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LECTURES

USES OF EXCHANGEABILITY

By J. F. C. KINGMAN
University of Oxford
The Wald Memorial Lectures delivered in Seattle in August 1977, and
summarised here, ranged over a variety of applications in both pure and
applied probability of the idea of exchangeability, and particularly of
de Finetti’s theorem. Particular emphasis was placed on two contrasting
themes, some recent work of Aldous on the subsequence principle, and

consequences of de Finetti’s theorem for certain problems in population
genetics.

1. Combinatorial arguments in probability theory. The lectures on which
this paper is based were not intended to be a systematic survey of the theory
and applications of exchangeability; at most they were designed to illustrate the
power and elegance of the concept in a variety of contexts. Accordingly the
present account is a personal selection of topics which I have found interesting
and illuminating.

The use of combinatorial arguments for probabilistic problems is of course
as old as probability theory itself. Indeed, so long as the theory was concerned
exclusively with the equiprobable case, all its results were necessarily combi-
natorial in character. In this century, however, more subtle use has been made
by many authors, perhaps most effectively by Sparre Andersen and his col-
leagues (as for instance several papers in the collection [4] bear witness).

A typical argument might run as follows. Suppose that

(1.1) Z=0X, X, -, X,)

is a function of independent, identically distributed random variables X, such
that E(Z) exists. For any permutation = of {1, 2, ..., n}, Z has the same distri-
bution as

(1'2) Zir = q)(le’ XKZ’ DR er) ’
and hence
(1.3) E(Z) = (n)"' 3. E(Z,) = E(¥(X, X,, ---, X,)},
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184 J. F. C. KINGMAN

where
(1.4) W(xy, Xy« ooy x,) = (M) X, O(xy, Xy, + -+, X,,)

is the symmetrised form of ®, the sums extending over all n! permutations .
It may well happen that ¥ is a simpler function than @, so that (1.3) facili-
tates the calculation of E(Z). For example, if ¥ is identically zero, the identity

(1.5) E{O(X,, X, -+, X,)} = 0

is valid for all independent and identically distributed X,. That such simple
arguments can lead to very important results may be seen by considering
Spitzer’s identity, of which the original proof [44] was exactly of this type.

The argument can also be inverted, since [29] it is simple to show that, if
(1.5) holds whatever the distribution of the X, (or less stringently, for every
distribution whose support contains at least n points), then necessarily ¥ = 0
identically. And then the argument in the original direction shows that (1.5)
holds even if the X, are not independent, so long as the joint distribution of (X,
X -+, X,,) is the same as that of (X, X,, ---, X,,), for every permutation r.

The italicised clause is exactly what is meant by saying that (X}, X,, - - -, X,)
is exchangeable (or permutable or interchangeable or symmetrically dependent),
so that the combinatorial argument leads directly to this concept. Every result
which can be thrown into the form (1.5) and which is true under the assump-
tions of independence and common distribution is necessarily true under the
much weaker assumption of exchangeability. In this sense, finite exchangeable
sequences partake of some of the properties of independent, identically distri-
buted sequences.

The technique is not confined to equalities. Suppose for example that (X, X,)
is exchangeable (which, of course, simply means that it has the same bivariate
distribution as (X,, X;)), and that f and g are two increasing functions. Then

[f(x:) — f(x)][9(x1) — 9(x2)] = O

1°

for all x,, x, and so

E{[f(X) — fAX)][9(X)) — 9(X)]} = 0.

Therefore, if the expectations exist, exchangeability implies that

(1.6) E{ f(X)g(X)} = E{ f(X)9(X,)} -

This simple inequality is not quite trivial, since when X, and X, are independent
it reduces to the “other” Tchebychev inequality [47]

(1.7) E{ f(X)9(X)} = E{f(X)}E{g9(X)} .
Again, there are applications in which it is not necessary to consider all per-

mutations 7. If for any subset 4 of the group of permutations of {1, 2, ..., n},
O satisfies

(1'8) ZneA(D(xp Xgy = v vy X“) =0
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for all (x,, x,, - -+, x,), then (1.5) holds for all exchangeable (X,, X,, - - -, X,).
Takacs [45], [46] has shown, for example, that the “ballot theorems” of Bertrand
and André follow from identities of the form (1.8) in which A4 consists of all
cyclic permutations.

