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A LOCAL LIMIT THEOREM FOR THE WILCOXON
RANK SUM

By DANIEL THORBURN
National Central Bureau of Statistics, Sweden

The normalized probability function of the Wilcoxon rank sum statis-
tic is shown to converge to the normal density under very mild conditions
on the two sample distributions. This is done by studying the conditional
distribution of the rank sum given the first sample and by a rather heavy
use of characteristic functions.

1. Introduction. Let X = (X}, ..., X,)andY = (Y}, ..., Y, ) be independent
samples from the distibutions F, and F,, respectively. Rank the variables in
increasing order from 1 to n 4 m and consider the rank sum W of the Y.

In 1945 Wilcoxon suggested this sum as a test statistic for the hypothesis
Fy = Fy against Fy + F,. This test had been presented independently by many
writers prior to Wilcoxon. Wald and Wolfowitz had the year before given a
theorem that immediately proved the asymptotic normality of the rank sum
under the null-hypothesis. The local limit version was proved under the null-
hypothesis by Bennedichs (1973), who studied sampling from a finite population,
and independently by Vizkova (1973). We will prove the same result under
quite general alternatives. The idea of our proof is inspired by the local limit
theorem for sums of i.i.d. random variables and its proof given in the book by
Ibragimov and Linnik (1971).

2. Notations and some lemmas. Since a monotone transformation does not
change the rank sum, we may, without loss of generality, assume that the dis-
tribution of X, is uniform on the unit interval, F,(x) = x, and that the value
of Y, will lie in the same interval but with the distribution F, = F. This state-
ment will be proved more rigorously in the proof of Theorem 3.3.

Let the expected value and the variance of Y, be denoted by M and V,. This
means that

M=1-—EF(X,))=PX,£Y)).
Further let V, and D, ,, be defined by
V, = Var (F(X,)) = {§ F*(x)dx — (1 — M)
D',‘,m = (nm(nV, 4+ mV))}.

The number of pairs (X;, Y,) such that X; < Y, is a simple linear function of
the rank sum

2.1) Ryw=#{(,j); X S Y} = W — m(m + 1)]2.
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LOCAL LIMIT THEOREM FOR RANK SUMS 927

In the sequel we will discuss under what conditions
sup, |D, . P(R, , = k) — ¢((k — nmM)|D,, )| =0,

where ¢ is the standard normal density. The expected value of R, ,, is nmM and
its exact variance is (e.g., Noether 1967) D}, , + nm(M — M* — V, — V), which
is of the same order as D2 .

Denoting the number of X, that are less than or equal to Y; by r;, we have

(2.2) nrr,=R, ..

For given X the rank sum R, ,, is thus a sum of i.i.d. random variables with the
distribution

(2‘3) P(rj = kIX) = F(Xesn) >

where X, is the kth order statistic and where F(X ,,,) = 1. (Theright-hand side
of (2.3) ought to be F(X,,, — 0), but this equals F(X,,,) a.s., since X is uni-
formly distributed.) In the sequel we will also use the conventions F(X,,) = 0,
X, =0 and X,,,, = 1. The idea of this paper is to prove the ordinary local
limit theorem for the sum of the variables r; and then to remove the condition
by taking the expected value.

To do so we need the following additional notations: for given X, let F,(+),
¥.(-), a,, b, and ¢, denote the distribution function, characteristic function,
mean, variance and third central absolute moment of r/n, respectively. We
emphasize that F, and ¥, are random functions and that a,, b, and c, are ran-
dom variables. In the following lemmata we will study some of their properties.

LeEMMA 2.1.

(a) F,(x)— F(x)a.s. as n — co at all continuity points x of F.

(b) n¥(a, — M)/(V,)} tends in law to the standard normal distribution asn — oco.

(c) b,—V,as. asn— co.

(d) W,(r) — W(r) uniformly on every compact a.s. as n — co, where ¥ is the
characteristic function of Y.

(e) The limits in (a), (c) and (d) hold in the mean too.

Proor. (a) Itis well known from order statistics that X,,.,;, = x a.s. as
n — oo. Since |F (x) — F(x)| = |F(X n,41,) — F(x)|, part (a) follows.

