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LARGE DEVIATION PROBABILITIES FOR SAMPLES
FROM A FINITE POPULATION

By J. ROBINSON
University of Sydney

Let X, be the standardized mean of s observations obtained by simple
random sampling from the n numbers @xy, - - -, @nn and let b, be the maxi-
mum deviation of these numbers from their mean. If b, tends to zero then
the distribution function of X, tends uniformly to the normal distribution
function. However this approximation is not adequate at the tails of the
distribution. Here we obtain limit theorems for P(X, > x) in the two cases
when x = 0(b,"1) and x = O(b,~?). These are related to similar results for
sums of independent random variables.

1. Introduction. Let {a,,: k =1, ,n,n=2,3, ...} be a triangular array

of real numbers and suppose that Z],, ., a,, = 0and Z}k nai, =1, Let(R,, ---,

R,,) be a random vector taking each of the n! permutations of (1, ..., n) with
equal probability and for s, < n, let

Xy = (Pngn)" i1y, »

where p, = s,/n and g, =1 — p,. Write F,(x) = P(X, < x). Then if b,
max, g, ., |4/, Hajek (1960) has shown that F,(x) converges to ®(x), where (I>(x)
is the distribution function of a standardized normal variate, if and only if b,
tends to zero. Erdds and Rényi (1959) proved the sufficiency of this result using
an analytically tractable form of the characteristic function of X, and Bikelis
(1969) used this form to obtain a bound on the rate of convergence. This form
is exploited here to obtain limit theorems for large deviation probabilities of
the type described for sums of independent random variables in Feller (1966,
Chapter XVI), Ibragimov and Linnik (1971, Chapter 6, 8) and Petrov (1975,
Chapter VIII). .

Let Q, (4 + iv) be the complex moment generating function of X, defined by

Q,(u 4 vy = (=, exp{(u + v)x}dF,(x)
(1) = ()7 Zxexp{( + W)@, + -+ + @ )(pg) 7t}
— (27er)—1 5 | (q + Pe<u+iu)ak<pq)—%+a+ia)e—s<a+ie) do
for any a, where here and in the sequel we omit the subscript n from a,,, s,, p,
and ¢q,, X * denotes summation over all choicesof | < k, <k, < --- <k, <n
and B,, = (*)p’q*~*. For since
s’ixei"’ﬂZZﬂ', m =

0
k:0’ m=i1’i23"'s
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914 J. ROBINSON

we can write the product behind the integral as a sum and only terms appearing
in the sum given by > * do not vanish.

In the next section we will obtain an approximation for Q,( + iv) of a form
which will subsequently be used for asymptotic large deviation results. Here a
saddlepoint approximation is used for the integrand in (1). Section 3 contains
the main result giving an estimate of the relative error of the approximation of
1 — F,(x) by 1 — @(x) for x = o(b,”?). Then in Section 4, we use Lemma 1
and a general result of Plachky and Steinebach (1975) to obtain, under some
restrictions on the g, the limit of n~'log [1 — F,(x,)] for very large deviations,
when x, = O(nt). This result is compared to the earlier result of Stone (1969).
In Section S we consider the relationship of these limit theorems for simple
random sampling to similar results for Poisson sampling.

2. The moment generating function. Let
K(2) = log (pe*” + qe™*) ,

for z = u + iv, where log denotes the principal value of the logarithm. Then
since

. —prj2 u —pu 2pge'1-?*(1 — cos v)
@) lper 4 gerp = (pern 4 genrry [1 - 2ACTEC S S0 |,

and

Pqe(q-—p)u

“ e gy =

with equality only when u = log (¢/p), it is readily seen that K(z) is an analytic
function of z in the region |u| < Cand [v] < 7 — e forany 0 < ¢ < 7w and 0 <
C < oo. In the sequel B will denote a positive quantity depending only on p
but which may change with each occurrence. For any fixed 0 < p* < 1, if
p* < p<1— p*, then B will be bounded. Write K'(z), K'(z), K"'(z) for the
first, second and third derivatives of K(z) in the domain of analyticity. In the
sequel }; will always denote summation over the subscript k from 1 to n.