All these arguments apply to finite exchangeable sequences. For infinite se-
quences, much more can be said, but it is possible to feel that the glamour of
the essentially infinitary results has been allowed to obscure the power of the
purely finite.

2. De Finetti’s theorem. The central result of exchangeability theory is the
theorem proved in successively greater generality by de Finetti in [18] and [19],
and by Hewitt and Savage [22]. It can be regarded from a number of different
points of view; a functional analyst for example might see it as an integral
representation theorem in the spirit of Choquet for symmetric measures on
product spaces. For a probabilist it is perhaps most illuminating to follow a
simple martingale argument (cf. Loéve [38]).

An infinite sequence X = (X, X,, ---) of random variables is said to be ex-
changeable if (X,, X,, - - -, X,) is exchangeable for eachn = 2. Describe a random
variable as n-symmetric if it is a function of X which is unchanged if the first n
variables are permuted in any way: for example,

X, X, X, + X, X,

is 3-symmetric but not 4-symmetric. Let 5, be the smallest g-algebra with

respect to which all the n-symmetric random variables are measurable, and note
that &%, 2 &,

n+1°
If f is a measurable function for which

E[f(X)| < oo,

and if Y = ¢(X) is a bounded n-symmetric random variable, the-exchangeability
of X implies that, for 1 < j < n,

E{f(X;)9(X)} = E{f(X)9(X;, X, - -+ Xjops Xy, Xy -+ 0)}
= E{f{X)9(X)} ,
E{n= 27, f(X,)Y} = E{f(X))Y}.
For any 4 € 5, Y may be taken as the indicator of 4, so that
§an™t 2% flX;)dP = §, flX,) dP (4e 7).

The integrand on the left is n-symmetric and therefore 5 -measurable, and
therefore

2.1) nt D5 fIX) = E{fAX) [}

An elementary martingale convergence theorem ([13], Theorem 4.3) or direct
computation ([38], Section 27.2) now shows that

(2:2) lim, o, n7* 23, (X)) = E{f(X) ]| F .}

so that

a
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almost surely, where
(2.3) F e =Nie1 F -
The existence of the limit (2.2) is an expression of the strong law of large

numbers for exchangeable sequences. In particular, if fis the indicator of the
interval (— oo, x], then with probability one,

(2.4) lim, . n7%{j < n; X; < x} = F(x),
where
(2.5) F(x) = P{X, £ x| &}

is a random distribution function.
Now suppose that f is a bounded measurable function on R*. The argument
leading to (2.1) generalises at once to give, for n > k,

(r(n = 1) - (1 — k + DI T X, X -5 X,
= E{f(X,, X;, -+, X,)| )
where the sum extends over distinct ji, j,, - - -, j, < n. The martingale theorem
then shows that
E{f(X0 X, -+ X) | 5}
= lim,_ {n(n — 1) .-+ (n — k + D} 3 f(X;, X, -0, X))
= lim,_, n* D=1 Dyt Z?,,=1 f(le’ ng’ MR Xj,,) ’

since the contribution from terms with coincidences among the j, is of order
n*=t. In particular, if

Sw Yoo o500 = fi) ful(ya) -+ filye)

and f, is the indicator of (— oo, x,], (2.4) implies that
(2.6) PX,<x, X, <X, -+, X, £ x| F .} = F(x;) F(x,) - - F(x,) .

This formula encapsulates de Finetti’s theorem: there is a g-algebra conditional
on which the X; are independent and identically distributed. Note that F(x) is for
each x an & _-measurable random variable. If & is any sub-g-algebra of .5,
with respect to which each F(x) is measurable, then taking expectations of (2.6)
conditional on ¥ yields the same expression with % replaced by &. In par-
ticular, if & is the g-algebra generated by the variables F(x), then in an obvious
notation

(2.7 PX, < x, X, < x,, +++, Xi £ x| F} = F(x)) F(x,) -+ - F(x}) .

