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PROCESSES THAT CAN BE EMBEDDED IN
BROWNIAN MOTION!

By ITREL MONROE

University of Arkansas

A process is equivalent to a time change of Brownian motion if and
only if it is a local semimartingale.

1. In this paper, it is shown that a process (X,, 57,) can be embedded in
Brownian motion if and only if (X,, >,) is a local semimartingale. To embed
a process in Brownian motion is to find a Wiener process (W,, ¥,) and an in-
creasing family of &, stopping times 7, such that W, has the same joint dis-
tributions as X,.

The embedding problem was treated first by Skorohod [16] who showed that
if X, is any sequence of independent random variables with mean zero and finite
variance, then Y, = 3, X, could be embedded in Brownian motion with stop-
ping times T, such that E{T,} = E{Y,?}. A number of other methods of defining
the stopping times were then proposed by Dubins [3], Root [14] and others. In
[11], Monroe generalized the procedure somewhat by embedding the random
walk in a symmetric stable process of index « > 1 but the stopping times gen-
erally had infinite expectations in this case.

In the meantime the embedding procedure was used by several people to obtain
either new results or elegant proofs of known results. See, for instance, Strassen’s
paper on the law of the iterated logarithm [17].

Rost [15] took up the problem for a general Markov process and obtained
necessary and sufficient conditions on measures ¢ and v to guarantee the existence
of a stopping time T such that the process started with distribution z would have
distribution v when stopped at time 7.

As early as 1965, Dambis in the Soviet Union [2] and Dubins and Schwartz in
the U. S. [4] had shown that every continuous martingale could be time-changed
into Brownian motion. In [6], Huff showed that every process of pathwise
bounded variation could be embedded in Brownian motion. Independently it
was shown by Monroe in [12] that every right continuous martingale could be
embedded in a Brownian motion progess with sufficiently large o-fields. The
present paper is a rather natural extension of [12].

Extensive use will be made of what Follmer [5] calls processes of bounded
variation.

DEFINITION. A process X, adapted to ., is said to be of bounded variation
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PROCESSES IN BROWNIAN MOTION 43

if V(X) = sup 27, E{|X, | — E{X,,| ~,_}M} + E{|X, |} < co where the supre-
mum is over all partitions 5, < 5, < --- < 5, < oo. The crucial fact is that a
process of bounded variation is a semimartingale as defined by Meyer [8]. This
was first demonstrated by Rao in [13] and is also presented very nicely in [5].

More generally, for a fixed a and b, a < b and an >, stopping time S, we
will use ‘

V(X:a,b,8) = sup Zi, E{IE{(X,, — X, Desi |75, M}

where the sup is over all partitionsa < 5, < 5, < -+ < 5, < b. For a discrete
time process (X,, % ,)and &, stopping time S, V(X: a,b,8) = X!_, ., E{|E{(X; —
X )iesy | F oM}

Section 2 contains a few preliminary comments. In Section 3, it is shown
that if X, can be embedded in Brownian motion, then it is a local semimartingale
with respect to the o-fields generated by the process X,. Then in Section 4, it is
shown that all local semimartingales can be embedded in Brownian motion.

2. Let . be a g-field on some probability space with measure P and let %,
be an increasing right continuous family of ¢-fields contained in .. All pro-
cesses will be assumed to be right continuous and have left-hand limits and
adapted to the o-fields >7,. For basic facts about martingales, see [8].

DEFINITION. A process (M,, .57 ,) is a local martingale if there is a nondecreas-
ing sequence of stopping times S, such that lim, S, = oo and M,,s, is a uniformly
integrable martingale.

DEFINITION. A process (A4,, 7 ,) is said to be of pathwise bounded variation
if almost surely the paths are of finite total variation on every closed interval
[0, n]. '

DEFINITION. A process (X,, 7 ,) is said to be a local semimartingale if X, =
M, + A, where M, is a local martingale and 4, is of pathwise bounded variation.

It has been proposed by Kazamaki [7] that the definition of local martingale
be weakened to require only that for each n, there exist some uniformly integrable
martingale such that M, = M,™ on the set 1 < S, rather than ¢ < S, as in the
usual definition. This certainly leads to a wider class of local martingales but
interestingly, it does not extend the class of local semimartingales.

