be done by Theorem 15.6 of
Billingsley (1968) in the same manner as Donsker’s theorem is proved in this
book by Theorem 15.6. We omit the proof. An interesting case is the case
ca = 1. Then

(co)~Un}(Xipy — 0) — W(?)

weakly for 0 < r < 1. A consequence is an arc-sin law: If ca = 1, then for
n—-o00,0b6<1

P<Lﬁ{k|1 ékéﬂ,Xk>0}<b>—+£arcsinbi.
n T

3. Proof of the theorem. Without loss of generality we assume 6 = 0. We
divide the proof into five steps.

Step 1. In this step of the proof we construct the probability space (Q, U, P)
and the random variables X, and V,. First we choose a probability space (2,
"U,, P,) and on it a rv X, such that the distribution of X, is equal to the distri-
bution which X, shall have. Further define

(Ql’Ul,PL):([O,lLﬁl)a i:1,2"",

where &7 is the Borel-g-algebra of [0, 1]and 4 is the Lebesgue measure on [0, 1].
We define
(Q, U, P) = H?:o (Qi’ Ui’ Pi) J

For w e Qlet w,(n = 0, 1, - ..) be the nth coordinate projection. Now define
Xy(w) = A71(“’0) .
Thus X, has the desired distribution. Define for all x € R
Z,"(w)=F,Yo,), n=1,
Vn:ZOM)’ ngl.

By construction the V, are independent. Now, as is well-known, the random
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variable F,~* on the probability space ([0, 1], %, 1) has distribution H,. Thus
V, has a distribution H, and the V,’s satisfy part (ii) of the theorem. Further,
from Condition 5 we get the almost sure convergence of F,~' — F,~' with
respect to 2, thus

zZM™ - Z,™ a.e.

as x — y. At last we define the g-algebra
Un: Il U, Cc U.

Now we construct X, and Y, by induction such that X,,, and Y, will be U,-

measurable. Suppose that we have already constructed Y,, ---, Y, ,, X, - -+,

X,(n = 1) with the demanded properties of measurability. First we constructY,.
Define for re N

S, = 2i=o k27 Y pa—rsxp < kra—n — K27t —esnyr<x,s—ka—ni]
where y, denotes the indicator function of set 4. Since X, is U,_-measurable,
S,, re N, are U,_,-measurable as well. Further
3.1 S, — X, as r— oo
and for all @ > 0 and all # > 0 there is a natural number N such that for all
r,r¥ = N
(3.2) 1S,(@) — S,(0)] <
is true. Define the random variable
W'r(w) = ZA(S"’:_)(w)(w) *

We would like to show that W, is convergent in probability. First we note,
since Z,"” — Z™ a.s. as x — y, that for all a > 0 and all ¢, 6 > O there is a
¢ > 0 such that for all x, y € [ —2a, 2a] with the property |[x — y| < ¢ we have
(3.3) P(|Z™ — Z™ =)< 0.
Now take any ¢, 6 > 0. Choose a > 0 such that P(|X,| = a) < 0. Fore¢,o,a
choose ¢ > 0 such that (3.3) holds and for x choose Ne N such that (3.2) is
true. Without loss of generality we may assume ¢ < a. Then from (3.1), (3.2)
we get that for all r > N and all o with the property |X,(»)| < a we have
1S.(@)] < 2a.

Now choose g, re N with N < r < ¢. From the construction of S, we get
that S,(w) is equal to a certain € R on the set {S, = s}, se R. From (3.2) it
follows that |t — s| < g#. Thus

P(W, — W, |=¢S, =5 |X,|<a)=P(Z™ — Z®| = ¢, S, = 5, |X,| < a)
= P(|Z» — Z™| = &)P(S, = 5, |X,| < a)
< OP(S, = 5). '

The last equality follows from the independence between w, and the pair
(S,, X,); i.e., the independence between the g-algebras U, and U,_;. The last
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inequality follows from (3.3), since s, t € [—2a, 2a] and |s — ¢| < p. Thus
P(\W, =W, |Ze) S P(W, — W, | =6 |X,| < a)+ P(X,| =a) < 20.
Thus W, converges in probability to some U,-measurable function which we
call Y,. We define X,,, = X, — cn~'Y,. By construction Y, and X,,, are U,-
measurable, thus the induction is finished. We prove now that X, is a Robbins-

Monro process belonging to the family H,. Let f be a continuous, bounded
function on R. We show that a.s.

