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In this paper we discuss characterizations, basic properties and applica-
tions of a partial ordering, in the set of probabilities on a partially ordered
Polish space E, defined by Py < P,iff § fdP) < { fdP; for all real bounded
increasing f. A result of Strassen implies that P, < P; is equivalent to the
existence of E-valued random variables X; < X; with distributions P; and
P;. After treating similar characterizations we relate the convergence
properties of Py < P; < --- to those of the associated X1 < Xz < ---. The
principal purpose of the paper is to apply the basic characterization to the
problem of comparison of stochastic processes and to the question of the
computation of the d-distance (defined by Ornstein) of stationary processes.
In particular we get a generalization of the comparison theorem of O’Brien
to vector-valued processes. The method also allows us to treat processes
with continuous time parameter and with paths in D0, 1].

1. Characterizations of the stochastic partial ordering for probabilities. We
shall consider the class _#Z(E) of probability measures on a partially ordered
Polish space E, i.e., a complete separable metric space E which is assumed
throughout to be endowed with a closed partial ordering (<) and the g-algebra
& generated by the open sets. All subsets of E and functions on E are taken
without explicit mention to be .5 -measurable. Let _#*(E) denote the set of
bounded increasing (i.e., x < y — f(x) < f(y)) real-valued functions and _#(E)
the family of “increasing” sets A C E, i.e., sets A for which the indicator func-
tion is increasing. Equivalently 4 e _#(E) iff xe 4 and x < y together imply
y € A. See Nachbin (1965) for general information on ordered topological spaces.

We say that P, e _#(E) is stochastically smaller than P,e _#(E), and denote
this by P, < P,, iff { fdP, < { fdP, for all fe _#*(E). A simple approximation
argument shows that this is equivalent to the requirement that P,(4) < Py(A)
for all A€ #(E). Clearly in this case the inequality { fdP, < § fdP, holds even
for all increasing f for which the integrals are well defined.

If E, and E, are Polish spaces with g-algebras &, and &, respectively, a
stochastic kernel in E, x E, is a function k: E; x ., — [0, 1] such that k(., A4)
is measurable for each 4 € &, and k(x, «) € _#(E,) for each x e E,. If k is such
a kernel and P, € _#(E,), then P,  k is the element of _#Z(E, x E,) determined by

(Pyx k)(Ay; % Ay) = §,, k(x, A,)Py(dX) .
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We denote the second marginal distribution of P, « k by P*. A stochastic kernel
k in E, x E, is said to be stochastically monotonic if k(x, +) < k(y, +) for all
x < y. A stochastic kernel in E x E is called “upward” if for all x, k(x, <) is a
measure with support in {ye E: y > x}.

The following theorem, much of which is known, will be basic to all that
follows:

THEOREM 1. The following conditions are equivalent for P,, P,e _#(E):

(@) P, < Py
(ii) there exists a A€ #(E x E) with support in K = {(x, )€ E x E: x < y},
with first marginal P, and with second marginal P,;

(iii) there exists a real-valued random variable Z and two measurable functions
fand g2 R — E with f < g such that the distribution of f(Z) is P, and that of g(Z)
is P,;

(iv) there exist two E-valued random variables X,, X, such that X, < X, a.s. and
the distribution of X, is P; (i = 1, 2).

(v) there exists an upward kernel k on E x E such that P, = P},

(vi) Py(B) < Py(B) for all closed Be _#(E).

Proor. The key implication is (i) = (ii). It is a special case of Theorem 11
of Strassen (1965), obtained by taking his ¢ = 0 and his v = K.

Now assume (ii). The probability space (K, 4) is isomorphic mod 0 to (B, B, P)
where B is a Borel subset of R!, B is the collection of Borel subsets of B, and P
is a probability measure on (B, B). This was shown by Rohlin (1952). See also
page 14 of Parthasarathy (1967). Let Z: K — B be the isomorphism and let
f=p(Z7) and g = p,(Z~'), where p, and p, are the projections from E x E onto
the two factors. Then (iii) holds.

Clearly (iv) follows from (iii) (and of course also from (ii), if one prefers not
to use Rohlin’s result).

To get (v) from (iv) note that E is Polish and hence there exists a regular con-
ditional probability distribution k(x, B) = P{X, e B|X, = x}. As the distribution
of (X;, X;) is concentrated on K we can find a version of k which is upward by
modifying the original k on a P-null set.