‘LEMMA 1. Let (X,, #,) be a stochastic process. Suppose there is a nondecreasing
sequence of stopping times S, 1 co, a sequence of uniformly integrable martingales
M,™ adapted to .5, and a sequence of processes A,™ of pathwise bounded variation
also adapted to .7,. If for every n, X, = M,™ + A,™ on the interval t < S, then
X, is a local semimartingale.

Proof. Define S; = 0,

M, = M™ — S3oH (Mg — M) S, <1<,
and
A= A™ 4+ TiH(MEDY —ME) S, <1<LS,.
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Clearly the paths of the process 4, are of bounded variation and, just as clear-
ly, X, = M, + A4,. In addition, M,,; is uniformly integrable since [M, s | =
k=1 M |. The only problem is to show that M, is a local martingale. By
induction, it is enough to show that M, ., is a martingale. But if s < ¢,
E{Mt/\S2 | Z} = E{Mt/\s21(s>§l) |} + E{Mt/\SZI{sSS1<t) | F
+ E{M, 5,1 1155, | F o} -
Now
E{M, 5,1 yzs,0 | F 3} = E(M,® — M + M) e50|F)

= E{(E{M,”| F 5} — Mg + M) c5, <0 | 7}

= E{vall)lfsssla) | )
and

E{Mt/\Szl(tSSI) | F} = E{M?A)sl Iussl) l ‘7&?;}
so
E{Mu\s,I(sgsl) | &} = E{Milf\)sl [(sssl) | =
= Ms(l)l(sgsl) = Ms/\S2I{8§S1) .

The first term is more easily dealt with.

3.

THEOREM 1. Let (X,, &,) be a local semimartingale and X, be a time change of
X,. Let &, be the family of right continuous o-fields generated by X, , v < s.
Then (X, , .7 ,) is a local semimartingale.

Proor. It is enough to show that there is an increasing sequence of & stop-
ping times S,’ such that the process

Z,=Xp, s<S,/
=0 s= S,

is of bounded variation. Indeed by Rao’s work [13], this would imply that
Z,= M/™ + 4™ where M, is a uniformly integrable martingale and A4, is
a process whose paths are almost surely of bounded variation. Lemma 1 then
asserts that X, is a local semimartingale.

To this end let S, be a sequence of &, stopping times such that lim, S, = o
and X, = M, + A, where M, isa &, uniformly integrable martingale for all
n and A, is a process of pathwise bounded variation adapted to &,. One can
assume that for all 1 < S, [M,| < n, |A], = SUPycqpc...cap=t 2i=a s, — A5 | = 1,

and |X,| < n. Define
S, =inf{s: P[S, < T,|.F,} =4}

Before continuing with the proof of Theorem 1, we will prove some preliminary
lemmas.

LeEMMA 2. IfSisa &, stopping time such that S < S, then for any s, <5, < - - - <8
E{Z{';l ‘E{(XT,,L, - XTsi_l)I(Tsi<S) I g:rsi_l}” < 2n + E{|Msnl} .
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Proor. If T, < S, M | < n. Thus

E{|E{(My, — My, )iz, <] Zr,_})
= E{Ithi_1<sle{(Ms - MTsi_l)I(Tsi<S) l gT,,i_]l
= E{IE{(MS - MTsi_l)I(Tsi_fSéT.,.}l gT,;z._l}l}
< E(E(Msls, _ sz, } Fr, )
+ E{IE{MT%_II(T%_KSST%) | ‘(gTsi_l}'}
= E{lMSnlliTai_fSéTsi)} +nPT,  <S= Téi} .

1}

Also
E{|E{(A;,, — A7, )I(Tsi<S) | fr,,i}l} = E{]AT% — Az, | I(Tsi<S)} .

-1

Summing on i one obtains

L BE(Xe, — Xr, Mir, | Er, )
= E{IMS,,,I} +n 4 E{3F, IAT,l - AT,i_l|I(T,i<S)}
< E{[MS,J} + 2n

by the choice of §,.
LEMMA 3. Let P, = P{S, < T,| F}. Then

E(Ses [E((Xe, — X, P Tsimu| 5 )
< l4n + (HE{ZE, |E{(eri - XT% Misisan |5 M-

i—1

Proor. Consider the function

F(x, p) = (x — a)p + 2[(102* — (1 — p)]i

witha < n. One computes that |0F/dx| < 4, [0F/dp| < 3n, 0°F[dx*< 0, 0°F|op* <0
and (0°F/0x*)(0*F[dp*) — [0°F[dxdp]* = Oaslongas0 < p < 4 and |x| < n. Thus