E(f(Y,)| Un-)(@) = E(f(ZE,.)
= E(f(Z."™))

for that value of x such that x = X, (w).
Take a sequence (r’) of natural numbers such that W, — Y, almost surely.
From the definition of W, we get

Y, =1lm,_, 2, Zﬁ:)X(sr,mi) a.s.
Since f is continuous and bounded, we get a.s.
E(f(Yn) | Un—l) = limr'—'m Zl E(f(Zﬁz))X(ST'=8i) I Un_l)
= lil'l'l,,.,_,oo Zl X(S,,.,=ai)E(f(Z£:)))

since S,, is U,_,-measurable and Z{" is U,-measurable, thus independent of U, _,.
Thus there is a set N © Q with P(N) = 0 such that for ® ¢ @ — N we have

lim,, .., E(f(Z§) ) = E(f(Ya)| Un-i)(@)
and additionally S, .(w).— X,(w). Thus
lim,,_., E(f(Z§),w)) = E(f(Z%,w))

because of the convergence theorem of Lebesgue and the fact that Z,» — Z ™
a.s. as x — y. This proves (3.4). Now by an approximation argument

P(Yn € A I [zn—l)(w) = P(Zfl"n,,)b(w) € A) = HX,,(w)(A) a.s.

Since X,, ---, X, are U,_,-measurable, we see that Y, has the demanded pro-
perty of a Robbins—Monro process.

STEP 2. We now look at the random variable
R,=Y,—V,.

Of course we should like to prove that R, is getting small in a certain sense.
We prove

Lemma 3.1. (i) E(R,|U,_) = M(X,) a.s.
(ii) There are positive numbers p, q such that E(R,?) < pE(X,?) + qE(|X,|").

Proor. We already have proved

EY,|U,_) ==, yHX"(dy) = M(X,) a.s.
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By construction V, is independent of U,_,, thus
E(V,|U,_)=EV,) =0 as.
This proves (i).
From Condition 7 we have for |x| <
E(Z," — Z,™)) = G (F,7(y) — Fy(y))* dy
= qlx[".
For |x| > » we get from Conditions 1 and 4
E(Z.™ — Z,'™)) = 2E((Z,™)") + 2E((Z,™)")
< 2( 4+ M(x)?) + 272
< 477 o 2(2¢® + 2d%%) < pxP
Thus we get for all xe R
E(Z,™ — Z,™)) = px* + q|x[" .
Now, since Z,™ =V, we get
E(W, = V,)) = E(L(Z37 — Va) s, =)
= 2 P(S, = )E((Zs) — V) -
Thus
(3.5) E((W, — V,)) < pE(S,) + E(S.I") -

We used the independence of Z,™ and S,. Now |S,| < |X,| forallre N. Since
E(X,’) < o and y < 2, we get from the convergence theorem of Lebesgue

(3.6) lim,_, E(S,%) = E(X,?
and
(3.7) lim, _., E(S,I") = E(X,]") -

On the other hand, since W, — Y, a.s., we get by Fatou’s lemma
(3.8) E(R,Y) < liminf,,_ E(W, — V,)).
From (3.5)—(3.8) (ii) follows.

