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MARTINGALES WITH A COUNTABLE FILTERING INDEX SET
By J.-P. GABRIEL

Courant Institute of Mathematical Sciences

This. paper is concerned with the almost everywhere convergence of
martingales indexed by countable filtering sets. It is shown that the con-
vergence is a consequence of the maximal inequality as it is in the classical
case. It also contains some results about the law of large numbers when
the index belongs to a sector and an optimal condition assuring the almost
everywhere convergence of martingales in these sectors.

1. Notation. We first recall some definitions we will use in the following.
A set I with a partial order < is filtering to the right if for each «, 8in I, there
exists 7 in I such that a« £ 7 and 8 £ 7; 7 is called an upper bound of « and g.
The notation a £ § (respectively @ 2> B) means that « is less than or equal to 8
(respectively greater than or equal to 8). If a £ 8 (resp. a 2> ) and a # 8,
then we write a € B (resp. a > f). Let (a,),.; be a family of real numbers in-
dexed by a set I filtering to the right. The limit superior and inferior of (a,),.,
are defined in the following way (4 oo included): ’

lim,_ supa, = inf,, sup,,, a,, lim,_ infa, = sup,., inf,,, g,
If these two numbers are equal and finite, then we say that (aa)ae,, or more
simply, a, converges. The number
lim,  a, = lim,_ supa, = lim,_, inf q,
is called the limit of a,.
The symbol N designates the set of positive integers, and K, d in N, the set

of d-tuples of positive integers with the partial order induced by the coordinates.
This relation is defined as follows:

A= (T s ) LB =SS, s S Iy S8, S Sy, e, Py S8,
The sets K, are countable and filtering to the right.

An increasing sequence (a,),. , in a partially ordered set 7 (i.e., a, < a,,, for
each n in N) is called a generating sequence (of 1) if I = Uz, {ael|a £ a,}.
It is easy to show that a countable partially ordered set is filtering to the right
if and only if it contains a generating sequence. But an uncountable set, filtering
to the right, does not always contain such a sequence.

In this paper we consider only real random variables (rv) and we always
suppose that these are defined on an underlying probability space (Q, %, P).
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The classical martingale theory considers processes indexed by N (or R).
Several generalizations of the notion of martingale are possible, when the index
set is no longer totally ordered, but filtering to the right ([4], [S]). We now
give the definition we will use here. Let / be a countable set, filtering to the
right, and (%), an increasing family of sub-g-fields of & (i.e., &, c &,
for each a’ € a’). A family (X,),., of rv is a martingale with respect to (% ,),¢,
if, for each « in I, X, is % ,-measurable and integrable, and if for each a”” » o',
E(X,.| F,) =X, a.e. Let (F,),; be a decreasing family of sub-s-fields of
F (i.e., ¥, C F,, for each ' » a"). A family (X,),., of rv is a reversed
martingale with respect to (% ,),.;, if for each a in I, X, is % ,-measurable and
integrable, and if E(X,., | % ,) = X, a.e. for each a’ > a"’.

2. Convergence of martingales. The convergence problem of martingales
indexed by a countable set, filtering to the right, has been studied by different
authors ([4, 7, 13]). One can show ([7]), that an L,-bounded martingale (X,),cr>
is always convergent in probability, and converges in L,, p > 1 (resp. in L)), if
and only if it is bounded in L, (resp. uniformly integrable). We see that for
this type of convergence, the behavior of the martingale is not affected by the
partial ordering of the index set. The first difficulty appears when we look at
the a.e. convergence. It is a well-known fact that the L,-bounded condition
does not imply the a.e. convergence, as it does in the classical case. In the
filtering case, one must take the structure of the family of s-algebras into
account. One of the most general conditions is given by Krickeberg in [13] and
is called the Vitali condition. The latter, which is automatically verified if I =
N, can be given in the following way: an increasing family (.%,),c, of sub-o-
fields of & satisfies the Vitali condition if for each fine covering (B,),., of an
arbitrary measurable set 4 (i.e., for each a in I, B, is in &%, and 4 C
lim,_ sup B, = MN,e; Ujpza B; a-€.), and for each ¢ > 0, there exists a finite set
{a,, a5, - -+, a,} C I'and a family of disjoint sets (Lal, L%, cee, L%) such that for
eachi=1,2,...,n,L, isasetof &, L, C B, and P{A\A n (Ui, L)} < e
It is proved in [13] that every martingale (X,),., With respect to a family
(% 2)aer satisfying the Vitali condition converges a.e. if it is L-bounded. We
present here a different procedure (suggested by S. D. Chatterji) which makes
the relation with the classical case clearer. The proof of the a.e. convergence
theorem in the case / = N involves the maximal inequality ([7]):

