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AN EXTENDED MARTINGALE INVARIANCE PRINCIPLE

By D. L. McLEisH
University of Alberta

In this note the conditions on an invariance principle for triangular
arrays of random variables contained in an earlier paper are weakened.
Random norming by functions which are not stopping times is permitted,
the L2-boundedness conditions on the maximum of the summands relaxed,
and joint convergence with an arbitrary sequence of random elements of
some other metric space proved. ;

1. In an earlier (1974) paper, the author proves some invariance principles
for martingales and near martingales. Specifically random variables X,,;;i = 1,
2, .., k,(f) are considered on some arbitrary probability spaec (2, &, P)
(which we there and here assume without loss of generality is sufficiently rich
to define all the random elements we require) and k,(¢) is a sequence of non-
decreasing right-continuous nonnegative integer-valued functions with ,(0) = 0.
The purpose of the invariance principle is to show the sequence of functions
ksl X, converges (as n — co) weakly to a standard Brownian motion process.
This is done under the conditions that X,;; i = 1,2, ... is a martingale difference
sequence with respect to sigma-algebras & ,;; i = 1,2, ... adapted to it, that
the sample variances } 2" X}, converge in probability to the appropriate value
t and that E[max,, ., X,]— 0. This last condition or any such condition
requiring second moments seems unnecessary for a theorem proving weak co-
vergence and is dispensed with in the present paper. It is observed also in the
earlier paper that k,(f) may be replaced by a sequence of random stopping times
without changing the proofs. In the present paper we drop the conditions that
they be stopping times and prove joint convergence of the above random function
with some sequence of weakly convergent random elements of any other separ-
able metric space. The present theorems also do not require that the X, are
martingale differences or that any moments exist for them, only that variables
suitably truncated are reasonably close to being martingale differences.

Throughout this paper, /(4) will denote the indicator random variable of the
set 4 — .7, and convergence in probability, almost surely, and weakly (in
distribution) are denoted — , and — _ respectively, and the sigma-algebra
generated by a random vector U is denoted o(U).

For the required theory of weak convergence, see Billingsley (1968) and Stone
(1963).

Let D[0, oo) be the space of right-continuous real-valued functions on [0, oo0)
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endowed with Stone’s (1963) separable metric topology. Let X,;, i =1, 2,

3, .-, n=1,2,3, ... be an infinite array of random variables on the prob-
ab111ty triple (Q, & P) such that 3, X!, = co a.s. and let &, i=1,2,
3, ...,n=1,2,3, ... be an infinite array of sigma-algebras contained in &

such that for each n, i, F i C©F i and X, is measurable with respect to
F ..~ We will denote the conditional expectation with respect to &, ; by E(+)
(the index n to be understood). Let k,(f), n =1, 2, 3, - .. be random elements
of D[0, co) which are almost surely nondecreasing and integer-valued with
k,(0) = 0. Define W, (1) = k=" X, ; for each n and for each 7 > 0 and ob-
serve that W,(r) is a random element of D[0, co). Let W(r) denote a standard
Brownian motion process on D[0, co). Finally assume U,, n = 1,2,3, ..., U
are random elements of an arbitrary separable metric space M and U, —_ U,
where for convenience we choose U independent of all &, ; and W. Suppose
.57 is an algebra or semi-algebra of U-continuity subsets of M which generate
the Borel sets in the support of U. Then the main result of this note is the
following theorem.

THEOREM 1. Assume for each A c 57 and for each t > 0, there exists a sequence
A, of elements of F satisfying P([U, € A] A A4,) — 0as n— oo (where A denotes
symmetric difference), and a finite constant d which may depend on any of A, {An}
or t, such that the following two conditions hold,

(1.1) D By Xosl(Ay 0 [[Xai] = 7)) =, 0
where 7, < oo is some positive sequence of constants bounded away from O with
Na = O[P(SUP;gp 1) [Xns] > d)]7H.

(For the purpose of this definition and the proof of the theorem co -0 = 0
and so 7, may be = oo if Pfsup, [X,;| > d} = 0.)

There exists a sequence t, — t for which
(1.2) 2 Xp =yt
Then (W,, U,) converges to (W, U) as random elements of the product metric space
D[0, o0) x M.

REMARK. It should be noted that k,(f) need not be a stopping time as was
assumed in [3], that sup,, , [X,:| —, 0 ds a consequence of (1.2) and so 7, is
permitted to diverge to co at some maximal rate, and that in the presence of
(1.2), (1.1) follows from the condition

Z?’,Fg;“ IEl—anlI(An)l —)p O
together with either
(1.19) the sequence Y2 E, - X7, is tight,

or

(1.1 E(sup;g,, ) X3;) is a bounded sequence,
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These implications, with the fact that (1.1””) implies (1.1’) are contained in the
proof of the theorem.