LEMMA 1. For any fixed C > 0, if |u| < Cb,”*(pq)~*, then there exists e > 0
and B > 0, depending only on p, such that for |v| < eb,~'(pq)},
“ Q.(u + i) = B;})(2n 3, K,")"teEXitioma—ivied(] 4 R)
where
6 m=0)tTak’, )= ek — (T 4K )T K],

where K, K,’ and K," are the values of K(x), K'(x) and K" (x) evaluated at x =
ua,(pq)~t + a,(u), where a,(u) is the unique real solution of the equation

(6) 3 K'[ua,(pg)~t + a] = 0
and where

™ IR| < Bb,([v]* + B)etvos’ .



FINITE SAMPLE LARGE DEVIATION RESULTS 915

Proor. In the integral given in (1), let § = ¢n~* and write {, = ua,(pq)~* +
a and &, = va,(pg)~t + ¢nt. Then

Q.(u + iv) =1, + I,

where

) I, = (2nB,,n¥)" {70 exp{ T K(C, + i€,)} d

and

) I, = (27B,, 1) (ointcigicont [1i= [qe7P k4R 4 petitien’] dg ,

where 0 < ¢ < }r will be chosen later. Forany C > 0, if —2C < x < 2C, then
we can find 6 > 0, depending only on p, such that

(10) K"(x) = pge't=»"(pess + ge7*)* > 8
and for —}r <y < 3,
[K"(x + iy)] < B.

Then using a complex version of the Taylor series with remainder (see, for
example, Copson (1935, pages 72-73)) for the integrand E in (8), we have

E = exp 2 {K(Gu) + i6:K'(Gh) — 367K (Ch) + $0./€°K" (Ch)}
(11) = exp {2 K(&) + w(pg)™t Z aK'(Cy) + ign~t 3 K'(Gy)
— $(pg)~* X a’K" (&) — vd(npg)~t 31 4, K"(C,)
— 3¢t T K"(G) + 30, 216K ()}

where 6, is some quantity with |6,| < Bd~!, for |{,| = |uay(pq)~t + a| < 2C.

For any fixed u with |u| < Cb,"Y(pq)}, 3] K'(uay(pq)~t + «) is negative when
a < —C and positive when a > C. Further, it is strictly monotone since
K" (ua,(pg)~* + a) > 0. So (6) has a unique solution a, = a,(x), say, with
—C < a,(¥) < C for |u| < Cb,"Y(pq)*. The integral in (1) is unchanged by
taking this particular choice for a, so we can rewrite the integrals /, and I,
using this choice of a. Then, using X, K,’, K, as defined in the statement of
the lemma, we have from (11) and (6),

E = exp {Z K, —}% {¢ + n¥(pg)~tv 3 a, K, }2 2 K

S K, n
(12) + w(pg)™t X a Ky
— 3(p ™[ Z a’K"] — (Z aK")[ 2 Kk"]} (I +Ry),
where '
(13) R, = exp{}6, X |&.°K."} — 1.
We can choose ¢’ > 0, such that
(14) 30, 2 6°K < 1 X 67K

- %I:{gb + ”*(Pq)—z*;”K}i,akKk" }’ 2 fk" + v’o',,’] ,
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for |§,] < ¢'. Also, since 6 < K,”” < %, when |{,| < 2C, as shown in (3) and
(10) and since |f,| < Bo~'and b, = n- i, it follows from the c,-inequality (Loéve

(1963), page 155) that
3 ”n B 3
(15) 180, Z 16°K,| = 24(p )g (] + 1¢D)