AP{sup,.y |X,| > 4} < sup,.y E|X,|, foreach 1> 0.

Itis then of interest to ask if there is such an inequality for generalized martingales.
The Vitali condition gives us an indication as to how to proceed.

LEMMA 1. Let I be a countable set, filtering to the right. If an increasing family
(F Wae: Of g-algebras satisfies the Vitali condition, then for each A > 0 and for
each martingale (X,),., with respect to () e "

AP{lim,_ sup |X,| > 4} < sup,.; E|X,| .
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Proor. With the help of a generating sequence it is easy to see that:
{lim,_, sup |X,| > 4} = lim,_ sup {|X,| > 4} .

Let us put 4 = lim,_, sup {|X,| > 4} and for each @ in /, B, = {|X,| > 4}. The
family (B,),.; is then a fine covering of 4. The Vitali condition gives us a
family of sets (Lal, Loy -+, La,,) corresponding to ¢ > 0, and by writing L =
Ui.1 L, we get this expression:
P(A) = P(An L)+ P(A\A N L)
< P(L) + <.

Using the martingale condition and an upper bound « of {a;, a,, - - -, a,}:

1
P(L) S — Tt $a,, 1Xe,| 4P

The number ¢ being arbitrary, we conclude that for each 2 > 0
AP{lim,_ sup |X,| > 4} < sup,.; E|X,| .

It is not surprising that we get lim,_, sup |X,| instead of sup,., |X,|, because
the set {3 £ a} can be very complex in a filtering set, whereas it is always finite
if I = N.

THEOREM 2. Let I be a countable set, filtering to the right, and (& ),.,; an in-
creasing family of o-algebras. Let us suppose that for each A > 0 and each martingale
(X,)ac s With respect to ()., we have

AP{lim,_ sup |X,| > 4} < sup,.; E|X,| .
Then the L -bounded martingales with respect to (% ,),., are a.e. convergent.

We see that the structure of the s-algebras is contained here in the fact that
we assume the validity of the inequality for each martingale with respect to
(% )acr- The proof of this theorem can be done in the same way as that given
by Baez-Duarte in [1], for the case 7 = N. The key to the proof is the con-
struction of equivalent martingales defined on a compact space and then the
use of the Riesz representation theorem.

3. Martingales related to independent random variables. Let us consider a
family (Y,)qcx, Of independent centered rv. The family of partial sums S, =
Xissa Y, constitutes a martingale. It can be shown ([9]) that, for each p > 1,

HsupaeKd ISa”lp —S— Ad,p SupaeKd ”Sa”p ’

where the number A4, , depends on d and p only. It is in fact possible to give
this inequality for more general filtering sets than the K,’s, the only requirement
being their finite dimensionality ([9]). Itis clear that this inequality implies the
a.e. convergence of S, under the assumption that sup,. , ||S.||, < co.
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Let us consider now a family (Y,),. ¢, of independent and identically distributed
(i.i.d.) random variables. The family (S./|@|)scx,, Where S, = }},¢, Y, and
|a] = Card {8 e K,;|B £ a}, is a reversed martingale. Smythe ([14]) proved that
(S./|a|)4e x, cOnverges a.e. iff Y, .., e L(log L)*~*. The convergence problems
of multiple Fourier series ([16]) and the derivation of multiple integrals quite
naturally raise the question of the a.e. convergence of S,/|a|, when a belongs
to a set of the form

Tdﬂ = {(iuiz» “'7id)eKd|0ik< i éo_lilé l#k k=12, ""d}’

which we shall call a sector (of K;), and where 0 < 6 < 1. A sector T,” with
the order of K, is filtering to the right. We will say that a family (a,)qe x, Of
real numbers is sectorially convergent if (a,),.r,0 is convergent for each T,” in
K,. We can now formulate the sectorial law of large numbers. (See also[15].)