Now assume (v). Let Be . #(E) be closed. If x e B, then k(x, B) = 1. Thus

Py(B) = {5 k(x, B)P(dx) = {; k(x, B)P\(dx) = P\(B),

so that (vi) holds.

To complete the proof we need only show that (vi) implies (i). Assume (vi),
let ¢ > 0 and let 4 € _#(E). There exists a compact subset K, of 4 such that
P(A) — P(K,)<e (i=1,2). Let H={yeE: x <y for some xeK,}. By
Proposition 4 on page 44 of Nachbin (1965), H is a closed set in _#(E). This
may also be checked directly. Therefore P,(H) < P,(H). Since K, T H C 4,

P(A) < Py(H) + ¢ < Py(H) + ¢ < Py(A) + <.
Since ¢ is arbitrary Py(A4) < Py(4), proving (i). [
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REMARKS. The main import of the theorem is that (i) implies any of (ii)—(v).
In the case E = R’ this is very easy to see using distribution functions.

Nawrotski (1962) treats E = 7Z* (with (x;, x,) < (y;, y,) = x, < y,and x, < y,)
and his proof can be adapted to arbitrary countable E. His proof is still of in-
terest since it is constructive in nature. If E is finite, 2 on E x E is found with
finitely many operations. Other proofs of (i) — (ii) with various degrees of
generality were given by Meyer (1966, page 246) and Preston (1974) and in
unpublished notes of Snijders (1976) and Major (1975), who uses a continuous
form of the marriage lemma, the Konig-Egervary theorem, to get a result con-
taining that of Strassen and a theorem of Dudley (1968) on the Prokhorov metric;
for this method see also Lovasz and Major (1973).

We thank P. Major, L. Lovasz, H. G. Kellerer, R. Pyke and W. Vervaat for
pointing out these references.

Nachbin (1951) has proved that any finite signed Radon measure x on a com-
pact partially ordered space with the property that § f du > 0 for all continuous
increasing f has the form

Sefde = $& {f(y) — f0)}(dx, dy)

where v is a nonnegative measure, and Hommel (1973) has a generalization of
this to locally compact spaces. In Polish spaces their results follow easily from
Theorem 1. Nachbin also showed that v satisfies ||v|| = §||¢||. Nachbin’s re-
sults can be used to obtain Theorem 1 (i) = (ii) for the case of compact ordered
spaces, and hence also of uniformizable ordered spaces (cf. page 104 of Nachbin
(1965)).

We remark that _#(E) is not in general a lattice under < even if E is a lattice.
For example, let £ ={a = (0,0),56 = (0,1),c = (1,0),d = (1, 1)} with a <
b<d,a<c<d Leteg, denote the measure with unit mass at a, etc. Then
0.5(¢, + ¢,) and 0.5(¢, + ¢,) are both maximal among those measures which are
stochastically smaller than both 0.5(¢, + ¢;) and 0.5(¢, + ¢,).

Since in R! the stochastic inequality P < Q between two measures is equivalent
to the statement that the distribution function of P is = the distribution func-
tion of Q, it is tempting to expect this also in R*. However, the partial order
defined by inequality between the distribution functions is in R* (n = 2) not
equivalent to the concept considered in this paper.

2. Stochastically ordered probabilities on product spaces. We now consider
products E” = E; x E, x --- x E,and E* = [][¢, E, of partially ordered Polish
spaces E; with the product topology and the coordinate-wise partial ordering.
Their elements will be denoted by x™ = (x;, - -+, x,) and x* = (x;, X, - -~) re-
spectively, i.e., we have x» < y"iffx, < y, foralli. E™and E* are again partially
ordered Polish spaces (see Billingsley (1968), page 218).

ProprosITION 1. Let E,, --., E, be partially ordered Polish spaces, P, Q,€
A(E,), P, < Q,, and let p,, q, (i = 2, - - -, n) be stochastic kernels on E'-* x E,;
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such that

(1) XY ) < gy )

whenever x'=! < y*='. Then
2) Poxpyxovxp, < Qi xgyx-c-xq,.