Fix, p) = Flas p) = 50 (@ pox = @) = 50 (@ pp = p) 5 0

and letting a = XTS._1 and py = P, _

1
E{(XT% — X, P L5
= 2E{ls5;5,,)[(10n" — X7 (1 = P} )P}
— 2E{l 5,5, [(100° — X7 )(1 — P77}
T IE(Xr, — Xr, Vo | T
+ 3n|E{(P,, — P, Misysen| ) -

i Si—1
by using the function F(x, p) = —(x — a)p + 2[(10n* — x?)(1 — p*]*. Summing
on i, one has

The same upper bound can be obtained for —E{(X,, — XTs~_1)P8¢1<S;L>%—1) |, )
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E{Zfﬂ ]E{(XT% - XT,i_l)Pailcspsi) | ﬁ'sz_l}l}
< 2E{[(10n* — X7 )1 — Po)1 5,50}
+ OE(S B, — Xn, isgonn| 52,
+ 3n 2 E{(P,, — Psi_l)ltsps,;_l»} + 3n Lia Plsi ., < S = s}
< 14n + ($)E{Xi. ‘E{(XT% - XT%_I)I(S;L»,-) | jvsi_l}‘} :

Returning to the proof of Theorem 1,

E{L i E{(Xr, — Xp, Misp>an|Z4 3
< B(DA |E(Xr, — Xe,_Misyor, syon |- _J]
B (X, — Xn, Missarlisn | 01D :
< B[N [EW(K, — Xr, i, <spory| D, )
+ E{2¢ IE{(XT% - XTsi_l)P%I(S;R%) | Jq—si_ H}

8—1 si—1
1

= 2n + E{|Ms, [} + 14n + ($E{ Dt [E{(Xr, — X, Mispoen |0 I}

8i—1
Thus
E{S [E{(Xr, — X, Migou| 5 _J} < 70 + SE(IMy |}
and the proof of Theorem 1 is complete.
The above proof is easily altered to prove the following.

CoroLLARY. Let (X,, ¥,) be a local semimartingale and S a &, stopping time

such that
S <inf{t: |X,| = n}.

Let 4, < t; < .- be any sequence of real numbers and &, be the o-fields

generated by Xi;» j < i. Let
S =inf{t;: P[S < 1,|.5,} = 4} -
Then
V(Xi,: 1 1, §') < V(X 1, 1, S) + n}

where ¢ is a universal constant.

4. In this section, it will be shown that every local semimartingale is a time
change of a Brownian motion process. The semimartingale (X,, > ) will be
presumed defined on some probability space which will not be named. It seems
to be necessary to introduce several other probability spaces which will be de-
noted by €, Q° and Q*. Although the corresponding.s-fields will be denoted by
-, 7% and & *, for simplicity the probability on each space will simply be
denoted by P and the expectation by E{ }.

The first step is to embed a discrete time process in a Brownian motion process
using Skorokhod’s techniques. This procedure is well known but will be pre-
sented in order to be specific in the proofs that follow.

LEMMA 4. Every discrete time process X, is equivalent to a time change of Brownian
motion.
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Proor. Let (W,, &%) be a Wiener process defined on a measure space (Q°,
F G P). LetQ* = Q° x z2_, I, wherel, = [0,1], ¥ * = & 'x Fand & * =

F " X B where Z'is the class of Borel on z7_,1,. The probability measure on
Q*, again denoted by P, is the product of the measures P on Q° and the ordinary
Lebesgue measures on /,. Note that this makes the process W, indeper{dent of
the evaluation map from Q* — [0, 1], (@, 6,, 0,, - - -) — 6, where 6, € I,. Suppose
that & * stopping times T, < T, < - .- < T,_, have been defined so that X, - -

X,_,and W(T,), - - -, W(T,_,) have the same joint distributions. Define

]

Fx)=PX, — X, <x|X,=x, -+, X,_, = x,_}}
a(f) = —oo if =0

= inf {x: F(x) > 6} if 0< 6 < F(©0)
b(0) = inf {x: F(x) > 6} if FO)<o<1

= oo if 6=1
A(0) = §§ |a(s)| ds if 6 < F0)
and
B(0) = (G b(s) ds if 6> F(0).