‘ Thus we have a recipe for constructing the most general exchangeable se-
quence. First construct a sequence of independent random variables having
the same distribution function F. Then allow F itself to vary randomly. The
randomisation destroys the independence while preserving exchangeability, and
every infinite exchangeable sequence can be constructed in this way.
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It is very important to stress that de Finetti’s theorem is about infinite se-
quences, and cannot be applied to finite exchangeable sequences. There is a
finite analogue, but it lies less deep and is much less useful (see Kendall [28]). It
is worth making the distinction vivid by a simple argument. Let (X, X,, - - -, X,)
be exchangeable, and suppose that X, has finite mean p and (nonzero) variance
a’; let p be the correlation coefficient of X, and X,. Then the variance of 3)7_, X, ;
is

5210° + Dip; p0" = na*{1 4+ (n — 1)p},
and since this is positive we have
(2.8) oz —(n— 1)1

In particular, the members of an infinite exchangeable sequence are positively
correlated, as may also be proved directly from (2.7). However, in a finite
exchangeable sequence negative correlations can arise: for example the lower
bound (2.8) is attained if the X, have a symmetric multinomial distribution.
When p < 0 the X, can never be conditionally independent and identically
distributed.

3. Some complements to de Finetti’s theorem. It would be surprising if such
a beautiful result had not attracted a variety of generalizations, extensions and
analogues. Again, I make no attempt at completeness, but will mention three
different theoretical developments to illustrate the possibilities.

(a) Conditioning on a single random variable. 1t is perhaps less than satisfying
that the conditioning in (2.6) and (2.7) should be on (respectively) an abstract
o-algebra and on a whole function, although of course both %, and F have
significant meanings in relation to the exchangeable sequence X. It is therefore
interesting that (2.7) can be replaced by an expression of the form

(1) P S x, X, < x, -, X, < x| 8} = Fo(x) Fo(xy) -+ Fi(x,),

where { is a single random variable, and the distribution function F, depends
now on {. In fact, (2.6), (2.7) and (3.1) are all really equivalent, since the
o-algebra generated by {, and that generated by F, are both identical with .5,
up to events of zero probability (Olshen [41]).

(b) Spherical symmetry. A theorem usually ascribed to Maxwell states that,
if independent random variables X,, X,, - - -, X, are such that the joint distribu-
tion of (X}, X,, - .-, X,) has spherical symmetry (in the sense that it is invariant
under all n-dimensional rotations) then the X, are normally distributed with
zero mean and the same variance (regarding the degenerate distributions as nor-

-mal with zero variance). In view of this and de Finetti’s theorem, it is not very
remarkable that something can be said about infinite sequences with spherical
symmetry, even when independence is not assumed.

Thus suppose that X, X,, - .. are random variables with the property that, for
every n = 1, the joint distribution of (X}, X, - - -, X,) is spherically symmetric.
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Then it can be proved that
(3.2) V=1lim,_ n' 3" X}

exists almost surely, and that, conditional on V, the X; are independent and
normally distributed, with zero mean and variance V. (The result appears to
be due to Freedman [21]; an incomplete proof may be found in [26] and a short
one in [30].)

More interesting problems arise with matrices whose distributions are invari-
ant under multiplication by orthogonal matrices. The picture here is still far
from clear, but some valuable brushwork has been carried out by Wachter [48]
and Dawid [12].

(c) Selection. Every exchangeable sequence X has the selection property, that
for any integers 1 < j, < j, < --- < j, the jointdistribution of(le, ij, e X))
is the same as that of (X;, X,, - - -, X;). The converse is false for finite sequences,
because for a sequence of N variables the selection property only gives infor-
mation about the (N — 1)-dimensional marginals. Rather surprisingly, the con-
verse is valid for infinite sequences. It has been established by Dacunha-Castelle
[9] in a more general setting; we sketch here a simple proof.

Suppose that the infinite sequence X has the selection property. Taking j, =
r + 1 shows in particular that X is stationary, and the Birkhoff ergodic theorem
then shows that (2.4) holds for some random distribution function F. We now
use an easily proved fact of elementary real analysis: if for each r < k the
bounded sequence (a,(j); j = 1) has Cesaro limit

a, = lim,_, 7' $1,a,(0)),
then

(3.3) ()™ 2.1'1<J'3<--~<jk§'n ay(ji) al(jo) - -+ @(jie) = a1y -+
as n — oo. Applying this result with

a(j) = f{(X;),
and f, the indicator of (— oo, x;], we have that
(3'4) (ﬁ)—l#{jl <p<- - <En le = Xy, ij g AN Xjk =< x}

— F(x,) F(x,) - -- F(x;) .
By the selection property, the expectation of the left-hand side is
P{Xl é xl’ Xz é Xz, ° "Xk é xk}
and bounded convergence shows that this is equal to
E{F(x,) F(x,) - - - F(x,)}.