Proor. Let n = 2. By Theorem 1(v) there exists an upward kernel k on
E, x E, with Q, = P}*. Let Ae _#(E? and let

J(x) = g, 1i(xs X)pa(xy, dx5) 5 9 = Vg, Ly y2)9:(01> 4Y5) -
If x, < y, then f(x,) < g(y,) since A € #(E? and (1) holds. Hence

$e, SO Pi(dxy) = (g, §1y 2y f(X)K(x15 dyy) Py(dXy)
= Vi, Siyzeg 9K (xy5 dyy) Pi(dx,)
= (g, \&, 9(y1)k(x1, dy))Py(dx,)
= Vg, 9(1)Q:(d))
and this means that P, x p, < Q, x ¢,. Now apply induction. []

REMARKS. Proposition 1 is similar to the independently obtained Satz 4.1 of
Franken and Kirstein (1977), who give the result in the case E, = E, = ... =
E, = R'. Note that (2) implies P, < Q,, where P, and Q, are the kth marginals
of the measures in (2). Thus, Proposition 1 generalizes the theorem of Kalmykov
(1962). If p, is stochastically monotonic, then (1) need only be assumed for
x=1 = y*=1 since then, if xi=1 < yi=1, p(xi71, ) < pi(pY, ») < ¢u(y*Y, +), so that
(1) still holds. Similarly we need only assume (1) for x*~* = y*~if g, is stochasti-
cally monotonic.

PROPOSITION 2. Let E,, E,, - - - be Polish spaces and let F = E~ = [[, E,. Let
P, Q € _#(F) and let P'(Q'") be the marginal distribution of the first i coordinates
of P (respectively Q), so that P, Q' e _#Z(E"). If

(3) P(i)<Q(i), i=1,2,"‘,
then P < Q.

PROOF. Let (z, z,, ---) be a fixed element of F. By Theorem 1 (iv), there
are, for each m, random m-vectors (X,}, ---, X,”) and (¥}, ..., Y, ™) in E™
with distributions P and Q‘™ respectively and such that X,/ < Y, 7 for j =
1,2, ..., m. Weobtain from these vectors random elements X,, and Y, € F by
defining X, =Y, =z,j=m+4+1,m+ 2, .... Let P, and Q,, be the distri-
butions of X, and Y, respectively. Since X,, <Y, we have P, < Q,,. For fixed
J» the jth one-dimensional marginal of P, is independent of m for m = j; hence
the sequence of such marginals is tight by Theorem 1.4 of Billingsley (1968).
By Tychonov’s theorem, it follows that the sequences {P,} and {Q,,} are tight.
Let U,, be the joint distribution of (X,,, Y,,)in F x F. The sequence {U,} is also
tight and hence has a subsequence {Um’ i=1,2,...;m < my< ...} which
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converges weakly to a probability measure Ue _#(F x F). The marginals
(chosen appropriately) of U are P and Q” and (hence) P and Q. Also, each
U, has support in the closed set H = {(x, y) e F x F: x < y}. By Theorem 2.1
of Billingsley (1968),

U(H) z limsup,_, U, (H) =1,
so that U has support in H. Thus P < Q. []

REMARK. Suppose that fori = 1, 2, ... probability measures P and Q" are
givenon E; x --. x E;in such a way that Kolmogorov’s consistency conditions
are met and such that (3) holds. Then there exist probability measures P and
Q on E with P < Q and marginals P and Q‘” respectively.

ProrosiTION 3. Ler {P,} and {Q,}, m = 1,2, ... be sequences of probability
measures on a Polish space E and converging weakly to probability measures P and
Q (respectively). If P, < Q,, for all m, then P < Q.

ProoF. Foreachm,thereisa probability measure 4,, on E x E with marginals
P, and Q, and with 2,({(x, y): x < y}) = 1, by Theorem 1 (ii). The sequences
{P,} and {Q,} are tight; hence {4,} is also tight and has a subsequence which
converges to some probability measure . The marginals of 4 must be P and Q
and A({(x, y): x < y}) = 1 as in Proposition 2. By Theorem 1, P < Q. []

REMARKS. The relation < on _#(E) is a closed partial ordering with the
weak convergence topology. Sections 6, 7 and 8 (except for some remarks) can
be read independently of Sections 3, 4 and 5.

3. The discrete-time comparison theorem. The following theorem is an exten-
sion of the main case (that is, the case related to Kalmykov’s (1962) theorem)
of the comparison theorem of O’Brien (1975) to random sequences in Polish
spaces.