Observe that b(6) > 0on the set (F(0), 1] so that B(f) is continuous and monotone
increasing. Likewise, A4(#) is continuous and monotone decreasing on the set
{0: a(6) < 0} which in general is not [0, F(0)). Define
a(0) = a(A~Y(B(9))) if F0)<§6 and B(f) < A(0)
= —c0 if F0)<6 and B(9) > 4(0),
and likewise v
b(0) = b(B~(A(9))) if 6 < FO) and A(f) < B(1)
= oo if 0 <FO) and A(0) > B(1).
Now all the functions defined above are defined in terms of the conditional dis-
tribution and thus functions of x,, - - -, x,_, as well as §. Define T, on the set

{W(T) = xp -+, W(T,y) = x4}
by
TW(w,0,0, - )=inf{s > T, ,: W, — W, _ ¢(a(0,), b0,))} -
Then W(T,) has the desired distribution. As an example, let x > 0 and 4, =
inf {6: b(¢) > x}. If, for instance, B(6,) > A(0), then
P{O < W(T,) — W(T,_) = x}
= PO < W(T,) — W(T,,) < x|0, = 6} df
= 7 la(s)l(la(s)| + b(s))™" ds
+ §E0 4 a(@)l(a(0)] + b(0)7 d + §5-1.10, 4O -
Letting s = A~%(B(f)) in the first integral and using the fact that a(s) = a(9),
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b(s) = b(0) and ds = D, A= (B(0)) = —b(0)(|a()|)~* d6 we have P{0 < W(T,) —
W(T,_) < x} = (R, dt = 0, — F(0) = P[0 < X, — X,_, < x} since 6, = F(x).
The lemma is considered proved.

LEMMA 5. If the stopping times T, are defined as in Lemma 4, then for any B >
32> 0 and any &, stopping time S < inf{n > a: W, — W, | > 2} where &,
is the o-field generated by Wy , i < n,

P{Supragtsrb W, — WTE| >B,S> a}
SB—-)VW,,:a,b,8)+2Pa< S<Dh)
and
P{supr, cicry (W, — Wo | > B} < (B — 2)7WV(W, :a,b,S) 4 2P(S < b) .

Proor. The second inequality follows easily from the first. In proving the
first, it simplifies matters to assume that W(T,) = 0. Let

.={S=n41}u {supr, <isr, ., IWi > B} .

Since {sup; <<z, |W: > B, S > a} ¢ Uiz, (T, 0 {S > n}) it is enough to show
that

T, n{S>n}) = (B - )7 E{|E{(Wy,,,

+ 2P{S =n + 1}
because the sum on n of the terms on the right of this inequality are the right-
hand terms of the first inequality in the lemma. Now the set {S > n}is in &,
and {S > n 4 1} U {S = n 4 1} c {S > n}, of course, so taking conditional ex-
pectations with respect to &, it is enough to show that on the set {S > n}
P{sups, ci<r, ., W, >B or S=n+ 1|7}

< (B — )UE((Wr,,, — Wrlaes| o) + 2P = n 4+ 1].7,}.
But now the problem has been reduced to studying the probability that a Wiener
process W, started at x = W, (note that [W, | < 2 on {S > n}) will exit from
[— B, B] before it exits from (a(f) + x, b(d) + x) where a(f) and b(0) are the

functions of Lemma 2. Of course a(f) < 0 < b(f) but another important property
is that either

= W Minircs |3}

{0:a(0) +x< =2,b00) +x< 2} =¢,

or
{0:a0) +x> —24,b00)+ x> =6¢.
Assume then that {f: a(f) + x < —2, b(0) + x < 2} = ¢. It will be shown
that in this case, taking conditional expectations with respect to &, and 6,
P{supy cisr  IW| > B or S=n+ 15,0}
= —(B = )7E{(Wr,,, — Wrasics | 0 0}
+2P{S=n+ 1|5, 06}
on the set {S > n}.
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Consider cases. If —B < a(f) + x < b(0) + x < B, the left-hand side is
P{S=n+ 1|5, 6}. It must be shown then that

(B— )ZE{W, . — Wy Miires | Fur 0} < P{S = n + 1|F,, 6} .