The symmetry of this last expression shows that X is exchangeable.
Thus an apparently weaker property than exchangeability, the selection prop-
erty, suffices for the conclusion of de Finetti’s theorem.
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4. The subsequence principle. In 1967 Komlos established a conjecture of
Steinhaus by proving the remarkable theorem [36] that, if X = (X, X,, - - -) is
any sequence of random variables with E|X, | bounded, then there exists a non-

random sequence 1 < n, < n, < ny < - .- of integers such that the subsequence
4.1) Xx* =X,

has the property that the limit

(4.2) lim,_,m™t Y™ X *

exists almost surely. In other words, the strong law of large numbers applies to
some subsequence of every L,-bounded sequence.

Inspired by this result Chatterji, in a long series of papers exemplified by and
listed in [7] and [8], established corresponding analogues of other classical prop-
erties of independent sequences, and propounded his subsequence principle.
This asserts that every limit property enjoyed by all independent, identically
distributed sequences satisfying some moment condition is shared by some (non-
randomly chosen) subsequence of every sequence which satisfies the moment
condition uniformly. Chatterji devised a separate (and usually very complex)
proof of each instance of the principle, and it became an obvious challenge to
establish a general result to embrace all the known special cases.

Any such general approach inevitably involves exchangeability. Suppose that
a property & determined by joint distributions is enjoyed by some subsequence
of every random sequence. Then it is enjoyed by some subsequence of every
exchangeable sequence, and by the selection property this subsequence has the
same stochastic structure as the original sequence. Thus .Z”is enjoyed by every
exchangeable sequence. On the other hand, de Finetti’s theorem shows that
any property shared by all independent and identically distributed sequences
has an analogue for exchangeable sequencs; for instance the classical strong law
implies the existence of the limit (4.2) whenever (X,*) is exchangeable and
E|X *| < oo.

The tension between these two facts makes it clear that the first step towards
a precise version of the Chatterji principle is to reformulate it as a conjecture:
every limit property enjoyed by all exchangeable sequences is shared by some sub-
sequence of every tight sequence. (The adjective “tight,” which means that
(4.3) lim,_ sup, P{|X,| = 4} =0,

Is necessary to stop probability disappearing to infinity.)

The conjecture would for instance be true if every tight sequence contained
an exchangeable subsequence. This is rather obviously false, but it is approxi-
mately true. More precisely, it can be shown that every tight sequence (X,)

contains a subsequence (4.1) which is asymptotically exchangeable in the sense
that the joint distribution of the sequence

(4'4) (Xr*’ X:(+1’ X o )

r+29

converges as r — oo to the distribution of some exchangeable sequence.
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This result seems to have arisen independently from several sources; it is
essentially contained in [9], in [17] and in unpublished work of my own. The
simplest proofs derive it from the celebrated combinatorial theorem of Ramsey
[42]. It is natural to hope that it might be powerful enough to establish the
above conjecture, and I was optimistic enough to speculate (having in mind
Theorem 3.1.1 of Skorokhod [43]) that, for any asymptotically exchangeable
sequence (X,,), there is an exchangeable sequence (Y,) on the same (or perhaps
a larger) probability space, such that

(4.5) X,—Y,—0
in probability as n — oo.

This line of speculation was brought to an abrupt halt by a decisive counter-
example of Aldous [1]. Lete, (n = 1) be independent with

Pe,=0)=P(,=1)=1,
and let
(46) &= Z:=l 6"2_” s

so that & is uniformly distributed on (0, 1). It is not difficult to see that the
sequence

(4.7) X, =¢+se,

is asymptotically exchangeable, the limiting distribution being that of the ex-
changeable sequence

(4'8) Yu’ =7 + €n
where 7 is uniformly distributed on (0. 1) but is independent of the «,.