THEOREM 2. Let E,, E,, - - - be Polish spaces, let P,, Q, € _#(E,), and let p,, q,
be stochastic kernels on E** x E, forn = 2,3, .... Assume P, < Q, and

(4) P'n(x"—l’ ) < ‘In()’"_l’ ')

whenever (x;, -+, X)) £ (J1» *++» Vu_1)- Then there exist random variables X, and
Y, withvaluesin E;,i = 1,2, - .., such that the distribution of X,(Y,) is P,(Q,), the
conditional distribution of X, given X" = x"1 (Y, given y*~) is p(x"7%, +)(9.(y""",
+)), and

(5) PX,<Y,i=12,...)=1.

Proor. Construct P™ = P x p,* -+ xp,and Q™ = Q, x g, * --- x g, as in
Proposition 1, with P < Q™. By Kolmogorov’s consistency conditions, there
exist probability measures P and Q on E*, where P and Q are related to P and
Q' as in Proposition 2. By that proposition P < Q. The result now follows
from Theorem 1 (iv). ]
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Let {X,,n=1,2,...}and{Y,,n = 1,2, ...} be any random sequences in E>
with initial and conditional distributions as in Theorem 2. Then there exist
random sequences {X,} and {¥,} which are defined on a common space and have
the same distributions as {X,} and {Y,} respectively, such that

) PR, < Vun=1,2,..)=1.

This leads to a variety of inequalities between probabilities which are determined
(separately) by the distributions of {X,} and {Y,}. Some examples are given in

CoROLLARY 1. Let {X,} and {Y,} be as above and assume E, = E, = .... Let
Ae A(E).

(i) P(X,e A) < P(Y, € A).
(ii) Let N, =min{n > 1: X, e 4} (= o if X, ¢ A for all n) and define N,
similarly. Then PIN, < n) < P(N,<n),n=1,2,...,and n = oo.
(iii) Let f: E, — R' be nondecreasing and measurable. Then E(f(X,)) < E(f(Y,))
for all n for which the expectations exist.

If the stochastic kernels p,, n = 2,3, ... (orgq,, n = 2,3, ...) of Theorem 2
are stochastically monotonic, it is enough to assume in the theorem that (4)
holds for x*~* = y"~! (see Proposition 1 and the subsequent remark). If {X,}is
related to p, as in the theorem, we also say {X,} is stochastically monotonic.
This extends the concept introduced by Daley (1968).

Various other comparison-type theorems may be obtained from Theorem 2
by making suitable changes of variables. The following theorem on the com-
parison of increments is related to Example 7.2 in O’Brien (1975).

THEOREM 3. Let E be a Polish space which also has a compatible vector space
structure (that is, addition and scalar multiplication are continuous and, if A ¢ #(E)
and x € E, then A + x = {y 4+ x: ye A} e HA(E)). Let P, and Q, be probability

measures on E with P, < Q,. Let p, and q,, n = 2,3, ..., be stochastic kernels
in E*' x E such that
(7) Pn+1(sl’ ceey Sy Sy + A) ~§ qn+1(t1’ AR tn; tn + A)

for all s*,t*e E™ with s, < t, and with (forn > 1)s,, — s, <t,, — 1, i =1,
2,...,n—1,andall Ae #(E). Then there exist processes {S,,n = 1} and {T,,
n = 1} on a common space (Q, .5, P) such that the distributions of S, and T, are
P, and Q, respectively, P(S,,, — S, € A|S}, -+, 8,) = Pusi(S1y -+, Sus A+ S,)
and P(T,.; — T, € A|Ty, -+, T,) =q,u(Ty, -, T34+ S8,),n=1,2, ..., and
PSs — S, £T,y —T,,n=12,...]=1and P(S, < T)) = 1.

Proor. Define a sequence p,, n = 2, 3, ... of stochastic kernels on E"~* x E
(respectively) by

Pa(x" 5 A) = pu(Xp, Xy + Xgy oy Xy e o+ Xy X Xy e X, A)
Define §, similarly in terms of ¢,. By the hypotheses, g,(x*%, «) < §,(y*%, +)
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if x»-1 < y»-1. By Theorem 2, there are random sequences {X,} and {Y,}, n =
1,2, ... with initial and conditional distributions P,, p,, Q, and §, respectively
such that P(X, < Y,,n=1,2,...)=1. Let S, =X, + --- + X, and T, =
Y, + --- + Y, Itis easily checked that the sequences {S,} and {T,} have the
required properties. []

4. The continuous-time comparison theorem. We shall now derive an ana-
logue of the above comparison theorem for processes with continuous time pa-
rameter. This result will be new even for real-valued processes. Let[a, b] =1
be a compact interval in R*. If E is a partially ordered Polish space, so is the
space Dy(I) of functions from / to E which are right continuous and have left
limits at all 7 ¢ /. Here the Skorohod metric is used and x < y if x(r) < y(r) for
all tel. If Iis open on the right (and possibly b = o), D(I) is still Polish,
where we use the Stone (1963) modification of Skorohod’s metric. In either
case the subclass C,(I) of continuous functions from 7 to E is also a Polish space
with the induced topology and partial ordering. We refer occasionally to the
book of Billingsley even though he treats only the case Dgi(I). However, the
considerations for more general E are quite analogous.