If we put all U, = U = 1, an invariance principle results which generalizes
Theorem (3.2) of [3].

Contained in the proof of Theorem 1 is the verification of the following central
limit theorem:

THEOREM 2. Assume k, is a sequence of positive integer-valued random variables
such that there exists a finite positive d satisfying

(@) k= |E, X, I(| Xy £ 9,)| —,0 where 5, is some positive sequence of
constants bounded away from 0 with

Nw = O(P[supis,,n | Xl > d]7?) .
(b) SUP; <y, | Xoi| =, 0.
() Xkn X3 —,0* = 0.
Then )t X, converges in distribution to a normal (0, ¢*) variable.
In the following corollary, the symbol &, , , will have two different inter-
pretations depending on whether or not k,(¢) is a stopping time for each ¢. If
itis, 7, is the sigma-algebra of all sets A4 such that 4 n [k,(s) = jle F,;

for each j. If k,(s) is not a stopping time, [k,(s) = j] is replaced by the set
[>i., X2, > s] in the above definition.

COROLLARY 1. Assume for each t > 0, there exists a sequence of random varia-
bles ﬁ”(t) measurable with respect to &, ke t) SUCh that Un(t) — U, —,0. Assume
also that 1.2 holds and
(1.3) 2 B X I(| X o] < 7)) —, 0
where 7, = O(P(supig,,nm |X,.| > d)7).

Then (W,, U,) converge weakly to (W, U) as random elements of the product

metric space.

2. Proofs. We begin with three elementary lemmas: Lemma 3 is a trivial
extension of Theorem 3.2 of [3] along the lines mentioned in that paper. As
observed, we may assume k() is a stopping time and replace P by P, with no
major changes in the proof. ,

LeMMA 1. Let F (t)yn = 1,2, ... and F(t) be random elements of D[0, co) such
that F,(t) is almost surely nondecreasing in t, F(t) is a.s. continuous and for each
t = 0, there exists t, — t such that

F.(t,) —, F(1). ,
Then sup, |F,(t) — F(t)] —, 0 where the supremum is taken over any compact subset
of [0, o).

Proor. For simplicity we assume the compact subset is [0, 1]. For arbitrary
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¢ > 0, choose {1,;i =0, 1,2, ..., k} where k is an integer strictly greater than
1/e such that ¢,; — ie for each i <k, and F,(t,,) —, F(ic) for i < k as n— oo.
Then for n sufﬁmently large,

sup, [F,(1) — F(1)| < sup; [Fo(t, 1) — Fo(t,)|
+ sup;, ,Fn(tn,i) - F(tn,i)l + sup; |F(tn,i+l) - F(tn,i)l .

The right-hand side converges in probability to 2 sup, |F(¢, ,,,) — F(t, ;)| which
can be made arbitrarily small in probability by choosing a sufficiently small ¢
due to the uniform continuity of F(f).

LEMMA 2. If E(sup; X3) < K < o0 and 3, X2, is tight in the real line, then
2 E(X7; | F 4.i-1) IS also tight in the line.

Proor. For arbitrary ¢ > 0, choose ¢ such that
P[YXp>c]l=se.

Then define
Y,

ni

= XL XX, < ¢ for each =n, i.
Then

P[ziEi_IX:l. >t K]

=PSB Y > R L MR By e DB X
eE(X: Ya)
<€
=1 K + €
< 2¢.
LeEMMA 3. Consider X,;,i = 1,2, ..., k,(t) defined on probability space (2,,

Z 4 P,) and adapted to the increasing (in i) sequence of sigma-algebras . ,;, c 7,
for each n, i. Suppose E(X, ;| .7, ;_,) = 0 a.s. and assume k(1) is a stopping time
for each t (i.e., satisfies 2.2). Moreover, assume for eacht > 0, ¢ > 0, the follow-
ing two conditions hold.:

(a) limsup,_., § sup, X2 I(i < k,(1)) dP, = 0.
(b) P.{|Xfe” X% — 1| > ¢} — 0.

Then W,(t) —_ W(t) on D[0, co). ,

ProoF oF THEOREM 1. It follows from Stone (1963) that we need only show
weak convergence for the functions restricted to some arbitrary compact interval
contained in the nonnegative reals. We may assume the pertinent subset to be
[0, 1], since a simple change of scale will prove the more general result. More-
over, if we permit the probability measure to change with n (denoted P, : P,(+) =
P(.|4,)) we may assume without loss of generality that each 4, = Q in con-
dition (1.1). Indeed, as long as P(4,) is bounded away from 0, (1.1) and (1.2)
continue to hold with these substitutions.
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Observe first by Lemma 1 that
(2.1) SUPigy, ) Xyt S SUPesy | Dfn” X3 — 1] -, 0.
We assume initially that k,(¢) is a stopping time; viz.,
(2.2) [k.(0) = jle Fu; foreach t,n, and j.
Now choose a positive sequence 7, — oo so that 7, = o(P[supg; o) | Xl > d])
and observe that
Esup, X3, [(|1X,i] < 7,) < @ + ﬂnzpn[supigk,,m [Xasl > d],

which sequence is bounded in n. It now follows from the conditional form of
Jensen’s inequality, Lemma 2, and (1.2) that