(b) Since a, is the mean of a variable with distribution F,, a step-function
with jumps F(X ,,,) — F(X) at the points i/n, we can write

a, = Jiiz (-:1‘ (F(Xi4n) — F(X<i)))>

i— 1 i
= Z"‘H F(X<i)) - LO'; F(X(i))

i=1
n

1 1
=1 - ZiaF(Xy) =1 - n L F(Xy) -
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It is now expressed as a sum of bounded i.i.d. random variables with mean M
and variance V,. The result follows from the central limit theorem.

(c) and (d) are simple consequences of part (a). It is also clear that all finite
moments of F, will converge to the corresponding moments of F. They are, in
fact, asymptotically normal with a variance of order 1/n (see David (1970) and
the references given there).

(e) Since F,, b, and ¥, all are bounded, this follows from almost sure con-
vergence. []

In the next section b, will sometimes appear in the denominator. In Lemma
2.3 it is shown that b, stays away from zero with a large probability. The idea
behind all the technical details of the proof is that 4, is small when all the X,
are near zero or one. In the proof of Lemma 2.3 we need the following result,
which is a special case of Theorem 1 in Hoeffding (1963).

LEMMA 2.2. Let Z have a binomial distribution with parameters n and p. If

p > q, then
P(Z < nq) < exp(—2n(p — q)*) < a”,

for some a < 1.

LEMMA 2.3, If F has a positive density in some interval, there exist numbers
a < 1, 8> 0 and n, such that

Pb,< P La” forall n>n,.
Proor. Find two numbers, y and 4, such that
0<F) <FO) <1 and d5—7<}.

Let n, and n, denote the number of X-observations in (0, y] and (7, 9], respec-
tively. Break up 4, into three sums

b= Eit (FXion) = FX0)) (- — a,)

2

i 2
+ IR (FK ) — FX) (= a,)

T, (FXann) = FX) (L= a,)

where we have assumed that n, > 0. If a, < (2n, + n,)/2n, the third of these
sums is greater than (1 — F(X, 4,,))(n/2n)" = (1 — F(0))(ny/2n)* otherwise the
first sum is greater than F(y)(n,/2n)’. These two implications give that

(2.4) b,z ()  min {F(r), 1 — FO)}-

This formula holds trivially also when n, = 0. We thus have that
P(b, < ) = P(ny, < 2n(B/min {F(y), 1 — F(9)})*) -

The result now follows from Lemma 2.2. []
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3. Main theorem. We first prove a local limit theorem in the situation de-
scribed in the previous section, i.e., when the distribution of X, is uniform.

THEOREM 3.1. If Y in some interval has a density which is bounded away from
zero, then
sup, |D, . P(R, . = k) — ¢((k — nmM)/D, )| — 0
as n and m tend to infinity so that lim inf n/m > 0 and lim sup n*/m = 0 for some
£ > 0.

Proor. The proof consists of four parts. The first one contains the whole
proof, except for the estimation of some integrals. These estimations are made
in the remaining parts.

(i) Main part. For a given X, the statistic R, ,, is distributed as a sum of m
i.i.d. random variables, r;,. The inversion theorem for characteristic functions
and a change of variables give

(b, JiP(Ry, o = k| X) = "0 g eex(y (emyy a
T

an(mby)d

1 §rmmen s exp (—it k_—ma_,,) exp(—it a,m? >
2m " n(mb,)t b

X (qr ((7;_)))’" dt

For the normal distribution there exists a similar inversion formula:

k —nma,\ 1 (. .k — nma, .
¢( n(mb”)i ) - i;; S—m exP( i _H—M(mb”)’-‘ >CXP( t/2) dt .

The absolute difference between these two expressions can be estimated in the
following way:

< gt o (o (i) o (o (55)

dt

X (‘I‘,, <(n#”)i>>m — exp(—1%2)

exp (—it (%‘))1 exp(—1t/2) dt}

exp (—it < ‘EZ:’;: >> (111',, (m))m — exp(—t2/2)' dt

v, ((_ml’)_))\” dr + 21; §iamoss EXP(—13[2) di

+ S|t|>7m(mbn)i

< Smo.s—a

T m0.5—3

1
27
1

+ ~ Sm0-5“"<]tl<7m(mb )4
2r "

=L+ L+ I, say.
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In this expression it is assumed that m®*~? < zn(mb,)*. This will hold for m
and n sufficiently large. In order to make the formula hold for all m and n we
can define /, = 0, if m**~? > zn(mb,)}. In the sequel § will be assumed to lie
strictly between 0 and }.