But this certainly must be the case unless S = n 4 1ontheset W, = a(f) + x
but' S > n 4+ 1 on the set WTle = b(f) + x. (Recall that S depends only on the
process W, .) This would require that 5(f) 4 x < Z2and then by the assumption
above that a(f) + x = —2. Thus |a(f)] < 22. One then computes

P(S = n+ 1|F,, 0) — (B — )7E(Wn,,, — Wy )srcs | Far 0)
= b(0)(6(0) — a(0))™" — (B — 2)7'b(6)|a(9)|(5(6) — a(0))*
— BO)(B(6) — a(®)) (1 + (B — 2)'a(6)) = 0
since |a(f)] < 24 and B > 34.

In the case a(f) + x < —2 and b(f) + x = 4, the right-hand side of the ine-
quality is at least 1.

Finally, in the case a(f) + x > —2and 5(f) + x = B, S = n + 1 at least on
the set W, = 6(f) + x. If S = n 4 1 also on the set W, . = a(f) + x, the
inequality is obvious. If not, one computes o

_(B - Z)_1E{(VV:I',,+1 - WTn)I('n+1<S} [F,,, 0}
—(B — 4)7a(0)b(0)(b(6) — a(0))™*

Z (B = A)7a(O)(B — x)(B — x — a(0))™*

: Z [a(0)|(B — x — a(0))™!
where the first inequality is justified by the fact that z(z — a(6))~! is increasing
in z and the second inequality follows from the fact that B— x > B — 4. On
the other hand, in this case

P{supr <i<r, ., W > B|F,, 0} = |a(0)|(B — x — a(0))™",

so this last case is also settled. The lemma is proved.

Consider the local semimartingale X, and write X, = M, 4 A4, in the usual
manner. By redefining the reducing sequence S, if necessary, one can assume
that if s < S,, |X,| < n, |M,| < nand |4|, < n where

1l

|A|t = Sup30<---<sk=t Zf;ﬂl |Asi+1 - Asil .
Henceforth, the reducing sequence will always be chosen in this way.

LEMMA 6. For any fixed t and any ¢ > 0, there is a 2 > O such that for any
<< o < b=, if T; are stopping times chosen as in Lemma 4 so that X,
and W(T,) have the same joint distributions, P{T, > 1} < «. :

Proor. Choose n such that P{S, < ¢} < ¢/64. Let S, = inf{s;: P{S, <
t;|./,} > §} where >, is the o-field generated by X, , j < i. Then by the last
inequality in the proof of Theorem 1, V(X, : 0, ¢, S,’) < 70n + SE{|W; [}. (One
considers the time change 7, = 1, ¢, < s < t,,,.) Then by Lemma 5, for any:
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B> 3n
Plsup,cr, |W,| > B} < (B — n)"'V(X,;: 0,1, 8,)) + 2P(S,’ < 1)
< (B —n){70n + SE{|W; |} + ¢/4 .

Choose B large enough that (B — n)7{70n + SE{|W |}} <e¢/4. Then
P{sup,r, |W,| > B} < ¢/2. Finally choose 7 large enough that P{sup,; |[W,| =
B} < ¢/2. Then P{T, > 2} < .

THEOREM 2. The local semimartingale X, is equivalent to a time change of Brownian
motion.

Proor. For each m, define on the space Q* of Lemma 2, a sequence of stop-
ping times T, such that the processes X;,-» and W(T; ™) have the same joint
distributions.

Let C be the set of all continuous maps from [0, o) into R. The set C with
the local sup norm metric is a complete separable metric space. Let 7 be the
set of all nondecreasing, right continuous functions from [0, co) into [0, co).
The set .7 also admits a metric which makes it into a complete separable metric
space. In fact, one can define for #,(s) and t,(s) € 7~

d(t, t,) = Yo, 27 min ({§ |1,(s) — t,(s)] ds, 1) .
Note that if a, is any sequence of positive numbers, then the set {#(s)e .7 :
t(n) £ a,} is compact.
Let Q = C x 7. Then with the product topology, Q is a complete separable
metric space. Define f,,: Q* — Q by

ful@*) = (x(5), (3))

xX(s) = W(o¥)

where

and
t(s) = T,"™(w*) if 27m<s<(i+ 12,

The functions f,, are measurable. Let s, be the measure induced on Q by the
random variables f,. It will be shown that the measures p,, are tight and if
is an accumulation point of s, then Q, W (x, t) = x(s), T(x, t) = (s) and g
define a Wiener process W, and a family of stopping times 7', on the probability
space (R, p) such that W, _is equivalent to X,. (The o-fields will be discussed
later.)

To show that the g, are tight, it is enough to show that the projections onto
Q and 7 are tight. That the projections on Q are tight is obvious since all the
measures coincide there.