! o0

Step 3. Now we are able to prove statement (iii) of the theorem if we assume
the following additional property
(3.9) K|x| £ [M(x)| £ K,|x| forall xeR,
with 0 < K; < K, < oco. We shall consider the slightly more general situation
where
(3.10) X, = X, — c(n + N)1Y,

with N = 0, ¢ > 0. Of course, this modification has no effect with respect to
our construction in Step 1. Now as shown by Chung (1954, page 475) and
Venter (1966, page 1544), we get the following estimate for E(X,’):
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LeMMA 3.2. For a Robbins—Monro process, given by the iteration (3.10), which
satisfies the property (3.9) and Condition 4

E(X,”) = O(n™) if ¢>1)2K),
E(X,?) = O(n™%%1°) if ¢<1/2K).
In the following we shall assume
(3.11) c > 1/(2K)) .
Put 4 = ca. Then we get from (3.10)
(k + NY4X,,, = (k + N)*X, — c(k + N)*-'Y,
= (k + N — 1)4X, 4+ A(k + N)*7'X,
+ ¢k + N)Y*2X, — c(k + N)*7'Y,,
where ¢, is a bounded sequence. Summing up these equations from k = 1, .
n, we get
(n + N)*X, 1, = NAX; + Xio A(k + N)*7'X,
+ Nroick + N)*2X, — ¢ 2ns, (K + N)4tY, .
From Y, = V, 4+ R, and from Lemma 3.1 (i) it follows that
(n + NYA X,y + ¢ Tiea (k + N,
(3.12) = N4X, + Y2_, (k + N)*H(AX, — cM(X,))
+ L=k + N)A7°X,
+ ¢ Do (k + NY*(E(R, | U,,) — Ry) .
We estimate the magnitude of the sums on the right side of this equation:

a) First look at 3%, (k 4+ N)*7'|X,|'*#, where 8 is choosen according to
Condition 6. Without loss of generality we may assume 8 < 1. Then from
Lemma 3.2 and the fact that (E|X]*)"* is a nondecreasing function of ¢ we get

E(|X:|**) = O(k=1-#%) |
Choose ¢, > 0. Then we get

(k + N*ZE(X[™) - €
kA+e—3—6/2 = kit

thus
(k + N)“'X,[*+#
kA—t—B/2te;

Ziia

< oo a.s.

Now K, < M'(0) = a, thus K,c < A4, thus from (3.11) 4 — 1 > 0. Therefore
we may choose 8 so small that 8 > 0, 4 — 1 — /2 > 0. (Of course Condition
6 remains true!). Thus by Kronecker’s lemma

MRS T (k o+ N)SX 0

almost surely. From Conditions 1-4 we have by Blum’s theorem that X, — 0
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a.s. Thus from Condition 6 we get

n-A+iten-a S (k4 N)A14X, — cM(X,)| — 0
almost surely since 4 = cM’(0). Now choose ¢, such that §/2 —¢ =¢, > 0.
Thus we get

|Dtes (k + NYSHAX, — cM(X,)| = O(nA=+5).
Similarly

| Zias ek + N)*72X,| = O(n~47%)
with 0 < ¢, < 4.
b) From Lemma 3.1 (ii) and Lemma 3.2 follows as before
E(R,?) = O(k~17%)
since 7y < 2, thus
(k + N)—E(R,

k2A—1+eq—7/2

2) é Dk—l—e4

with ¢, > 0. By means of a well-known convergence theorem (Loéve (1955)
page 387) this implies that

sp, KN R, EB(R,|U,-)

kA—b+eq/2—1/4

is almost surely convergent (R, is U,-measurable!). Again, without violating
Condition 7, we may choose y so small that 4 — § > y/4 > 0. By means of
Kronecker’s lemma we get

noArirrizan Sin (k + N)* (R — E(R. | U, )
is almost surely convergent to 0. Take ¢, so small that y/4 —¢,/2 = ¢, > 0.
Then

e (k + N)*HR, — E(R,|U,_) = O(n~4-%) .
From the estimates of a) and b) and from (3.12) we obtain
k+ N
n+4+ N

with ¢ = min (e, &, ¢;) > 0. Note that ¢ depends only on 4, y, 8. This will be
of use in the next step.