= Bb, (o] + |¢f) -
So for |§,| < ¢, using (14) and (15) in (13), we have

(16) Ry < Bb.(jv]* + [¢) exp {%[@ + n*(pq)z*vKZ"ak >
X Z—K",i -+ 1}20”2:1} .
n

Let ¢ = ¢’/3 and consider |v] < ¢b,7'(pq)}. If |¢| < 2en? then |§,| < 3e = ¢.
To estimate /, we need to integrate E over the range || < 2ent. Since
(7) (L aK) = (L a’ K2 K)
and from (3) and (10), 0 < K,”" < }
ni(pg)~tv T a, K"
Z Kkll
So we have, from the c,-inequality (Loéve (1963, page 155))

< ”Q(Pq) *| < Bjy|.
T 2(no)

(18)

¢ + ni(pg)~tv 3 a, K"

(19) ol < 2° S

+ B

So from (16) and (19),

ety R, exp«{ <¢, + nt(pg)~tv 3] a, K" >2 2. K, " d¢l

(20) K

< Bb,(jvf + B)et™’
Also for [v] < ¢b,~(pq)t,

(21) n¥(pg)~tv ¥ a, K,

Z Kkll
s0, since P(x) < x~*exp(—4x?) for x > 0,

H 3 3%} ”
St exp =3 (¢ + <Pq)ZvKZ”akKk > T K, ¥ ¢.
B(X Ky")"exp(—4¢* 2 K\)
B(Z K\")"t exp(—3v’0,’ — je’on)
Bb'n(Z Kk")"ie‘}vzanz ,

< ent,

(22)

IA A A

where we have used the inequalities K,”” > ¢ and

(23) 0. = (p9)~' 2 a’K) = (pg)7'b.> X K\ .
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Further,

@) sm.expl—3(p+ "2 ");K‘v‘,,akK"” ) ER N dp = @iz

So, combining the results (20), (22) and (24) in the integral of E over the range
|¢] < 2ent, we have

(25) I1 = B;ql(zn' Z Kk”)—éez Kk+i11mn-§v2a,n2(1 + Rz)
where
(26) |R,| < Bb,(Jv]* + B)e“’z"

To estimate I, for |v| < ¢b,"(pq)}, we note that 2ent < |¢| < 7nt and so
|€x| > ¢. Also from (2)
27) |ge~?Crtin) 4 pettCititn)|? = K[l — 2K"(§)(1 — cos §)]
Fore < |§,] <2m — ¢,
(28) I —cosé, =1 —cose=¢%2 — 24 = €%3,

for ¢ < 2. So using (27) and (28) and putting a = a,(x), the solution of (6),
we have

(29) M= lgem?cetien  petteutién’] < exp[ 3 K, — 3¢ 3, K,
< exp[X K, — L%, — #5¢%n]

where we have used the inequalities K,”” > ¢ and (23). Using the estimate (29)
in (9) we have, for |v| < b,7'(pq)t,
(30) L] < B;lexp[2 K, — 1ve, — {e%n]
< Bb,B;'(2r 3, K) texp[) K, — tv%0,]] .
Combining (25), (26) and (30) leads immediately to the result (4) with the
inequality (7).

REMARK. It is worthwhile noticing that in the particular case when p = ¢
and the a, are symmetric, that is when }; 4% =0 for j=1,2, ..., the
solution of (6) is « = 0.

3. The relative error of the normal approximation. Let V/, be an associated
distribution for F,, defined by

(310 dV,(x) = [Qu(u)] e dF (x)

and let G,(x) be the distribution function of a normal variate with mean m, and
variance ¢,>. Then the characteristic functions of ¥, and G, will be denoted by
Q,(v) = Q,(u + w)/Q,(u) and Qu4(v) = exp(ivm, — $v%s,%), respectively. First
we show that G, gives a uniform approximation for V.

LEMMA 2. For any C > 0 and |u| < Cb,”'(pq)t, there exists B > 0, depending
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only on p, such that
(32) sup, |V, (x) — G (x)| < Bb, .

Proor. We will use the well-known inequality (see, for example, Feller (1966),
page 501), sup, |V,(x) — G, (x)] < (%7 [9|7YQy(v) — Qu(v)| dv + 12m*/x T, where
m* = sup, |G'(x)| = (270,%)t and we take T = ¢b,"!(pq)*, with ¢ chosen as in
Lemma 1. From Lemma 1, we have for [v| < ¢b,~(pq)?