In (iii) and (iv) below we will show that the expected values of /, and I, tend
to zero as n and m tend to infinity. It is trivial that this holds for ;. If we

accept these facts, we have proved that
E {sup,,

k_nma”)}—»() as n,m-— co.

n(mb,)b

n(mb PR, = k| X) — 6 (
Changing the order between the expected and the absolute value, we get

E{n(mb,}!P(R, . = k| X)} — E {4 (",,(‘Tb”;‘;—)} ~0

as h,m— oo .

sup,

The next step of the proof is to replace b, by V;. By Lemma 2.3 b, is larger
than some number 8 > 0 except with a probability a”, where « < 1. This tends
to zero faster than nm?. Thus we can assume that b, is larger than some number
B except with a negligible probability. Since b, is also bounded by 1 and tends
to ¥, a.s. by Lemma 2.1¢c, we can replace b, by V, in the first term. For the
second term we observe that

£ ) = ¢ Coryo )

Bl () o) 35 @ — 1)

sup;

< sup,

’

where @ is a number between b, and V,. It is well known that ¢’(x)x is bounded.
Since we have assumed that ¢ > 3, we get from Lemma 2.1c that the whole
expression tends to zero. We thus have that

E{n(mV,*P(R, ,, = k| X)} — E {¢ <’%§’_>H -0

as n,m-— oo .

sup;

The expected value of the first term is n(mV,)}*P(R, ,, = k) and we get

n(mV,)tP(R, . = k) — E <¢ ("_—fﬂ’» -0

n as n,m-—oo.
n(mV,)}

sup,

We know by Lemma 2.1b that q, has an asymptotically normal distribution.
If a, had been exactly normal with mean E and variance V,/n, the following
would have been true:

3.1 E <¢ (kn;n';':l)f» _ n(;nVl)* s < k _Dan> .

n,m n,m

In (ii) below we will show that the difference between the two sides tends to
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zero as n and m tend to infinity. Accepting this, we get

D D

Supk n(mVl)éP(Rn,m = k) —_ n(’nVl)é ¢<k et an)l -0

as n,m-— oo .

Since F is not degenerate, V; = 0. We can now easily get the result of the
theorem.

(ii) Estimation of E{¢((k — nma,)(n"*(mV)~*))}. Let a,’ be a normal variable
with mean M and variance V,/n, such that a,’ increases whenever a, increases.
If a, has a continuous distribution function, G, say, such a variable may be
constructed by a,’ = M + (V,/n)}®-*(G(a,)). If G is not continuous a similar
construction can be made. (¥ denotes the standard normal distribution function.)

By the Berry-Esseen theorem we have that both

|D((an — M)(Vy/n)~t) — @((a," — M)(Vy/n)~)]  and
|D((a, — M)(Vy/n)~t) — G(a,)|

are less than or equal to cn~*, where c is a constant that may depend on F.
Suppose that both a, and a,’ belong to the interval

M + ©(1 — n=%)(V,/n)} where 0 <2< .
By the mean value theorem of integral calculus, we then have
la, — a,’| < (V) (ng(P}(1 — n=%))) .
The probability of a, or a,’ outside the interval is at most
P{l(a,) — M)(Vy/n)~H > ©H1 — n=")} + Pf|(a, — M)(V,/n)74 > ©~}(1 — n~7)}
< 4n-* + 2cnt,
Since (3.1) holds for a,’, we have
\E<¢ <k — nma,,)) —4 <k — an) n(mV )}
n(m V1)§ D'n m D

n,m

_ —nma,\ . (k — nma,’\|

] n(mV)i ) ¢( n(mV,)} >H
= (m[V)le(Va)(ng(PH(1 — n™7))) + 4n~* 4 2en~
< e(Vy/Vy)imin=t44  4n=% 4 2¢n—t

This tends to zero as n and m tend to infinity in the prescribed way.

(iii) Estimation of E(I)). In order to estimate
- S"“Lﬁ 3%a [exp(—it(a,m(b,)H))(W,(¢(mb,) )™ — exp(—r*[2)| dt ,

we use the following lemma given in Chung (1968, page 210). It is given in our
notation; e.g., c, is the third absolute central moment of r,/n.
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Lemma 3.2, If
(32) |t| é mi(b'n)%/(‘tc'n) ’
then

Jexp(—it((a,m¥)(b,))(W,(1(mb) )™ — exp(—r72)] < LKL XP(=L)3)c,

m(b,)!