THEOREM 3. Let (Y,)qex, be a family of i.i.d. rv. The following two properties
are equivalent:

(@) (Sufla))acex, is sectorially a.e. convergent;
(b) Y,,..,is integrable.

Actually one implication (the “if” part) is contained in the work of Dunford
and of Zygmund ([17]). One can also glean from [16] the implication (b) — (a)
of Theorem 3, for stationary arrays of rv.

ProoF. We first suppose that the rv Y, are nonnegative and we prove that
(b) = (a). Let T, be a sector of K, and (i, i, - -+, i;) bein T,0. If i; = nis
fixed, then 6n < i, < nf0, k =1,2, ...,d — 1, and we have

[n/61°"  Stworinon,.inotn — Stwo)in0),. -, in/61m
([6n] + )=t [n/0]"'n ([On] + 1)*~'n
g Sil,iz,u-,id_l,n s
il iz cee id——ln

where [x] is the integer part of x, and the last inequality is true for each
(i1 Byy « -+, 14y, n) in T,%. Let us define

— S[n/ﬂ].[n/ﬂl,‘--,[n/ﬂl,n .

N T

The family (U,),.  is a reversed martingale and we see that:

Siatecsn < COU,

Sup(il.ig,m,id—ﬂeKd—l;(il,iz,-",id-l.n)ETd"l. i i n
1%2 7"t

where C(6) = sup,. ([#/01°7*/([6n] + 1)*~*). Consequently, for each 2 > 0, we
have:

lP{supaero % > z} < APfsup, ., C(O)U, > 2}
[24
< CO)E(Y,,....) -



892 J.-P. GABRIEL

The inequality for the general case follows from the triangular inequality, and
the rvappear with their absolute values. This inequality implies the a.e. sectorial
convergence of S,/|a| under the assumption that Y, , ., is integrable. It is in-
teresting to note that C(f) is going to infinity when 6 is going to 0 (i.e., when
the sector is opening).

To prove (a) = (b), we first remark, by the lemma of Borel-Cantelli, that

Zaero P{IY1,1,.~~,1I > |al} <

is a consequence of the a.e. sectorial convergence of S,/|a|. Let us define =, =
{(Gs iy - -+, i) € Ky |i; = n}. There exist two real numbers 6, and 6,, depending
on #, such that

6,n*"* < Card (z, N T,%) < 0,n% 1.
Therefore

0, 2% ”d—IP{ﬂd—llyl,l,m,ll > ”d} = Zaer” P{lY . ..a| > lal}

IYII ll >ndi>

<0, X% nd_IP{ i1

By changing the variable n, we can see that the convergence of 3, 7,0 P{|Y11,.....[ >
|a|} is equivalent to 35, P{|Y,,..,| > n} < co. The last inequality is precisely
the condition required for the integrability of Y, , ... ;.

4. Integrability of the supremum. Let (Y,),., be a family of i.i.d. random
variables. Burkholder in [2] proved the equivalence of E(sup,.  (|S,|/n)) < oo,
E(sup,cy (|Y.,|/n)) < oo and E(]Y,|log, |Y,]) < co. We give here the generali-
zation of this theorem for the rv indexed by K, and for this purpose, we need a
different proof of this classical theorem. The only nonobvious step is that the
integrability of sup,., (|Y,|/n) implies E(|Y)|log, |Y;|) < oo (or equivalently
Y, e Llog L). Let us write

{supnw_‘y"] > m} = U {lyll < m, IYZ] =m, ...,
n

The sets in the right member are disjoint and therefore
S > Z::l P{SupneN 'I_)in‘l‘ > m}
n