14+ R

Q,(v) = exp[ivm, — {v’s,}] (T’

b

where R is given in (4) and satisfies the inequality (7) while R’ is the particular
value of R taken when v = 0 and so
|R'| < Bb, .
We will assume |R’| < 4, since otherwise we can choose B in (32) so that the
inequality is trivial. So
_ R — R|
33 v) — Qq(v e-iiegt [R — R'|
(33) 12,(0) — Ca(0)] < TR
< Bb,([v]? + B)e i’
Now since ¢ < K,”,
0.} = (pg) L (@ — X @ K" [ 3 KK,
> d(pg) (e — X @K 2 K) = 9(pg) -
So using (33),

(34) 127 + §1 [0]71Qu(v) — Qu(v)| dv < Bb, -
For Jv| < 1, we notice that
(33) Q4 (v) — Qu(v)| = V] sUPyses Q' (1) — QA ()] -
From (8)

dl 2ent

(36) 71)1. = [27xB, n*7 §*22y 3 ia, (pq) P K (C,, + i€, )eE Xkt dg |

where the notation is as in Lemma 1 and the integral is evaluated at « = «a, ().
Now at @ = a,(u), we use a Taylor expansion to obtain

i(pg)~ Z anK'(Ce + i€5)

(37) =i[2 aK, + 2 ai& K/ + 0,7 |a][§]°K,"],
. b3 -3 K.
=im, — ?)a,n?(Pq)i _ <¢ + n U(Pq)zz sz’:,ak k > Z akKk”

+ 0:.6,(14° + [v)

where 0, and 6, are bounded by positive quantities depending only on p. Now
expanding the exponent as in Lemma 1, and integrating as we did to obtain



FINITE SAMPLE LARGE DEVIATION RESULTS 919

(25), we obtain from (36) and (37),

dl

(38) 4= Bar DKL) eE(im, — vo,) explivm, — 4070.7] + R]
v

where, since |v| < 1,
39) |Rs| < Bb, .
Further,

d:: = (27B,,m*) 7" (anbsigicent 2 0(PG)H(e7 CHHER — emPCitiER)

X Hk,# (PeQ(Ck+iEk) + qe—p(Ck+iek)) d¢ .
In the same way as we obtained (30), we see that for |v| < 1,

(40) l%’l < Bb,B;}(2n 3 K,y teE Kk
v
Now since Q,(v) = Q,(u + )/Q,(u), it follows from (38), (39) and (40), that
(41) 0//(v) — QJ/()] < Bb, .
So from (35) and (41),
(42) L [o[7Qp(v) — Qu(v) |dv < Bb, .

Now the lemma follows from (34) and (42).

Now we can state and prove the main result giving an estimate of the ratio
of the tail probability of the distribution of X, to the corresponding tail prob-
ability of its normal approximation. ‘

THEOREM 1. Suppose b, —-0asn— coand 1 < x, = o(b,™), then
*3) L= Fo(x,) = [1 = @(x,)]em st [1 + O(x,b,)] ,
as n — oo, where 2,(t) is a power series which is majorized by a power series with
coefficients not depending on n and convergent in some circle, so 4,(t) converges
uniformly for sufficiently small |t|. If @ = a,(u) is the solution of equation (6) and

m, = m,(u) is defined in (5), then we can define u as the unique real root of the
equation

44) b,m,(u) =1t.