D B Xl < | Xl < 70)| < 9,70 ke |E o X2 H(1 X, < 9a) —, 0.
Therefore, (1.1) continues to hold when 7, is replaced by 7,. Therefore, if we
define X, = X,,[(|X,,| < 9,), X, is an equivalent array satisfying
(2.3) Dha® |E X, —,0
(2.4) PX, =X,,i=1,2,..., k() —1
(2.5) Sk X2, —,t,  and
SUP; <y, 1) Xo < d + 7,2(sup; | X,,,| > d), where the second term in the majorant
converges in expectation to 0, implying that sup; X7; is a uniformly integrable
sequence and Esup, ., X, — 0. The weak convergence of Yka( (X, —
E, ,X,;) to W(s) (under the measures P,) now follows by Lemma 3. The con-
vergence of W, () follows from (2.3) and (2.4).

We now remove the condition (2.2) that k,(7) be a stopping time. Define
k() = inf{j: Yi_, X2, > t} where the infimum is finite and k,(f) well defined
with probability 1. Now for any ¢, 6 > 0,

P(Zha X3 > Tt X)) < P (ki X2 < 1) >0
It follows from this and
Z?ﬁf) Xﬁi >t, that Zi’zﬁt) X:z —,

and the convergence is uniform in ¢z € [0, 1] by Lemma 1.

Now by the argument above and the uniform convergence, we have, for each
positive 8, P,[k,(t — 6) < k(1) < k,(¢ + 0) for all r < 1]— 1. It therefore
follows that (1.1) also holds with k,(r) replaced by k,(f) and by the first part of
the proof, that

W.(1) = Ni® X,, —_W()  on the space D[0, 1].
But on the set [k, (1 — 0) < k,(¢) < k,(t + 0) for all # < 1], we have
SUPi<; W, () — Wo(1)] < SUPysocigorsst [W.(1) — W.(s)|

and the tightness of W, implies that this can be made arbitrarily small in
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probability by choosing ¢ sufficiently small. It follows that W,(#) —_ W(t) on
D[0, 1], again with respect to the measures P,.

The proof of the theorem is now completed if we observe that for each U-
continuity set 4 with P(Ue 4) > 0, and for any W-continuity set B, we have
shown P(W, e B| A,) — P(W € B). This and the fact that P[(U,e A) A 4,] >0
imply P(W, € Band U, € A) — P(W € B)P(U € A), which is the desired conclusion.

ProoF oF COROLLARY. We begin by assuming k,(¢) is a stopping time. It is
easy to see by a simple change of time scale (and taking limits as ¢* — 0) that
if (1.1) holds with A, replaced by Q, and

(1.29) Ykt X3, o for *=0,

W, converges weakly to W(d’t).

Let d(+, +) be a metric defining convergence in probability, e.g., o(X, Y) =
E(JX — Y|/l + |X — Y|). Then by assumption, for each ¢ > 0, there exists
7w k) Measurable random variables U,(¢) with f(t) = 8(U,(1), U,) — 0.

Therefore by Lemma 1, page 188 of Chung (1968), there exists a sequence
s, | 0 with

fs) = 8(U,(s5,), Un) = 0 .

Now by the above extension of Theorem 1 applied to the random variables
X, (i < k,(s,)) with ¢* = 0, we conclude that

SUP g, | 2082l X (i = ka(5,))] —,0.

Consider the random variables X, I(k,(s,) < i). Since I?,,(s,,) is measurable
with respect to &, , ., we have, with 4, = [U,(s,) € A]; that 4, n [k,(s,) =
jle & ,.;and 4, n [k(s,) < i]e &, ;. Therefore, by assumption,

Dk |E, X, I(A, and k,(s,) < i and |X,,| < 7,)|
= I(A'n) ng(kt:‘(s%)+l IEz—leI(IXmI < vn)l _)p O *

Moreover (1.2) continues to hold with X,; replaced by X, I(k,(s,) < i), and so
putting

Wn(t) = Zﬁﬁ:;wl Xois
we conclude that (W,, U,) converges jointly to (W, U). This and the fact that
sup, | W, (1) — W,(t)] —, 0 shows (W, U,) converges weakly to the same limit.

The extension of this corollary to include the case when k,(¢) is not a stopping
time follows the same line as the last part of the proof of Theorem 1.
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