= Z5 T (POYI > mmp 132t (1= P{ITDS 1)),

It is well known that for a family of nonnegative real numbers (a,),. v, the con-
vergence of [y, (1 — a,) is equivalent to };7_,a, < co. By hypothesis Y, is
integrable and therefore [[7., (1 — P{|Y;| > j}) is convergent. The relation
L, c Llog L permits us to suppose that Y, is not bounded. For this reason,
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there exists m, e N such that 0 < P{|Y|/m > 1} < 1, for each m = m,. Con-
sequently, the product [[5., (1 — P{|Y,|/m > j}) converges to a nonzero limit
a(m), if m = m,, and we have:

st (1= {00l 2 s (1= P{IBES L) = am) 2 amy),
for each m = m,. Finally
o > ZzsP supucy Vo > ]

= a(my) 217 -my 2in=1 P{|Y| > mn}.
The proof is complete because ) ;%_, >iw_, P{|Y,| > mn} < co is equivalent to
E(|Y,|log, |Y,]) < co ([14]). An easy consequence of this proof is the following
lemma:

LeMMA 4. Let (Y,),y be a family of i.i.d. random variables. If sup,. (|Y,|/n)
is in L(log L)*~*, din N, then Y is in L(log L)*.

Proor. It is proven in [14] that the hypothesis is equivalent to
Yiacxy P{SUPacy (|Yal/n) > |a]} < co. We now transform this expression, using
the method described previously:

Zaexd P{SupneN (IY'nl/n) > |a|}
= Daexg Ln= PV > nla} I132 (1 — P{[Y|/la > j})) -
Therefore we have 3 ,.x,. P{|Y;| > |a]} < oo and the proof is completed.

THEOREM 5. Let (Y,),cx, be a family of i.i.d. random variables. The following
properties are equivalent:

(@) SUPueg, (ISal/lal) is integrable;
(b) SUPuex, (|Yl/|a|) is integrable;
(¢) Yy,,...,isin L(log L),

Proor. It suffices to prove (b) = (c), the other implications being trivial
consequences of the martingale theory. We know that for d = 1 the proposition
is true and we now suppose the same for d. Let us define

2 Yy iomigian|

inigeiig — SUPigyien

lg+1

The rv (Z,)qex, are still i.i.d. Our hypothesis implies that
Yl,l,-~

- Lig]
SUPig  en a4

lat1

is in L(log L)%, and the result follows from the preceding lemma.
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We will now give the analogous result for the sectors of K.

THEOREM 6. Let (Y,),c, be a family of nonnegative i.i.d. random variables and
T, be a sector in K,. The two following properties are equivalent:

(@) sup,cr,o S,/|a| is integrable;

(b) Y,,..,isin LlogL.

Proor. Let (Y,),.y be a family of independent rv distributed like Y, , ... ,.
It is easy to prove that (a) is equivalent to E(sup, 4(S,s/n%)) < co. If (n,)4ey is
a subsequence such that sup,.y (m,,,/n,) < oo, then according to [8], [10],
E(supyey (S,,/n)) < oo is equivalent to Y, e Llog L. Theorem 6 follows from
the fact that n, = k? verifies the inequality n, ,/n, < 2°%.

5. Sectorial convergence of martingales. The a.e. convergence of martingales
indexed by K, has been studied by Cairoli in [4]. We recall the essential results
for the case d = 2.

Let _#; be the class of martingales (X,,,.%, ® F ) mmex, defined on
[0, 1) ® [0, 1) equipped with the Lebesgue measure. In [4] it is proved that
the optimal condition which assures the a.e. convergence of the martingales in
Ay 1s:

sup(m.n)eK2 E(!an[ 1°g+ IXan < oo.

What is the optimal condition that leads to the a.e. sectorial convergence of
these martingales? Looking at the last section of this paper, one could con-
jecture that, in a sector of K,, the Llog L integrability condition should be
replaced by simple integrability. The following theorem is a negative answer
to this conjecture.

THEOREM 7. Given an arbitrary sector T,’ and a function ¢(t), t = 0, increasing,
convex, such that ¢(t) = o(tlogt) for t — oo, there exists a uniformly integrable
martingale (E(X | .5, ® 7 ,)) m n e &, belonging to the class #;, with E($(|X])) < oo
and

P{M SUP gy )i m eyt [E(X | 0 @ F7)
> liminf,, .\ mmere |[E(X|F o ® F,)} > 0.
The result also holds for reversed martingales.