Then 2,(t) is defined by

(45) P21 = b, 71X Ky — (p) ™ T @Ky’ + 3(pg) (T @ KY)]

where K, K, are as defined in Lemma 1. In particular, 2,(t) = 2,,t + 23, 1> + -+ -,
with

46 bAa =91"7P 3

( ) n"1n 6(Pq)é2ak

_1—6pg «_(@@—=p_ (@-—p) 0t
2ipg =% 8npg 8pq (28 -

n2n
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Proor. From (31),
1 — Fn(x'n) = Qn(u) S:ﬂ e~ an(}’) :

We use the approximation of Lemma 2 for V,(x) and the approximation of
Lemma 1 for Q,(«). Then for u > 0,

47) 1 — F,(x,) = B;l(2r 3 K" ) teZ Xp="mn
X (7)) §5 —mse, €0 0 dy 4+ O(b,)][1 + O(b,)] -
Consider the function

[z 0) = L K(za(pg) ™t + 0)

as a function of the two complex variables z = 4 + iv and { = & + if, with a
power series expansion in z and { about (0, 0), which converges for |z| <
b,7'(pg)t and |{| < 1, for then |(pg)~tza, + {| < 2 < =. The series is

[0 = 32 + nlpg) + d1(2° T a® + 32%(pg)t + nC(pg)?) + -,

where y; = (¢ — p)(pg)~%, o = (1 — 6pq)/pgq, - - - are the standardized cumulants
of the binomial distribution. This series is majorized by the series

9(z, §) = ¥(2* + nC?pq) + &|1:|(2%, + 220(pg)t + nl¥(pg)t) + - -

obtained by replacing 7, by |r,| and 3] a,” by 6,7% g(z, {) is convergent for
|zb,| < (pg)t and || < 1. Also the partial derivatives of f™(z,{) with respect
to z and {, denoted £, (z, {) and f,™(z, {), respectively, are majorized by the
corresponding partial derivatives of g(z, {), which are also, of course, convergent
for |zb,| < (pg)* and [{| < 1.

f:"(z,8) = X K'(za,(pq)~t + €) is an analytic function of z and { with a
power series expansion in z and { about (0, 0) and with the coefficient of { in
this expansion equal to pg. Further, f,(z, {) is majorized by g.(z,{). So
following the methods of Hille (1959, Volume I, pages 269-272), we see that
the equation

(48) fM(2,8) =0

has a unique solution { = {,(z), which is an analytic function of z with a power
series expansion majorized by the solution { = y(z) of the equation

9:(z, H=0.

Now 7(z) converges for |zb,| < ¢(pq)t, for some ¢ > 0 not depending on n, and
in this circle |y(z)] < 1. So {,(z) converges in this circle and is bounded by 1
there.

So f,™[z, £,(2)] is an analytic function of z in the circle |zb,| < ¢(pq)?, with
the coefficient of z in its power series expansion equal to 1 and it is majorized
by g.[z, 7(2)] in this circle. Consider the equation

(49) t=f"(2C(2) = (p9)~* T aK'[za(pg) ™t + Ca(2)] -
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This equation has a unique solution z = z,(#) for small enough | and this
solution is majorized by the solution z = k(f) of the equation 7 = g,(z, 7(2))-
k(f) converges and |k(1)b,| < ¢(pg)t, for |1] < ¢’, for some sufficiently small ¢’ >
0, not depending on n. So z,(f) converges and |z,(1)b,| < ¢(pg)* in this circle
with centre + = 0 and radius not depending on n. If

(50) A1) = [P (2a(0), Calza()]) — 2u(OF + 317
then 2,(7) is uniformly convergent for || < ¢’.
For z = u, a real number, {,(x), the solution of (48), is equal to a,(u) defined
in Lemma 1. Further, for x, real, the equation
b'nxn = bnmn(u) = (P‘])-*bn Z ach’(uak(pq)—é + an(u)) ’
has a unique real root u, = u,(x,b,) = 7,(x,b,), the solution of (49), for x,b,
sufficiently small. Then 2,(7) in (50) is the same as 2,(¢) in (45) for real ¢.
Now returning to (47), we have, after putting x, = m,(u,),
(1) 1 — Fo(x,) = By)(2n T K")eEMxnnt il [1 — @(x,)]
p(uﬂan) O(b'ﬁ)]
x | Pla%s) 4
p(x,) (%)
where o(v) = et”’[1 — O)]. If (pg)la, () = ¢, + ;4 + ¥’ + - - -, is defined
by (6), then
0= (p9)~t L K\ = nay(pq)* + 4rs(#* + na.’pg)
+ 70w T @) + 3ua,(pg)t + na(pg)'] + -
So ¢, = ¢, = 0and