(3.13) (1 4+ N)X,,, + c(n + N)-* Z;;ﬂ( >H V,=0(m) as.,

STeEP 4. We now prove statement (iii) of the theorem. Assume ¢ > 1/(2a).
Since M’(0) exists, there is a > 0 such that for |x| < J we have
K|x| = [M(x)| < K|x] .

Since ca > }, one may choose K,c > 4 if 6 is chosen small enough; then
¢ > 1/(2K)). Thus K, fulfills (3.11). We now introduce a new family H, of
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probability measures on R(x € R) by the definition:
A, =H, for |x|<94,

H,(A) = Hy(A — (x — d)k,) for x> 4,

H(A) = H_ (4 — (x + dk) for x< —3,
for all Borel-sets 4 — R. Define M(x) = | yH,(dy), thus

Kx| < |M(x)| < K]

for all xe R. It is easy to see that A, satisfies Conditions 1-7; (3.9) is satisfied,
too.

Now construct according to Step 1 the Robbins-Monro process. From Con-
ditions 1-4 we get X, — 0 almost surely. Thus for any ¢’ > 0 there is a number
N = 0 such that P(sup,. |X,| = 0) < 0’. Now define

(Qo’ Uo’ Po) = va=o (Qi’ Ui’ Pi) ’
(Qi’ U, pz) = (Qi+N’ Ui+N’ Pi+N) , Iz L,
X1 = XN+1 »
V,=Vy,, i=1.
On this new probability space we now construct, as in Step 1, random variables

X,, ?, such that
X=X, —c(n+ NP,
and such that X, becomes a Robbins-Monro process with respect to H,. From
the construction of A, we get
Z,0 = Z,W+  for |x| <.
An induction argument shows that ¥, = Y, and X, =X, forall k> 1 on
the set M, = {sup,. |X,| < d}. Now by (3.13) we have for X,

k+ N
n+ N

(n + N Ry + el + Nt St (S22 7 = 00

Thus
k 4+ N
n+ N

3
(1 + N s+ eln + Ny # Sy (1) Vi = O(r)

a.s. on the set M,. At last
(n + N)y"t 3V (k/n)*'V, = O(n=¢) a.s.
with ¢’ = 4 — 1 > 0. Thus
mX, ., +cent 7 (k[n)A7W, = O(n="")

a.s. on M,. Now e, ¢’ are dependent only from 4, 8, y. Thus¢” is independent
of N. Since P(M,) = 1 — &, the approximation holds almost surely. Thus (iii)
is proved.

STEP 5. We now prove part (iv) of the theorem. The proof is similar to the
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proof of (iii). Again we may assume (3.9) and additionally we may assume that
K(1 4+ 8)>M@O0) =a>K,

(see Step 4). Now we get ¢ < 1/(2K;), since ¢ < 1/2a. From Lemma 3.2 we
get for g < 1
E(X, ) = O(k 00Ky

Since (1 + B)K,c > ac = A, we get that

Diem (kK + N)A X" < oo a.s.
From Condition 6 we get that

Lo (k4 NYHAX, — cM(Xy)

is almost surely convergent. Thus the first sum in (3.12) is convergent. An
easy argument shows that the second sum is convergent. To get the conver-
gence of the third sum, we only have to show that

2= (k + MP7E(R?) < o0

because of the convergence theorem used above. Since 4 < 1 we have 24 —
2 < —1. By means of Lemma 3.1 (ii) and Lemma 3.2 we get the desired result.
Thus the proof is complete.

ReMARk. Condition 5 was only necessary for the approximation of X, by S,
and of Y, by W,. Ifall X, are discrete then one may omit this condition. This
occurs for example if X, is discrete and H, is concentrated on a denumerable
set for all x e R.
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