Proor. We first treat the case of martingales. The idea of the proof is to
modify Cairoli’s counterexample given in [4]. We refer the reader to this paper
to avoid giving all the details.

Let us consider the set [0, 1) ® [0, 1) equipped with Lebesgue measure, and
let & ,* be the og-algebra defined in [0, 1) and generated by the family
{[¢ — 1)/2~,i/2");1 <i<2"}. Foragiven0 <6 <1 and a glven meN, we
introduce the numbers

I(m,0) = max{ieN|(@i, j)eT},j= —i+ m},
J(m, 8) = min {ie N|(i, j)e T, j = —i + m},
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where T, is the sector of K, corresponding to §. Lemma 1 ([4], page 11) is
replaced by

LemMA 8. Let A, be the set of points in R* between the t-axis and the graph of
the function £,(t) defined as follows:
AXt) — Qm—J(m,6) lf te[o, 2J(m,0)) ,

— 2m—J(m,0)—-1 lf te [2J(m,0)’ 2J(m,0)+1), ey

— 2m—1(m,0)+1 lf te [21(1»,0)—2, 21(m,0)—1) s

— 2m—I(m,0) lf te [21(m,0)—1, 2I(m,0)) s

=0 if tz2im0
Let ¢(t) be a nonnegative, increasing function defined on R, such that
liminf, _ ¢(¢)/t > 0. If for every X in L,, the martingale (E(X| % ,*®

F X)) mmyex, converges a.e. in T, then there exists a number C(6) such that for
every me N:

[4a| = C(6)$(2) ,
where |A,| designates the measure of A,,.
Proor. The proof is carried on in the same way asin [4]. The important thing
to point out is that the sets 4,* now belong to g-algebras & * ® & * with

(m,n)eT,’. This is a consequence of the definition of /7).
Lemma 2 ([4], page 13) now becomes:

LEMMA 9. Let ¢(t) be a nonnegative, increasing function defined on R_, such
that lim inf, . #(¢)/t > 0. If for every X in L,, the martingale (E(X| .5 ,* ®
F X)) mmrex, converges a.e. in T,, then there exists a number D(6) such that:

2™ log 2™ < D(6)¢(2™)
for every me N.

Proor. For m large enough, we have:

|4, = 58 2";" dt
> w 2™ log 2™,

where [-(6) = lim inf,,_., (I(m,f)/m) and J*(0) = lim sup,,_.., (J(m, 6)/m). Ac-
cording to the preceding lemma, [4,| < C(6)¢(2™) for every me N, and the
proof is complete.

The first part of Theorem 7 follows from these lemmas exactly in the same
way as in [4]. We have actually proved a stronger statement: the counter-
example can be chosen in the class of martingales with respect to (&F ,* @
‘-g-»*)(m,n)el{a'

To treat the case of the reversed martingales we will use the stochastically
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convex classes introduced by Burkholder in [3]. We first recall the essential
elements of this theory.

Let 7 be a countable set, filtering to the right, and 27 be the class of stochastic
processes indexed by 1. A subclass = of 57, consisting of nonnegative processes,
is said to be stochastically convex if for each sequence (X,’),.,, i € N, of processes
belonging to &, there exists a sequence (Y,°),.;, i € N, of independent processes
defined on the same probability space, such that:

(a) for each ie N, (X)), and (Y,%),c, are equivalent (i.e., they have the
same finite distributions);

(b) if (a;);cy is a sequence of nonnegative real numbers with >}, a, = 1,
then for each a e/, 332, a,Y,' converges a.e. to arv Z,, and the process (Z,),.,
is equivalent to a process in &".

Our interest in this notion is due to the following theorem.

THEOREM 10. Let & be a stochastically convex class. If each process (X,),e, in
& satisfies the condition P{sup,., X, < oo} > 0 (resp. P{lim,_ sup X, < oo} > 0),
then there exists a constant B > 0 such that

AP{sup,c; X, > A} < B(resp. AP{lim,_ sup X, > 4} < B),
for each 2 > 0 and for each process (X,)ye; in €.