On the other hand, by Lemma 6, for each n > 0, there is a 4, such that
P{T{m. > 2,} < €27*. Then

pafAnsen) > ) <.

Since the set M, {#(n) < 4,} is compact, the measures z,, are tight.
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Let ¢ be an accumulation point of the measures 4,. For simplicity assume
that u,, converges to p. Since for any open sets U, U, C R,

W e Uy, Wy e U} = p{x(t)) € Uy, x(1,) € Uy}
= PVt e U, Wt e Uy

it is clear that (Q, W,, p) is a Wiener process.

Next it must be shown that the process W, has the same finite joint distribu-
tions as X,. Suppose 5, < 5, < --- < s, are of the form s, = k;2-™ for some
m,. Let C; be a compact set for eachi. Of course P{X, €C;:i=1,2,...,n} =
tadx(t(s;)) € Cst i = 1,2, ..., n} for all m > m,. Choose compact sets C,’ such
that C, is contained in the interior of C,/. Now for any ¢ > 0, the set

Ty = {(x(1), (s)): x((s)) € €/ for s;<s<s,+0 and i=1,2,...,n}
is closed and by right continuity of paths
{(x(1), 1(s)): x(t(s;))e C; for i =1,2, ..., n}
c Us Ty < {(x(2), #(s)): x(1(s;)) e C/ for i=1,2,...,n}.
Thus
t{(x(1), 4(s)): x(x(s;)) € €/}

= lim,_, lim,, _, ¢,,(T';)
= lim,_, lim,,_, P{Xj3-n € C;/ 1 52" < k < (s, + 0)2™,i=1,2, ..., n}
>PX,eCi=1,2,---,n}.
Since C/ is arbitrary,
p{(x(1), (5)): x(1(s;) € C} = P{X, € Cyii= 1,2, -+, n}.

The inequality can easily be extended to all Borel sets and since x and P are
probability measures, the inequality is in fact an equality.

We have not yet discussed o-fields. The o-field we have implicitly been using
on Q is the collection of Borel sets generated by the product topology on Q.
Denote this field by &. If &/ is the o-field generated by the functions W,, v < ¢,
then &/ C ¥ and of course W, is Markovian with respect to &,/. But T, (for
fixed s) is not in general a stopping time with respect to &,/. Let &, be the o-
field generated by &’ and the sets of the form {T, < v; v < r}. It must be shown
that W, is still Markovian with respect to &,.

It must be shown that the o-field generated by the functions W, — W, , t > t,,
is independent of the o-field generated by the sets {T, < v} with v < ¢, and the
functions W, with ¢ < ,. However, it is enough to show that.for any 7, > ¢,
the o-field generated by the functions W, — W,, is independent of the o-field
generated by the sets {T, < v} with v < 1, and the functions W, with ¢ < ¢,.

First observe that if ¢ is-any real number then {W, — W, < a} and {W, < a}
are continuity sets of p since W, is normally distributed with respect to p. If
a, i <k, and b;, j < I, are real numbers, if 1, < t,, i < k, and L=t j<
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and if {T,, < v;} is a continuity set for each i < k where v, < 1,, i < k, then
one computes
(N ATy, < v 0 W, < ad) 0 (NG W, — W < b3}]
= lim,,_.. pa[(N= {5, < v} 0 {x(5) < a}) n (ﬂ, 1 {x(1;) — x(fo) <6l
= lim,,_, P[T{73m < ¥, W, (0*) < a;, Vi< k,
W,j(w*) — W,o(w*) <b,Vji<sl]
= 1lim, ., P[T{Mmy < v W, (0%) < @, Vi < K]
X P[W, (0%) — W, (0*) < by, V<]
= u[NE= (T, < 0 0 W, < @d]ul s (W, — Woy < )]
since the T(ym; are stopping times for the Wiener process W, on Q*. (Here
[s;2™] denotes the largest integer smaller than s,2™.)

A monotone class argument (see Theorem 2.2 of the Preliminaries of [1])
applied twice finishes the proof if it can be shown that the o-field generated by
the sets {T, < v} with v < 7, is contained in the o-field generated by the sets
{T, < v} with v < ¢, which are continuity sets of z. Fixv, < fyand s,. Ifs, | s,
and v, | v, then

{Ts = vo} = ﬂ?"=1 Uz?n=1 {Tx~ < ’U-}
since T, is right continuous and nondecreasing. Thus it must only be shown
that there are dense sets 2"and .5 such that for every se & and v e 77 the set .
{T, < v} is a continuity set of x.