We consider processes with paths in D(I). We require some additional nota-
tion. LetJ = {re/: tisrational, r = aort = b}. In writing t* = (1, ¢, ---,
t,) € I*, we assume throughout that r, < t, < --- < 1,. A collection {p,», n =
1,2, ...;mel*: E*x F# — [0, 1]} of stochastic kernels is called a Dy([)-
family if there exists a stochastic process {X,, e I} with paths in Dy(I) such
that

(8) Pt”(xn_l’ B) = P(Xt,” € B|Xm—1 = x"1

foralln=2,3,...,x"'eE~'and B C E.
The following lemma has points in common with Billingsley’s discussion of
separable processes (pages 134-136).

LEMMA 1. Let E be a Polish space with metric m and let X be the set E’ of func-
tions from J to E, endowed with the product topology. The set A = {x € X: there
exists an f € Dy(I) such that x(t) = f(t) for all t € J} is a Borel subset of X.

Proor. The interval /is a countable union of compact intervals; it therefore
suffices to consider the case I = [a, b]. Let d denote the Skorohod metric on
D, (I). Let A be the class of increasing bijections of [a, b] onto [a, b]. Then

d(f,9) = inf{c > 0:32€ A such that (9) and (10) hold} :

%) sup, |A(r) — 1] < e,

(10) sup, m(f(1), 9(A(1))) < < -

Then D(I) is separable and has a countable dense subset {f, f;, ---}. LetT, &
T, < --- be finite sets whose union is J. The set

B = {xe X: x isright-continuous at all t¢e J}
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is a Borel subset of X. For each ¢ > 0, n, j, define the open set U(e, j, n) =
{x e X: 32 satisfying (9) such that m(x(¢), f;(4(¢))) < ¢ for all reT,}. Hence
B(e, j) = Ng=y U(e, j, n) is a Borel set. It is clear that

(11) A S B[N Ush Bk, )]

by the denseness of { f,, f,, - - -}. We show that the reverse inclusion is also valid.
Let x be an element of the right side of (11). Fix re (a, b]. We show x has a
left limit at 7 (right limits are similar). Lete > Oandlets, < 5, < - - - beelements
of J which converge to r. Fix k > ¢* and fix j such that x ¢ B(k~', j). For all
n, thereisan N, such that {s,, 5,, - - -, 5,} & TN" and hence there is a 4, € A satisfy-
ing (9) and m(x(s,), f;(2.(s:)))) < ¢, i=1,2,...,n. By Lemma 1 (page 110) of
Billingsley (1968), m( f;(4,(5:)), fi(Ax(5:41))) < € at all but a set of [ values of i,
where [ is determined by j and . Hence m(x(s;), x(s;,,)) < 3e at all but finitely
many i. Since ¢ and the sequence {s,, s,, - - -} are arbitrary, x(f) must have a
limit as ¢ | r.

THEOREM 4. Let P, and Q, e #(E) with P, < Q,. Let {p,x} and{q,.} be Dy(I)-
families such that

(12) Pin(X*71, 0) < (Y™ ) whenever x"~' < y* .

Then there exist stochastic processes {X,, te I} and {Y,, te I} on a common prob-
ability space, with paths in D(I), with distributions at time a given by P, and Q,
respectively, and with conditional probabilities of {X,} given by (8) and those of Y,
given by (8) with p replaced by q, such that

(13) P(X, <Y, forall tel)=1.