0 = w(irs + ne,] + widr. L al +ne] + -+ -

Thus ¢, = —7,/2n, ¢, = —7, Y, a®/6n, ---. So
(52) a,(u) = —uPry/2n — 1, 2 @ ’f6bn 4 - - -
Also

X, = (p)~t L a Ky
(33) = (p9)* L auK'[(pg) Hua, — 1,0[2n — 'y, I a)f[6n + - - }]
=u+ 3, 3 a4 (e 2 at — 3r?n) + -
Inverting this power series gives
(34 Uy, = X, — 3X,°15 2 @’
+ %3 @) — dre D at + 2]+ e
Also if 2,(¢) is defined as in (45), then
X An(Xa0,) = 20 Ky — Upx, + 3,7
= X b Ay + X0, + -0y

where 1,,, 4,,, - - - are given in (46).
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Now
% - ;1; <p() < —i ,
SO
(3%) xub, < b,[o(x,) < x,b,(1 — x,7%)7?
and
-1
(36) u,‘i;: (1 - u””lo,,2> < 4"2’(‘;3') < u::;,, (1 B x,1,f> '

Also from (54), for x,b, small,

u, = x,[1 + O(x,b,)],
o from () a(ty) = O(x,,?)

and so from the form of K" given in (10),
o, = (pg)7[Z a’K)" — (T aK,")'| 2 K,\"]
=1+ 0(x,b,).
Thus

u,0, = x,[1 4+ O(x,5,)]
and so from (56)

(57) Oa%) — | 1 O(x,b,) .
0(x,)

From Stirling’s formula
B,, = (2zn)}[1 + O(n~%)],
so using this and the form of K" given in (10),
(58) B)2r L, Kyt =1+ O(x,b,) .
Now using (55), (57) and (58) in (51), we have
I — Fy(x,) = estnisntwl 1 — O(x)][1 + O(x,b,)] ,

where x,’4,(x,b,) = X K, — u,x, + $x,?, as required.

4. Results for very large deviations. Some recent work summarized in
Bahadur (1971) has been concerned with results for large deviation probabilities
for x = O(n?). In this section we will obtain results of this type for the distri-
bution of X,. Results of this type were obtained by Stone (1967, 1968, 1969)
by different methods. Particular cases were also studied by Sievers (1969) and
Hoadley (1967). We will derive the main result of Stone (1969) as a consequence

of our result at the end of this section.

In this section we are interested in limit results rather than in approximations,
so we will assume that the sequences ntb, and p, converge to b > 0 and 2 with

0 < 2 < 1, respectively.
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THEOREM 2. Write u = t(npq)} and put
h™(t, a) = n7' 3] K(ta,nt 4 a) .

Assume that p, — 4, for 0 < 4 < 1, that b,n* — b > 0, and that h™(t, a) converges
pointwise as a function of t and « to h(t, @), which we assume has continuous partial
derivatives h,(t, a) and h,(t, a) with respect to t and a. Then, for any constant C >
0 and any sequence {x,},.,,.. such that x,(pq/n)t — a e {h(t, a(t)): a(t) is the
solution of h,(t,a) = 0, for 0 < t < C},

(59) lim, , n=*log [l — F,(x,)] = h(z, a(r)) — th(z, a(7)) ,
where a(t) is the unique solution of the equation

(60) ho(t,a) =0

and t is the unique solution of the equation

(61) hy(t, a(t)) = a.