This lemma yields an estimate for such outcomes that (3.2) holds in the range
of integration. The probability of this is
P(|t| < m(b,)¥/(4c,) for all |f| < m®3-?)
= P(m**=* < mi(b,)}/(4c,))
= P(b, = (4m)Y)
=1 —a,
where a is given by Lemma 2.3, if m and n are large enough. We have used

that ¢, is less than 1.
If (3.2) holds we estimate I, as follows:

m0.a-3 16]t]* exp(—1?/3)c,
271-11 é S—mo.-')—d mi(b”)g dt

=< {=. 16|t]* exp(—1?/3)ym*~**/4 dt = 36m*>~°S .
We have here used (3.2) in order to replace ¢, /(m*(b,)?) by m*=°*/4. The expected
value of [, is thus less than

21_ (36m6—0.5 + 4a'nm0.5—6) ,
T

which tends to zero as n and m tend to infinity in the prescribed way.
(iv) Estimation of E(I,). The integral

1
I, = P §m0.5-0 <jti<animb | ¥ (t(mb,)~4)|™ dt

is harder to estimate. The main idea is to show that the supremum of |¥,(7)]| is
less than 1 — m~*, except with a negligible probability P, ,,, say.
(3-3)  Pup = P(SUPn-tcican [Ta(9)] = 1 — m™H)
= P(SUPp-i<icen SUP,cosm RE(eXP(i2) W, (1)) = 1 — m~¥) .
Let Z,, be defined by
Z,, = {km~%; k integer} n [0, 2x) .

If the supremum in (3.3) over all ze [0, 2r) is larger than 1 — m~%, then the
supremum over Z,, is larger than cos (m~#/2)(1 — m=*) = 1 — 2m~%. This gives
that

Py S P(SUPp-s<i<nn SUP;e 7, Re (exp(i2)W, (1)) = 1 — 2m~F).
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Using the inequality P(UJ7 4,) = 2.1 P(4,) on the events
A, = {sup, Re (exp(ikm )W (1)) = 1 — 2m~¥},
we get

P, . < 2zmtsup, P(SUp,,—s..<. Re (exp(iz)¥,(r)) = 1 — 2m*)

= 2zm? sup, P(SUP,—s<;<.n R {310 €Xp(i(z + tj/n))
X (F(Xj4n) — F(X)} =2 1 — 2m™Y) .

Arguing in the same way for ¢ as we did for z, we take the sup, outside the
probability sign:

3.4 P, , < 2n°min sup, sup,,—s ;<. P(2;7-0 Re (exp(i(z 4 tj/n))
X (F(X ) — F(X;)) = 1 — 4mY) .

We denote the event {j; Re (exp(i(z + tj/n))) > 1 — m=*3+} by 4, ,. If
Tiea,, FXj0) — F(X;) < 1 — d4m™2,
then the sum in (3.4) is less than
(1 — m=*5+9)4m=> 4 1(1 — 4m=%) = 1 — 4m~* .
Using this we have

(3.5) P, , < 2x°min sup, sUp,—sc;con P(Eiea,, F(Xn)
— F(X;)z1—4m™).

According to the assumptions there exists an interval, (a, b) say, such that Y
has a density, which is bounded away from zero, in this interval. Define

G(x)=0 if x<a
_ Fx) — Fla
_m if a<x<b.

The density of G has a positive infimum, in the interval (a, b). If all the terms,
where X ;, does not belong to (a, b), are included in the sum in (3.5) the prob-
ability will be larger:

Pn,m é 2ﬂ2mén Supz Supm—5<t<mt P<stAz't G(X(j+l)) - G(X(j)) Z 1

_ 4m-* >
F(b) — F(a)/~
We shall now estimate the number of terms in the sum. The set {i;
Re (exp(iz)) = 1 — m="**?} corresponds to an arc of the unit circle, which is
shorter than 4m="%+2 A shift of jtoj + 1 in Re (exp(i(z + tj/n))) corresponds
to the arc t/n > m=%/n. If there are n(b — a)/2 consecutive j-values, this cor-
responds to an arc that is longer than (b — a)ym=?/2. If m is large enough, it
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is easy to see that
4m=03+ < (b — a)ym=%|2 .