Proor. Let {U,, t € I} be a stochastic process in D () such that (8) holds with
X replaced by U. Let P“™ be the joint distribution of (U,, - - -, U, ) and define
Q" similarly. By considering any enumeration {f, = a, t,, t,, - - -} of the count-
able set J, we may construct processes {X,, teJ} and {Y,, € J} on the same
space (2, .5, P) and with suitable initial and conditional distributions such that
P(X, £ Y, for all teJ) = 1, exactly as in the discrete time case (Theorem 2).
Define theset 4 = {w € Q: X,(w) can be extended to a path in D4(/)}. By Lemma
1, 4 is a measurable set. Thus P(4) is defined and is determined by P, and p;..
Since almost all paths of U, are in D([), we conclude that P(4) = 1. Performing
this extension, we see that (8) remains valid. Extending Y, almost surely to
D(I) by the same means, we have (13). [

ReMARK. The corollary to Theorem 2 has an obvious analogue in the con-
tinuous time case.

5. Markov processes. The theorems of Sections 3 and 4 are more simply
expressed in the case of Markov processes with stationary transition probabilities.
We restrict attention to the continuous-time case since the discrete-time situa-
tion is similar. Let E be a Polish space and let I = [a, b] or [a, b) be an interval
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in R1. A collection {p,: E x % — [0, 1],0 < t < b — a} of stochastic kernels
on E x E is called a Markov Dg(I) family of transition functions if there exists a
Markov process {X,, t € I} with paths in D,(I) such that

(14) pi(x, By = P(X,,, € B| X, = x)

forall xe E, BC E,andt,seR'suchthata < s <t + s < b. Theorem 4 now
reduces to

THEOREM 5. Let P, and Q, € _#(E) with P, < Q,. Let{p,} and{q,} be Markov
Dy(I) families such that

(15) Pi(Xs +) < qys *) whenever x < y.

Then there exist Markov processes {X,} and {Y} on the same space with paths in
D (1), with initial distributions P, and Q, respectively and with (14) and the similar
statement for Y and q holding, such that

(16) PX,£Y,, forall tel)=1.

If either p, or g, is stochastically monotonic for all ¢, then we need only assume
(15) with x = y. Asremarked by Keilson and Kester (1977), for the case E = R*
the class of continuous-time processes with stochastically monotonic transition
functions includes all diffusions processes, even in R*. Keilson and Kester
(1977), Franken and Kirstein (1977), O’Brien (1977), and Sonderman and Whitt
(1977) all show under various circumstances that for pure jump processes, the
condition (15) may be expressed equivalently as an inequality between the two
corresponding transition rate functions. In the case of diffusions, Anderson
(1972) has obtained pathwise inequalities from inequalities between the cor-
responding infinitesimal generators, in the case when the variance term is the
same for both generators and is independent of the location.

6. Stochastically increasing sequences of probability measures. We begin
with a generalization of Theorem 1 to sequences of random variables.

PROPOSITION 4. Let E be a Polish space and {P,, P,, - - -} a sequence of probability
measures on E. The following are equivalent.

(1) P <P <P< .-+
(ii) there exist random elements X,, X,, - - - in E defined on a common space in
suchthat X, < X, < - - - a.s., and such that the distribution of X, is P;, i = 1,2, .. .;
and
(iii) there exists a real-valued random variable Z and a sequence of functions
fi: R > Ewithf, < f, < - such that P, is the distribution of f(Z),i = 1,2, - ...

ProofF. It is clear that (iii) = (ii) = (i). Now assume (i). By Theorem 1 (v),
there exist stochastic kernels &, k,, - -- on E x E such that P, , = P* where
ky(x, +) has support in {ye E: x < y}, i = 1,2, .... Therefore a probability
measure P exists on E~ such that the ith marginal of P is P, and P is concentrated
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on{x*eE”: x, < x,< ---}. To get (ii), take X;: E* — E to be the ith projec-
tion mapping. By Rohlin (1952), there is an isomorphism ¥': (E=, P) — (R, P")
for some probability measure P* on R!. To obtain (iii), take Z = ¥: E* — R!
and f; = X; o U1 []

REeEMARks. The sequence {X;} of condition (ii) is of course a submartingale
sequence. Moreover, if any of (i) to (iii) holds, then (ii) holds for a Markov
sequence {X;} (with nonstationary transition probabilities), by the proof of (i) —
(ii). The question of existence of an increasing process {X,, t € R'} for a given
stochastically increasing family {P,, r ¢ R'} will be considered in a forthcoming
paper of Kamae and Krengel (1977). In the continuous time case, the answer
depends on the nature of E. The next theorem shows that various modes of
convergence are equivalent under an assumption of monotonicity.