The boundary of the set {T, < v} is the set {r:sup{s:#(s) <v}<s <
inf {s: #(s) > v}}. For a fixed s,, the sets depending on v
{t:sup{s: #(s) < v} < s, < inf{s: #(s) > v}}

are all disjoint. Thus, if
‘ P = Useq (v pft: sup {s: 1(s) < v} < s; < inf {s: #(s) > v}} # 0)
where Q is the set of rational numbers, then 27 is countable. One checks that
ifve 77, then for every s, > 0

pftsup{s: #(s) < v} < s < inf {s: #(s) > v}} = 0.
In particular, if ve 27 and {T, < v} is-not a continuity set of x then
pl{tisup {s: t(s) < v} = s, = inf{s: (s) > v}} > 0.
But for a fixed v, these sets are disjoint so one concludes that for each v ¢ 77,
.t.he set
- & = {8+ {T,, < v} is a continuity set of p}

uis the complement of a countable set. All one needs to do now is let 7" be any
countable dense set disjoint from 7”7 and let &= N, .,..%,. The proof is
complete. .
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The inequality of Lemma 5 shows that in some sense the Skorokhod stopping
times are “good.” A similar inequality can be obtained for the stopping times of
Theorem 2. No attempt will be made to get the sharpest form possible however: -
In addition, the form given here is designed for use in the study of stochastic
integrals [10]. The following lemma is needed.

LEMMA 7. Let F be an event in the o-field 57 generated by the function (x(t),
1(s)) — x(#(s;)) for some fixed s, < s, < --- < s, of the form s, = k,2=™. Let p,'
and p' be the restrictions of the measures p,, and p of Theorem2to F. Then p,,' — p'.

Proor. Let 57 denote the collection of sets F € 57 such that for any ¢ > 0,
there is a continuous function, 0 < f < 1, such that

limsup {1 — fdu, <e, limsup § . fdp,, < e
{1 —fde<e, and Vro fdp < ¢
Clearly 27 is a o-field. The lemma will be proved if it can be shown that
' = .

As in the proof of Theorem 2, let C,, C}, ---, C, be compact sets of real
numbers and choose compact sets C;’ such that C; is contained in the interior
of C;/ and

P{X, eC/,0=i=n <PX, eC,0<i<n}+¢/2.
Let I'; = {(x(), t(s)): x(¢t(s)) e C/, 5, < s < 5, + 0,0 < i < n} and select ¢ so
small that p,(I';) > P{X, € C;,0 < i < n} —¢/2. Since I'; is closed and the
measures y,, are tight, there is a compact set K  I'; such that for all m, ¢, (K) =
P{X, eC,0<i=<n} —e. Since K C {x((s;))€C/, 0= i< n},
wK) = P{X, eC,,0=i=<n}+¢2.
Choose an open set U O K such that x(U) < p(K) + ¢/2 where U is the closure
of U. Note that
lim sup p,,(U) < w(U)
SPX,,eC/,0=i<n}+¢2 L
SPX, eC,0=isn}+e.
Let f be a continuous function, 0 < f < 1, which takes the value one on K and
zero outside of U. Then if
F = {x(t(s)))e C;, 0 i < n},
limsup {1 — fdp, < limsup p, (F\K) < 2e,
lim sup § . f dy,, < limsup p,(U\F) < ¢,
\pl — fdp < w(F\K) < 2¢
and
re fdit < p(F\K) < 2¢ .

One need only observe that the sets F of this form generate 57 to finish the

proof.
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Fix s, < 5, < .-+ < s, and for fixed m, let a; be discrete & (m0’-measurable
random variables for eachi = 0,1, ..., n — 1 where 37";;”0’ is the o-field gen-
erated by X;,-m;, j27™ < s,. Define on the space Q of Theorem 2 where

X, = W(T),
Ya == 1I:‘=1 ai—l(Xsi - X“‘i—l) + ak(Xs - Xsk) fOI' Sk < § é Sk+1
Zy = Yo (W(T,) — W(T,, ) + (W, — W(T,)))
for T, <t=T,,,,
so that for instance if T, << T,  , then

Z— Y, =W, — WT,)) = a W, — X,).
Let S = inf{s > s5,: |Y,| > 42} and T = inf {t > T, : |Z,| > 28B).