If there are n, > n(b — a)/2 observations in (a, b) and if m is large enough,
we have thus proved that there are at most 2n,/3 X ;,-values in (a, b), such that
je A,,. Which observations that are included does not depend on their values
(except that they must lie in the interval). Suppose that they are X; ), X;,,, -« -.
We find that

n,m =

P, . < 2zmin <P(n2 < n(b — a)[2)
+ SUp, SUP,—s<i<an P<Zk (G(X<jk+1)) — G(X;,) = 1

n, > n(b — a)/2>> .

_ 4m=*
F(b) — F(a)
The first of these probabilities is by Lemma 2.2 less than 3" for some § < 1.
The other one can be estimated as follows:

(3.6 P(Zu(O(Xp) — 6Xyp) Z 1

. 4m—?
F(b) — F(a)
Xy = _ 4m7
F(b) — F(a)

n, > n(b — a)/2>

ny > n(b — a)/2> ,

= P<d 2iietip (Xijen —

where d is the positive infimum of the density of G in (a, b). We found above
that there are at least n,/3 terms in the sum. The differences X ,,,, — X;, have
an exchangeable distribution for j = 0,1, .... We can thus replace those in
the sum by those with the smallest j-values without changing the probability.
Combining these facts, we find that (3.6) is at most

P(d Th (X — X)) = ﬁb)i’i_—;(-;) m > n(b — a)2)
. 4m-? _
= P(dX([nz/sl) = m ny, > n(b a)/2) )

where n, has changed its meaning after the reordering and now stands for the
number of observations less than & — a. By Lemma 2.2 this expression is less
than ;" for some positive y < 1 (an intermediary result is (y,)"2, but it is assumed
that n, > n(b — a)/2). This does not depend on z or ¢, so the bound is uniform.
We thus have
(3’7) Pn,m é 27z.2m5n(‘8'n + Tn) .

We can now estimate the expected value of /;:

E(L) < (1/2x)2an(mb,)}((1 — m=" + 2xmin(B* + %))
< nmi(l — m=H)™ 4 22°mn*(B" + ") — 0

as n and m tend to infinity in the prescribed way.

The proof of Theorem 3.1 is now complete. []
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In Theorem 3.1 we assumed that F,(x) = x. Making a monotone transfor-
mation we get the following slightly more general theorem.

THEOREM 3.3. Let X andY be two independent samples of i.i.d. random variables
with sizes n and m, respectively and let their distribution functions, F, and F,, be
absolutely continuous with positive and bounded densities on some interval. Then

supk |Dn,mP(Rn,m = k) - ¢((k - an)/Dn,m)l -0

as n and m tend to infinity not faster than powers of each other, i.e., so that there
exists a k > 0 with lim sup n*/m = limsupm*/n = 0. Here M = P(X < Y) and
D, = nm(nV(F(Y)) + mV(Fy(X))).

PRrooF. First suppose that lim inf n/m > 0.
Construct two variables & and 7, which are uniformly distributed on the unit
interval. Define
Fy=Y(a) = inf {x; Fy(x) = a}
Fy=Y(a) = inf {y; Fy(y) = a} .
It is easy to see that F,~*(£§) and F,~Y(y) have the distribution functions F, and

Fy, respectively. It is also easy to see that the following two statements are
equivalent:

(3-8) Fei©) = Fyoi(n) and § < Fu(Fyi(y)

If we can prove the theorem for the distribution functions x and F(F,~(x)),
we can also prove it for the distribution functions F,(x) and F,(x), since by
(3.8) the rank sum is the same. The result for x and F,(F, (x)) follows, how-
ever, directly from Theorem 3.1.

When lim inf m/n > 0, the result follows from the previous paragraph, if we
multiply the two samples by minus one and let them change places.

Any sequence of (m, n) can be divided into two subsequences, where n < m in
one and n > m in the other. Since the theorem holds for both subsequences ac-
cording to the previous paragraphs, it must also hold for the original sequence. []

In the situation of Theorem 3.3 there may appear ties. The assumptions say
only that there exists one interval, where there a.s. cannot appear ties, but
where the distributions are continuous. That the local limit theorem holds in
this situation is largely due to the definition (2.1) of the rank sum. In Section
5 we shall discuss this further. In the next section we shall assume that both
the distributions are continuous and this means, of course, that there cannot be
any ties.