Proor. Forany C > 0, « = a,(t(npg)?), is the unique solution of 2,™(t, a) =
0, for 0 < t < C, as obtained in Lemma 1. Also A (t, @) > 6 > 0, for 0 <
t < Cand |a| < C, where 0 is a function of p only and is bounded away from
0 since p is, for large enough n. So, since k,™(t, ) is increasing as a function
of a for each r and since h,(t, a) exists, h,™(t, &) converges to h,(t, a) and since
h(t, @) > 6 > 0, for |f| < C and |a| < C, h,(t, @) is strictly increasing. So
(60) has a unique solution, a = a(t), and a,(#(npq)*) converges to a(r).

From Lemma 1, the moment generating function of F, is Q, and so from 4),
(7) and (58),

(62) n~tlog Q,(u) = A™[1, a,(1(npg)H)] 4 O(n™) .

Now the theorem of Plachky and Steinebach (1975), together with (62) and the
fact that A™(t, a,[1(npg)t]) — h(t, a(f)), imply that (59) holds, where 7 is the
solution of equation (61).

Let G, be the empirical distribution function with jumps of 1/n at points
nta,. Assume that G, converges weakly to a distribution function G. Then

h™(t, a) = n' Y K(tnta, + a)

(63) — § log (pen=*) 4 ge=r+%)) dG(x)
= h(t, a) )
say. So
_ pqx(eq(tx+a) — e—p(tz+a))
(64) h(t,a) = § Peq(m.,.a) + ge-ritsrw dG(x)
and
(65) ho(t, @) = § PAE T =€) a6

q(tz+a) —p(tz+a)
pe -+ qe
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Equating the right-hand side of (65) to 0, we can reduce the equation to

dG(x)

66 A=(__"27
(66) S T Rew

where R = ge=*/p and H = t. Also equating the right-hand side of (64) to a,
we can reduce the equation to

x dG(x)
1 & Re %=

=a,

(67) )

after noticing that { x dG(x) = 0. Further, (63) can be put in the form
(68) { log (¢”* + R) dG(x) + log p + qa .
So if x,(pg/n)* — a we have, from Theorem 2 and (68),
lim, . n=*log [l — F,(x,)] = { log (¢”* + R) dG(x) — Ha
+ (1 —2)logR + 2logZ + (1 — ) log (1 — 2)

where (R, H) is the solution of (66) and (67). This is just the result of Theorem
3.1 of Stone (1969).

5. Relationship to sampling with replacement. Let V,, ..., ¥V, be inde-
pendently identically distributed random variables taking values 0 and 1 with
probabilities p and g, respectively, and define

Yn = (pq)'* Z Vkak .

Then Y, and X, are related as sums obtained from the same set of a,, - - -, a, by
Poisson sampling and by simple random sampling, respectively. Some of the
proofs of the asymptotic normality of X,, for example Hajek (1960), used the
fact that X, and Y, are asymptotically equivalent and Stone (1969) used a large
deviation result for Y, to develop the result discussed in Section 4. Y, is the
statistic used for one sample nonparametric tests. So a comparison of the limit
results in the two cases is worthwhile.
The cumulant generating function of Y, is 37 K(ua,(pg)t). If we define

m,* = m*(u) = (pg)~* X a, K'(uay(pg)7?) ,
then a result analogous to Theorem 1 holds, with
I~ F,¥(x,) = e "ot 1 — O(x,)][1 + O(x,b,)]
where F,* is the distribution function of Y, and 2,* is defined by
£2,%4(1) = b,/[ X K(uay(pg)™*) — um,* + ym,*’]
and u is the unique real root of the equation
b,m*(u)y =t.

Further, a result analogous to Theorem 2 will apply to the limit of n=*log [1 —
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F,*(x,)], if for t = u(npq)~*, n~* 3] K(ta,n*) converges to h(), which is continu-
ous and has a continuous derivative. In the particular case when p = g and the
a, are symmetric, we see from the remark in Section 2, that a, = 0, s0 2,(f) =
2,%(t) and a(r) = 0, so A(t) = h(t, 0), where a(t) and h(t, «) are defined in
Section 4. So in this case, the limit results are the same. This remarkable fact
was noted for the case of very large deviations by Sievers (1969) and Stone
(1967), in the special case of the Wilcoxon one and two sample statistics.
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