THEOREM 6. Let E be a Polish space with metric d, let X,, X,, --- be random
variables from (Q, .57, P) to E with X, < X, < ---, and let P,, P,, ... be their
distributions. Then the following conditions are equivalent.

(i) The family {P;, i = 1} is tight;
(ii) {P;, i = 1} converges weakly to a probability measure; and
(iii) {X,, i = 1} converges in probability.
The condition
(iv) {X;, i = 1} converges almost surely

is also equivalent for all nondecreasing sequences {X,} if and only if E satisfies the
following regularity conditions:

(17) for all sequences (x,) and (y,) of elementsof E with
X, Y =X, ,(n=1), x,—>xeE implies y,—x.

Proor. Clearly (iv) = (iii) = (ii) = (i). Now assume (i) and let ¢ > 0. There
is a compact set K such that

PX;eK)=P(K)y =1 —¢, i=z1.

Let A= N, U {weQ: X, (0)eK}. Then P(4) =1 — ¢. Fix we 4 andlet
S(w) be the (infinite) sequence of n’s for which X,(») € K. Every subsequence
of {X,(w), n € S(w)} contains a convergent subsequence. If xand yare two limit
points, then X,(w) < x for all n € S(w) and hence y < x since the partial ordering
isclosed. Similarly x < y, so that {X,(»), n € S(w)} converges to a point X(w) € E.
There is a positive integer N(w) such that for n = N(w) and n € S(w), d(X(w),
X,(»)) < e. There exists a positive integer N, independent of w, such that N >
N(w) for all w € 4 outside a set of probability < ¢. Forn = N,

PAX,X,)=¢)<ec¢+ 1 —PX,eK) < 2.

Since ¢ is arbitrary, we have proved (iii).
We now assume (iii) and (17). There is an increasing sequence {n,} of positive
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integers such that X, ,— Xa.s. Let{m;} be another increasing sequence of posi-
tive integers. We may assume, by deleting terms of one or both sequences if
necessary that n, < m; < n,,, for all i; hence, X, =X, =X, as. and hence
X,, — Xas. by (17). Thus X, — Xa.s.

Now assume that (17) fails. Take any probability space (Q, %, P) and let
C, e & be such that P(C,) — 0and P({w € Q: w ¢ infinitely many C;}) = 1. Let
X,, Y, be points in E for which (17) fails and assume without loss of generality
that the distance from y, to x exceeds ¢ > 0 for all n. Let X, (0) = y, if w € C,,
= x, otherwise. Then X, — x in probability but not a.s. []

REMARKS. A Polish space for which (17) fails is given by the following path-
ological example. Let

E:{xn:<l—%,0>;n=1,2,.--}U{z_—_(l,O)}

Ufpe=(nin=1,2,...)

with the metric induced by that of R? and the linear ordering x, < y, < x,,, < z
for all n. Condition (17) is clearly implied by local convexity as defined by
Nachbin (1965, page 100). The following example shows that the reverse im-
plication is not valid for Polish spaces. Let E and the metric be as above and
define the partial ordering by a < b if a = x, and b = y, for the same n or if
b = z. An application of Theorem 6 for the proof of a new pointwise ergodic
theorem will be given in a forthcoming paper of Krengel (1977).

7. Stationary sequences. Given two stationary random sequences, we can
obtain pathwise inequalities between them, in the sense of Theorem 2, while at
the same time obtaining stationarity of the joint process.

THEOREM 7. Let E be a Polish space and let P, Q be shift-invariant probability
measures on Q = EZ with P < Q. Then there exists a shift-invariant probability
measure v on Q x Q with marginals P and Q and with support in H = {(w,, »,) €
QxQ: o £}

Proor. By Theorem 1 (ii), there exists a measure  on Q x Q with marginals
P and Q and with support in H. Let T be the shift operator on Q and let S be
the shift operator on Q x Q; that is, S(w,, ®,) = (Tw,, Tw,). Define a sequence
{¢,} of measures on Q x Q by

fo =1t S0 ST
Since H is invariant under S, each p, is concentrated on H. Moreover, each
t, has P and Q as its marginals in Q and consequently the sequence {z,} is tight.
There is a subsequence with a weak limit v, which is a probability measure also
with marginals P and Q. Since each g, is concentrated on the closed set H, so
is v. Finally v is invariant under S since

Hlan — MUn° S” é 2nt. D
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8. An application to Ornstein’s d-distance. We shall now apply Theorem 7
to derive a formula for the d-distance as defined by Ornstein (1973) of two real-
valued stationary processes. Let again T be the shift in Q = RZ, S the shift in
Q x Q. Let _#, be the set of T-invariant probability measures on Q and _Z
the set of S-invariant probability measures on Q x Q. Forve Fletv e _#r
(i = 1, 2) be the marginals in the first, resp. second factor of Q x Q. We write
the elements of Q x Q in the form v = (v,, w,) where w, € Q (i = 1, 2) has co-
ordinates w," € R (n € Z).