4. Modifications of the theorem. The assumptions made in Theorems 3.1
and 3.3, concerning the way in which » and m tend to infinity, are sometimes
unnecessary. We give here a theorem in which this assumption is omitted, but
instead the class of distributions is restricted. Before stating the theorem we
give and prove a lemma.
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LEMMA 4.1. Let F have a density f such that
fe) < C(* + (1 — z)¥)  for some k > —L and some constant C .
Then there exists a constant Q independent of n such that
E(n Z3(F(X ;1) — F(X;)) = Q.

Proor. First we study the sum without the two end terms.

E(n 235 (F(X ) — F(X(»)))
=1 350 $isj 5000 (Fx0) — F(x)))?
nlx7 71— xj)" 7
G=Di=j—1
=1 2521 $ocectiocy<r-o (F(x +y) — F(x))?
x n!
(=Dt —j—1
= nz(n - 1) SSO<z<1;0<y<l—-z (F(x + )’) - F(x))’(l - y)”_z dy dx .
First we have changed the order of summation and integration (the density can
be found in David (1970), page 9). The second equality is a change of variables
and the third follows from the binomial theorem.
If k is positive, it is easy to see that (4.1) is bounded, otherwise we can esti-
mate F(x + y) — F(x) using the mean value theorem. The expression (4.1) is
less than

ni(n — 1) §5 §s Cy(x* + (1 — x)*)X(1 — y)*~*dy dx
‘ < ACH)(n + 1) 3 (x* + (1 — x)™) dx
= 8nC((n + 1)(1 + 2k)).

It remains to show that the end terms of the sum are bounded. This, how-
ever, is quite simple and is left to the reader. []

4.1 dx;dx;,,

x (1 — x — y)y*~i-tdx dy

THEOREM 4.2. Let X, be uniformly distributed on the interval (0, 1) and let Y,
have the distribution function F, such that F(0) = 1 — F(1) = 0. If F has a density
f> such that f(z) < C(z* + (1 — 2)*) for some k > —} and some constant C, then

sup, |Dn,mP(Rn,m = k) - ¢((k - an)/Dn,m)l -0
as n and m tend to infinity, so that lim infn/m > 0.

Proor. We will here only pick out those parts of the proof of Theorem 3.1

where changes have to be made.

The assumption lim sup n*/m = 0 for some £ > 0 was used only in estimating
E(l,) in part (iv). Here we use Parseval’s formula when estimating that integral:

E(Z”Iz) = E(Sm°-5—"<(c|<m(mbn)é 'W”(t(mb”)—é)]"' dt)
(4'2) g E(Supm"’<t<7m lwn(t)lm—z ST:WL qu'n(t)lz(mb")i dt)
= E(SUPp-scrcnn [Tu(D)"7* 220 7o (F(Xj41) — F(X(5))(mb,)?) .
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As in the proof of Theorem 3.1 (formula 3.7) we have that
P'n,m § znzmgn(ﬁ” + Tn) ’

where 8 < 1 and y < 1. If n and m are sufficiently large, we see that P, ,, < 4.
With this result in mind, we can easily from Lemma 4.1 deduce that

E(n 3§ (F(Xj11) — F(X(1)) | SUPm-scrcen |Wa(D)] £ 1 — mH) <20
If we use the last two formulas in (4.2) and note that 5, < 1, we get that
EQ2rl) £ (1 — m )™ 4rmiQ + 2x’min(B” + y")2znmt .

This expression tends to zero, when n and m tend to infinity so that
lim inf n/m > 0.

The rest of the proof of Theorem 3.1 is not affected by the change in the
conditions. Theorem 4.2 is thus proved. []

Theorem 4.2 is given in this unsymmetric form, since the class of allowable
distributions will be even more restricted, when the conditions on n and m are
totally removed. Its symmetric version, which is given below, is proved exactly
as Theorem 3.3.

THEOREM 4.3. Let F, and F, be absolutely continuous with respect to each other
and to Lebesgue measure. Let Fy o F,™" and F, o F,~* be differentiable with deri-
vatives f and g, respectively, such that for some k > —} and some constant C

max ((2), 9(2)) < C(2* + (1 — 2)") .
Then as n, m — oo,
sup, |D,, . P(R, , = k) — ¢((k — nmM)/D, .} —0.