The proof is exactly the same as that given for the case I = N ([3]).

Now let ¢ be a function with properties given in the Theorem 9, and let us
introduce the class &, of stochastic processes (X,.,)m.n e K, defined on (2 ® Q,
F ® F, PQ P), where Q = [0, 1) with the Lebesgue g-algebra % and the
Lebesgue measure P, such that (X,,,)s,a) x, i @ nonnegative reversed martingale
with respect to a family of g-algebras of the form (&, ® &), . xp and
SUP(m,m) e &, E(B(Xmn)) = E(#(Xy)) =< 1. We will prove that &, is a stochastically
convex class. Let (Q,, &, P,), ie N, be a sequence of independent copies of
(Q, &, P) and (X;..)(mmex, { €N, be a sequence in &". For each ie N, let us
designate by (Y.,) m a <x, the processes defined on Q¥ ® QY, such that

Y:;m(uv Ugy » ooy Upyy =225 Uy, 7}2» sty Uyy ot ) = X;m(ui’ vi) ]
where u,, v, belong to [0, 1) for each n in N. It is clear that (Y ,)m nex, is

equivalent to (X;,)(m,x ¢ x,» and the processes (Y,.,)m u cx,, € N, are independent.
Furthermore, (Y,,,)m,» cx, is @ reversed martingale with respect to the family

((@:‘;1 ‘g—ml) ® (®1?°=1 ﬁni))(m,n)eKz = (gm ® gﬂ)(m,n)eKz 2

where (&), v is the copy of (7,), .y, defined on (Q,, 5, P,)). If (a;);.y is
a sequence of nonnegative real numbers with 3}, a, = 1, then for each (m, n)
in K,, we have

E(Xa; Y;m) = i1 aiE(Y:;m) < oo,

and consequently, 31, a;Y,, converges a.e. toarv Z, . Itis easy to see that

i=1"1 " m
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(Zmn)m,mex, 18 @ reversed martingale with respect t0 (&, ® £,)m,u <k, and the
convexity of ¢ implies that

E(@(Zy) = L aE(@(Yh) = 1.

In using the isomorphism theorem given in [11], page 173, we see that
(Znn)mmex, i equivalent to a reversed martingale in &,. The class &, is
then stochastically convex.

PRrooF (second part of Theorem 7). Let T,’ be a sector in K, and let ¢(¢) be a
function satisfying the conditions given in Theorem 7. Let us denote by C,’
the class of processes in C, restricted to 7,°. It is clear that C,’ is stochastically
convex. On the other hand, for each integer r, let us define Q, = {(m, n) e
K,|(m, n) £ (r,r)}. It is always possible to translate Q, diagonally so that its
image will be contained in 7,7. Let (s, s) be the image of (1, 1) by this operation
and let us introduce tor each increasing family of g-algebras (#7,),., defined
in [0, 1):

G = F if n<s,
= F ,ison if s<n<sr4+s—1,
=, if n>r4+s—1.

The family T s decreasing.

Given an arbitrary uniformly integrable martingale X,,, = E(X |+, ® &)
in _#,, such that X > 0 and E(¢(X)) < 1, and given r ¢ N, it is clear that X,,, =
(X|F . ® &) is a reversed martingale belonging to C,, and to C,’ if restricted
to T,’. Let us now suppose that each process in C,’ converges a.e. in T,’.
Theorem 10 implies the existence of B > 0, such that for every r¢ Nand 2 > 0:

o B
P{SUP 5 (r,r) Xmw > A} S P{SUP o mye i, Xmn > 4} S 7

The number B being independent of r, we conclude that:

B
P{sup(m,n)€K2 an > X} é 7 .

This inequality would imply the a.e. convergence of the martingales X, previ-
ously defined, and would then contradict Theorem 2 ([4], page 6). It is clear
that this method can be used to prove the first part of Theorem 7. But in doing
so we can not prove the stronger statement about the martingales with respect
to the family (& ,* ® %) nyex,-
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