PropoSITION. If B> 34 >0 and P(T, =T, ) =1 for all se{s,, 5, - -+, 8.},
then

PIT<T,} <c{(B— )TV, 58,8 + 4 + 3PS < s,}
where c is a constant independent of X,.

Proor. Let I' = {(x(7), #(s)): T(x(1), #(s)) < T, = «(s,)} and for ac R", a =
(@, @y, -+, a,_,) let A(a) be the set

{(x(2), 1(5)) * SUP, a1 <eseiap | Zkmr @ma(X(1(s:)) — x(1(5:_,)))
+ a,(x(t) — x(¢(s;)))| > 2B forsome k < n}.

Then since the random variables «, are discrete,

PT) = Toean(T N {a; = a,,0 i <))
= Ve (@) N {a; =a,,0 < i< n}).

Now one can check that A(a)’ N A(a) is contained in the set of points (x(2),
t(s)) with discontinuities at at least one of the points s,, s, - - -, 5, which by as-
sumption has y# measure zero. Thus by Lemma 7,

P(I') £ Y,cpnlimsup, p,(A(a) N {a; = a;,0 < i < n})
< lim sup p,(T) .

Now p,, is the measure induced on Q‘by the map f,, from Q* so z,,(I') = P(A)
where A is the set of Q* for which there is a 1, T{Pym < t < T}, ,my for some
k < nsuch that |Z,™| > 2B where

Z/m = | S (W(T ) — W(TEEam)) + (W — W(TZm) -
Again let T be the infimum of all such ¢. Let (for fixed m = m,)
S" =inf{k2=™: P(S < k27" | X,;3-n, ] S k) = {} .

Since S’ depends only on X, », ' can be considered a function on Q*. Let
Ji = [2™%)s j.' = [2™s,] and for other k < n, j, = [2™s,] and j,/ = [2™s, + 1].



PROCESSES IN BROWNIAN MOTION 55

Write
PA) = Zia PT < T < Ty |Z(TR )| < 48" > 5.} + P(S' < s,)
+ D= PTG < T < TP5 |1 Z™(T )| < 4
+ Zh=o P{S" > 5,5 | Z™(T0)| = 4)
=P + P+ P+ P,

We treat the limit supremum of each of these probabilities in turn.
First

S < min {j27": i, < j< i a,_ | W(T ;™) — W(T;.',]:’ll)} > i}
since S satisfies this inequality and the events depend only on X ;2-m- Moreover,
if |Z‘""(T;.'le)| < Aand T;-’,,':’_l < T Ty then o, |W(T) — W(T;.’,:’_l)| > Bsince

B > 32. This is impossible if «,_, = 0, of course, and otherwise a conditional
version of Lemma 5 gives '

P, < Ta {(B — D7H(ZN(T™): fiys fon 2°87) + 2P(s,, < S < 3,)
< (B—= )W (Yyom: sy 5, S') + 2P(S" < 5,')
< (B — )WY, 5, 8,, ) + A} + 2P(S' < 5,))
by the corollary to Theorem 1.

To get a bound for lim sup,, (P, + P,), observe that P(S < s, | X,,-m, j2°™ < 5,}
converges to zero on {S > s,} except for a set of probability zero. Thus

limsup P{S" < 5,} < P{S < s,} as m-— co .

For P,, recall that by assumption, with probability one, T, is continuous at
595 815 + + +» S, and that therefore X is also. By the nature of the definition of the
Skorokhod stopping times then,
mllZTE) < B TP < T < Ty} -0,
Finally observe that
P{S" > 5,3 [Z™(T§) =z 4}
= P8 > 5,5 | XE ai—l(inZ—m - Xfi—12_”°) + ak(le’ch - Xjkz—m)| > 4} .
Moreover
Yj;cz—m - Z?:l ai—l(inz—m - in_lz-m) - ak(le’cz—m - Xjkrm)
= Z{"=1(ai - ai—l)(Xsi - inz-m)
which goes to zero with probability one by the continuity of X, at s,, i =
1,2, ..., n. Buton{S' > s,}, |Yf22‘"’| < 4/2 for all i so limsup P, = 0. Thus
P(I") < lim sup,, s,,(T)
< lim sup,, P(A)
< e(B—A)YV(Y,:0,s,,8) + 2} + 3PS < s} .
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