Now suppose, if possible, that, on some probability space, there are sequences
(X,), (Y,) such that the joint distribution of (X,) is the same as that of (X,’),
that of (Y,) the same as that of (Y,’), and (4.5) holds. By (4.7)

PX, — X, e{-1,0,1}) =1,
so that
P(X, — X,e{-—-1,0,1}) =1,
and thus the fractional part of X, does not change with n. By (4.8) the same is
true of Y,, and by (4.5) these two fractional parts are the same. Hence there
is a random variable { € (0, 1) and random variables ¢,’, ¢,” in {0, 1} such that

X,=C+¢/, Y, =0+,

From the known distributions of the sequences (X,) and (Y,) it follows that ¢,’
is a function of { (the nth digit in its binary expansion), while ¢,” is independent
of {. Therefore

P{X, — Y,| = 1[{} =Ple,” # ¢,/ |(} =%
P{X, - Y, | =1} =3,

and thus

contradicting (4.5).
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The remarkable fact is that, despite this example, the subsequence conjecture
can be made precise, and it is then true, as has been shown in a brilliant display
of sustained argument by Aldous [1], [2], [3]- For the details the reader must
turn to his own account, to the concept of a limit statute and a very general
theorem subsuming all the known cases of the subsequence principle. It is im-
possible here to do justice to a major achievement in probability theory, and I
must confine myself to paying tribute to it.

5. Exchangeability in population genetics. Asa sharp contrast to the austere
elegance of the subsequence problem, I now turn to more earthy applications
of exchangeability theory. From time to time (as for example in [5] and [28])
the relevance of the concept to the description of variation in biological popu-
lations has been noted, a relevance which depends on the fact that in many
models the members of the population are supposed to be indistinguishable.

More recently the theory has found rather deeper application to problems in
population genetics. One such is expounded in detail in [32], but rather than
recounting this work, the possibilities will be illustrated with reference to a
rather different model which may prove to be appropriate for some genetical
situations [34].

Consider a population of a fixed size N evolving in nonoverlapping genera-
tions. In genetical terms, it will be taken as haploid and interest will centre on
the gene at a particular locus. From this point of view, each individual can be
described by an element of a set S of possible alleles at that locus.

A generation G, (¢ = 0, 1, 2, - . .) therefore consists of N elements (not neces-
sarily distinct) of a fixed set S, which in practice is finite but large and for
modelling purposes might be allowed to be countably infinite. Each member
of G, then produces daughters which are also identified with elements of S, and
which make up the next generation G,,,. It is assumed that the probability that
the numbers of daughters born to the members of G, are respectively d,, d,, - -
d, is of the multinomial form

(5.1) NYNYd) dy) - dy) (d +dy+ - +dy=N),

bR}

which means that the reproduction is selectively neutral. However, to allow
the possibility of mutation, we assume that the daughter of a member of G, at
iin §is at jin § with a given probability p(i, ), the p(, j) satisfying
(5.2) P J) 20, Fiesp(j)=1,
and therefore constituting a stochastic matrix
P=(p(, )i, jeS).

We therefore have a discrete-generation model embodying genetic drift (the

random fluctuations implied by (5.1)) and mutation, but not selection (or the

manifold complications of diploid, multi-locus behaviour). The sequence (G,;
t=0,1,2,...) is a Markov chain. To examine its properties it is convenient



192 J. F. C. KINGMAN

to label the members of G, in random order as
(5.3) X( (r=12,...,N).
Thus X,(7) € S is the rth element to be drawn from G, in random sampling with-
out replacement; G, is described by the finite sequence (5.3), which by defini-
tion is exchangeable.

It is now easy to see that, conditional on G,, the random variables X,(t + 1)
are independent, with
(5.4) P{X,(r + 1) = j| G} = N7 2oL, p(X(8), ) -
(This utilises the special nature of the multinomial distribution (5.1).) In par-
ticular, (5.4) implies that

(5.3) 7(J) = P{X\(1) = j}
satisfies
7T¢+1(j) = N1 E{P(Xa(t)’ M= E{P(Xl(t)’ ])} = Dlies ”t(i)P(i’ ]) .
Now suppose that (and it is at this point that we part company from [32]) P is
irreducible, aperiodic and positive recurrent, with stationary probability measure
(=(j); j€ S). Then, whatever G,,
(5.6) 7(J) — =(j)
as t — oo, for all j.
From (5.4) again, the joint probability