5. Comments on the theorem. In this section we give some examples, where
the local limit theorem is false.

ExAMPLE 5.1. In the previous theorems the probability of ties was zero. The
usual definition of the rank sum, when dealing with ties, is

(5.1) Rom = #(5 )); Xs <Y} + 3805 ))s X = Y}
If the distributions are such that ties can appear at one and only one value with

positive probability, then a local limit theorem cannot hold.
Let us for instance define

Fy(t) = Fy(f) = 1 — exp(—1)/2 if t=0
=0 if t<O0.
It is quite easy to see that
P(R;, , isan integer)
= P(#{i; X, = 0} is even or #{j; Y, = 0} is even)
—-1—-0.5.0.5 as n and m tend to infinity.
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Thus a local limit theorem cannot hold in this particular example. If it did the
probability of an integer rank sum would tend to one-half.

Whenever there are a finite but positive number of values at which ties can
appear, this contradiction exists. In fact it can be shown that

(5.2) P(R; , isan integer) — 4 + 1/2%+1,

where k is the number of possible tie values, if the distributions of X and Y have
positive densities at some interval. To show this, first prove that the probability
of an integer rank sum at one fixed tie value is 3. Then show that the events of
integer rank sums at different tie values are asymptotically independent. The
number of tie values with integer rank sums will thus follow the binomial law.
A summation of every second term in the binomial distribution gives (5.2),
which is easy to show by induction.
In our specific example it can be proved that

sup, |D, . P(R;, ,, = k) — §¢((k — nmM)/D, )| — 0
and
supy |D, n P(R;, . = k + 3) — 19((k + § — nmM)[D,, )| — 0

as n and m tend to infinity. The conditions and notations are the same as in
Theorem 3.3. The proof follows the same lines as Section 3, the only change
being that the cases with odd and even number of X; at the possible tie value
have to be separated.

ExAMPLE 5.2. The local limit theorem does not hold when the two distribu-
tions have disjoint supports, i.e., when the two measures are orthogonal.

Let X have a uniform distribution on (0.25,0.5) U (0.75,1) and Y on
(0, 0.25) U (0.5, 0.75). After simple calculations we find that

P(R, , is an even integer)
=1 — P(#{i; X;€(0.25,0.5)} is odd) - P(#{j; Y, € (0.5, 0.75)} is odd)
—1—-05-.0.5 as n,m-—oo.

If a local limit theorem held this limit ought to be 0.5.
This idea can be extended to more than two intervals. If the supports can be
divided into 2k alternating disjoint intervals then

(5.3) P(R,, iseven) —} 4+ 1/2¢+1,

n,m

where we have assumed that the largest interval is an X-interval. There is
nothing peculiar about odd and even in this case. We could as well have studied
the probability of R, , being a multiple of a fixed prime number.

ExaMpPLE 5.3. Let us now consider the very common situation, where the
observations are measured with a certain precision (e.g., two figures after the
decimal point). Let us also suppose that we know that all observations lie in a
certain interval (e.g., we have a bounded scale on an instrument). In this
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situation the local limit theorem can neither hold when the rank sum is defined
as in (2.1), nor when it is defined as in (5.1). This can be shown as (5.3) or
almost as (5.2). If, however, R, , is defined with a randomizing device in order
to break the ties, the theorem will of course continue to hold.

Example 5.3 holds true for any discrete random variable, which can take only
a finite number of values. If the range is infinite, none of the theorems in this
paper is applicable, but I guess that a local limit theorem holds also in that
situation, regardless of the definition of the rank sum.

6. Possible generations. The results of this paper cannot easily be generalized
to cover other rank statistics. For our proof it is essential that R, , can be writ-
ten as a sum of random variables, which are independent given one of the sam-
ples. A general rank statistic cannot be written in that way. It is, however,
possible to treat statistics of the following type:

Qn,m = Z;” gn(ri) ’
where g, is a function that may depend on n but not on X,.

It is often of interest to know something about the rate of convergence. Our
proof behaves badly in that respect. It only says that the difference in Theorem
3.1 is at most of order n~* if n and m are of the same size. This can be pushed
down by using better estimates in parts (i) and (iii). It will, however, never reach
n—t since we have not used the exact variance in the limiting distribution.
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