Consider P, Q € _#, such that {; 0, P(dw,) and {, ©,’Q(dw,) are defined and
finite. The d-distance of two processes with P and Q as their distributions can
be defined by the formula

d(P, Q) = inf {{ |0, — o|v(dw): ve _Fs v, = P,v, = Q}.

(This is formally slightly different from Ornstein’s definition, since we do not
want to introduce some of the concepts which play a role in Ornstein’s work,
but it is easily seen to be equivalent.)

LEMMA 2. d(P, Q) = || 0,P(dw,) — § ©,°Q(dw))|.
Proor. Obvious.
LemMA 3. If P,Qe _F,and P < Q then
d(P, Q) = § 0,°Q(dw,) — § 0, °P(dw,) .
Proor. Takeve J;withy, = P, v, = Q and supportin H = {(»,®,): o, < @,;}.
Then
§00,dQ — {0, dP = {g4q (@) — 0,")(d0) = {4 (0 — 0,)v(dw)
= {u |0 — 0/(do) = (9.0 |0, — 0,|W(d0) .
Now apply Lemma 2. []
THEOREM 8. For any P, Q € _#, we have
(18)  d(P,Q) = § 0 P(dw,) + | 0Q(dw,)
— 2sup{§ w,°R(dw,): Re /7, R < P,R < Q}.
Proor. For any Re _#; such that R < Pand R < Q we have
d(P, Q) < d(P, R) + d(R, Q) (since d is a distance)
= { 0,°P(dw,) + § 0,"Q(dw,) — 2 | ©,’R(dw,) (by Lemma 3),

so that < in (18) follows. To prove the opposite inequality we introduce a func-
tion ¢: Q x Q — Q by defining the nth coordinate of ¢(w,, @,) to be ¢p(w,, w,)* =
o," N\ 0" (ne Z).

The mapping v — § |0," — 0,’|v(dw) from _Z(Q x Q) into [0, co] is lower semi-
continuous, as shown by Billingsley (1968, Theorem 5.3) so that the infimum
in the definition of d(P, Q) is assumed; that is, there exists a v in the class
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fve _Fs:v, = P,v, = Q} with
J(P, Q) = § |0 — 0l|y(dw) .

Let R" =vo ¢!, then R'e_F. If Ae A(Q), then ¢~ (4) £ 4 x A. Hence
R(4) = v(p~(A4)) < »(4 x Q) = P(4). Thus R’ < P. Similarly R < Q. On
the other hand

d(P,Q) = § o — |(dw) = § (& + 0 — 20(y, ©,)')v(dw)
= § 0,P(dw,) + | 0," Q(dw,) — 2 § ©,"R'(dw,) .
Thus we have proved > as well. []

The point of the theorem is that the computation of an infimum over a class
of distributions in Q x Q is replaced by a supremum involving only Q. If P < Q,
the theorem (or Lemma 3) gives an exact formula for J(P, Q).

A large class of examples with P < Q can be obtained by considering pairs
of irreducible positive recurrent Markov chains with one-dimensional distribu-
tions taken to be their stationary distributions. By Theorem 2, we need only
verify for such chains that the stationary distributions satisfy P(w," > z) <
Q(w," > 2) for all z and the transition functions satisfy

Pl > 7|0 = x) £ Qo > le1°=y)

for all z whenever x < y. It is easy to construct pairs of processes with these
properties (from the class of birth-death processes, for example). The assump-
tion P < Q in these examples is important in that a formula for the d-distance
has not yet been written down for the case of arbitrary stationary Markov meas-
ures P and Q, even on {0, 1}Z. Ellis (1975) showed that even in this case, the
infimum in the definition of d-distance is not necessarily attained by such v’s
that are stationary Markov measures on {0, 1}2 x {0, 1}2.

Acknowledgment. The authors wish to thank the referee for a number of use-
ful comments, including the comment that Theorem 1 (i) = (ii) can be deduced
from the results of Nachbin in the compact case.
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