(5.7) T (Jo Jo) = P{X(1) = ji, Xy(1) = Jo}
satisfies ]

To(J Jo) = N72 23 =1 E{p(Xa(0), 1)P(X (D), J2)} -
By exchangeability, the summand equals

E{p(X\(1), j)p(X«(1), j»)} = Diigiges Tt B)P(ins 1) (s Jio)

if @ B, and

E{p(Xy(), j)p(X (1), o)} = Zies m(Dp (i, j)p(s jo)
if @ = B, so that
(5.8) Tonr(fi Jo) = (1= N7 T ges iy i)p(is j)Pis o)

+ N7 s m0p(E, jp(s Ji) -

Regarding the 7,(i) as known, this is a recurrence relation on  for the quantities
(5.7), from which it is easy to show that

(59) 77(]'1’ ]2) = limt—-»co ﬂt(jl’ ]2)
exists and is independent of G, being determined by the equations
(5.10) m(jiJo) = (1 = N7Y) 2iiyiges T(is B)p(iys 1)P( Jio)

+ N7 Zies m(Dp(is j)p(is ) -
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A similar analysis may now be carried out, recursively on n, for the proba-
bilities
(5'11) T(Jos Jo - "jn) = P{X,(1) = L Xz(’) =Jp s Xn(’) = Ja}>
which converge to limits #(j, j, - -, j,) which are independent of G, and are

determined by equations analogous to (5.10). In this way one could in principle

climb up to n = N, and one would then have calculated the equilibrium distri-
bution of G,.

In practice the algebra becomes far too complex, particularly since the cases
of genetical interest have very large values of N. This however is balanced by
the fact that mutation is usually a rare phenomenon, so that we can write

(5.12) P, )) = (1 — u)d;; + uq(i, j),

where Q = (g(i, j); i, j € S) is stochastic and u is very small.
It turns out that, for many purposes, the geneticist is concerned with large
values of N and small values of u such that

(5.13) 9 = 2Nu

takes moderate values. When this is so, the mathematician can help by pointing
out the easily verified fact that, as N — co and u — 0 with 6 fixed, each equili-
brium probability converges to a limit

(514) Hn(jl’ j2’ o "jn) = lim ﬂ(jl’ j2’ o "jn) ’

which satisfies the equations

n(n -1+ 0)Hn(j1’ j2’ o "jn)
(5‘15) =0 Zﬁ=1 Zies Hn(jl’ “0 0 Jamn i ja+1’ e ’jn)q(i’ ]a)
+ ZZ=1 Hn—l(jl’ o "ja—l’ja+1’ t "jn)”a ’
where
(516) Vo = #{ﬁ + a;jﬂ = ja} .

If II,_, is known, (5.15) determines II, by the obvious iteration. Thus II,
can be calculated recursively on n, starting from the fact that (II())) is the
equilibrium distribution for P (or equivalently for Q). The algebra is still com-
plicated, but much less so than before, and (5.15) is probably well adapted to
automatic computation in particular cases.

Note that II, is a symmetric function of its n arguments, and that

(5’17) Zjes Hn(jl’ t ”jn—v ]) = Hn—l(jl’ v "jn—l) (n g 2) s
and
Zies I(j)=1.

Hence there is an exchangeable sequence X with values in S for which

(5.18) P{Xl = jp Xz = jz’ R Xn = ]n} = Hn(jl’jz’ v ’,j'n)
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for all n. De Finetti’s theorem therefore shows that there is a random proba-
bility measure

(5.19) r=(p(j)ijes)
on S such that
(5.20) IL(jis Jar =+ +2 Ja) = B{LA(J1) A(ja) -+ A(Ja)} -

The distribution of 4 has a natural interpretation ([32], [23]) as the limiting
distribution as N — oo of the empirical distribution of the N points of G,. It is
easy to check that it is not degenerate, and this presistence of ramdomness has
important genetical consequences [39], [40].

6. Random partitions. The argument of the preceding section does not by
any means exhaust the usefulness of de Finetti’s theorem in population genetics.
Another example is that of random partitions arising in models of “infinite
alleles” type. Suppose that a sample of n gametes is taken from a large popu-
lation, and that the gene at a particular locus can be determined for each
gamete. Thus the sample of n is partitioned in a random way according to the
different alleles represented. A model for the allelic partition (ignoring now,
as is often biologically realistic, any labelling of the alleles) is then a probability
distribution P, over the set of partitions of the integer n.

Since n may be chosen at the experimenter’s convenience, P, must be speci-
fied for every n > 1 (or more strictly for every n less than the population size,
but this constraint will be ignored). Moreover, the different distributions P,
must be related by a consistency property. This arises because, for m < n, one
way of taking a random sample of size m from the population is first to take one
of size n and then to take a subsample of m from this sample. Thus P, must be
determined by a relation of the form

(6.1) P, =0,,P

mn n

where 7, is a certain linear mapping between the relevant spaces of probability
measures.

One is therefore led to the study of families (P,) satisfying (6.1), where P, is
for each n > 1 the distribution of a random partition of n. It would be nice to
have a representation theorem for such families, but no completely satisfactory
result of this type is yet known. However, for genetical purposes it is enough
to know that every consistent family satisfying a further condition (discussed
in detail in [35]) can be written in the form

(6’2) P(m) = §o -dp,

where p is a probability measure on the space V of sequences x = (x,, x,, - - )
satisfying

(6.3) X, = Xpi1s T x,=1.

The function ¢, on V is defined for each partition = of n by requiring that ¢_(x)
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be the probability that a sample of size n from an infinite population, in which
alleles are presented with respective frequencies x,, x,, - - -, has the allelic parti-
tion 7.

In genetical applications in which selective pressures are important, the
measure # is usually degenerate. But in selectively neutral models,  is usually
diffuse, and in many of these a particular measure depending on a single pa-
rameter 6 results. This is the Poisson-Dirichlet distribution [31], which yields
in (6.2) the celebrated Ewens sampling formula [15], whose consistency in the
sense (6.1) was first noted by Kelly [27]. Thus in (6.2) there is a sharp distinc-
tion between selective and neutral models, which can perhaps be exploited in
the analysis of allele frequency data.

The representation (6.2) can be looked upon as a version of de Finetti’s theo-
rem. If we sample the gametes sequentially, and if we could recognise the genes
as corresponding to previously named alleles, we would have an exchangeable
sequence of random variables with values in the set of possible alleles. De Finetti’s
theorem would then give (6.2), where p is the distribution of the allele fre-
quencies in the population when arranged in descending order. The analysis of
[35] shows that this conclusion may still apply if the alleles have not previously
been recognised, so that the only information lies in the unlabelled partitions.
Although it does not seem possible to derive this result directly from de Finetti’s,
the methods of proof follow those described in Section 2 above.

7. Some other areas of application. De Finetti’s original purpose was to free
the theory of inference using repeated experiments from the unsatisfactory fea-
tures of the frequentist theory (for a more recent account of his ideas see [20]),
although it could be argued that, because of its infinitary nature, his theorem
comes as near as mathematics can to justifying the frequentist position. A series
of observations whose stochastic structure is unaltered by permutations, and
which is capable in principle of indefinite extension, can always be regarded as
a sequence of independent variables with a common distribution function F,
and F (and F alone) can be estimated with arbitrary accuracy from sufficiently
many observations.

There seems no further contribution which exchangeability can make to the
theory of inference when the observations form a simple series. But the concept
finds more subtle application when the data have a more complex structure.
This is the case in some sampling problems (e.g., [14]) and in others involving
the analysis of variance [37]. There are here some intriguing theoretical ques-
tions concerned with invariance under smaller groups of permutations [10], [11].

A related statistical problem is that of multivariate data in which the sample
size, though large, is comparable with the dimensionality of the observations.
Here the methods of exchangeability, applied not to the observations but to the
singular values of the data matrix, have proved valuable in establishing deep
limiting properties, notably in the work of Wachter [48].
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Finally I would mention the work of Kallenberg ([23], [24], [25]; see also [6])
on processes with exchangeable increments. It would be interesting to relate
this to the statistical problem by way of the relationship [32] between the gamma
process (regarded as a particular Kallenberg process) and the Dirichlet random
measure whose statistical relevance has been stressed by Ferguson [16]. Such
a circle of ideas might also have considerable relevance to the structure of
genetical populations (cf. [33]).
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