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SOME TAUBERIAN THEOREMS RELATED TO
COIN TOSSING

By PERrsI DiacoNIs AND CHARLES STEIN
Stanford University

Let 4 be a subset of the integers and let S, be the number of heads in
n tosses of a p coin. If limu_. P(S» € A) exists for some p then the limit
exists for all p and does not depend on p. The relation of the limit to the
density of 4 and to a similar Poisson limit is also given.

1. Introduction and statement of results. We consider the following problem.
Let 4 be a subset of the integers (such as the even numbers). Let S, be the number
of heads in n tosses of a coin. Does lim,,__, P(S, € A) exist, and how is it related

to the set 4?
A subset A of the set N of all nonnegative integers is said to have Euler density

[ (with parameter p ¢ (0, 1)) if
(1.1) lim, ., >, 6(i,n,p) =1
where

bi,m, p) = (p'(1 — p=*  for i€f0, ., n)

=0 otherwise.

We shall also say that 4 has E, density [ if (1.1) holds. This notion was intro-
duced by Euler in order to manipulate divergent series. Modern references are
Hardy (1949) and Peyerimhoff (1969). The principal result of this paper is that

the existence and value of E, density does not depend on the value of p. In
greater detail, we have

THEOREM 1. Forany A C Nand p € (0, 1) the following assertions are equivalent:

(1.2) A has E, density 1,
(1.3) lim, . e Yo, X =1,
Ll
(14) fOl‘ all 2 > 0 ’ limn—‘oo% Z:ie,«l;nsi<n+mé 1 = l.
eh

This was conjectured independently by Erdds and Gleason, at least in part.
The proof is an application of Wiener’s Tauberian theorem after an appropriate
variance-stabilizing transformation has been made and the normal approxima-
tion to the binomial used. Variance-stabilizing transformations are described in
Anscombe (1948).
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An example will be useful in comparing rates of convergence of different
densities.

ExAMPLE 2. If A4 is the set of multiples of an integer a, then
Bueablisrap) = L| 5 e
a

This is proved below. Thus 4 has E, density 1/a for any fixed p, 0 < p < 1.

Consider the problem of the random division of a set of n counters into two
piles. Is the uniform distribution on {0, 1, 2, - . ., n} a reasonable model for the
number of objects in one of the piles? Laplace, in a controversy reported in
Todhunter (1965, pages 200, 465), argued that the binomial model was more
appropriate in determining if the number of counters in one pile was odd or
even. Gardner (1973) discusses the “random” division of a pile of sticks in con-
nection with the randomization mechanism of the I Ching. For mathematical
convenience the uniform model is used in determining if the remainder in one
of the piles is divisible by 4.

Theorem 3 below states that if n is reasonably large the uniform and binomial
models lead to approximately the same answer.

Often the most readily available information about a set of integers is that it
has Cesaro density (C, density) with a given rate of convergence. The next
theorem asserts that if this rate is better than 1/n? the set has E, density. A
positive, measurable, real-valued function L is slowly varying at infinity if for any
a>0,lim, ., L(ax)/L(x) = 1. A measurable real-valued function is said to vary
regularly at infinity with exponent p, —oo < p < oo, if f(x) = x*L(x) for 0 <
© x < oo. Seneta (1976) contains the basic facts about regular variation. We can
now state:

THEOREM 3. If A C N has E, density | then A has C, density I. Conversely, if

1
(1.5) (o Deeasse 1) — 1] < 90
where g(x) varies regularly at infinity with exponent p, —1 < p < —1, then
(1.6) | Ziea b 1, p) — 1| < kg(mnt

for some constant k.

The set 4, which does not include 0, includes 1, 2, 3, does not include 4
through 7, includes the next five integers, and so on, is easily seen to have C,
density 4 but is not E, summable to any limit. Similarly, it is easy to construct
examples of sets 4 with arbitrarily slow rate of convergence in (1.5) which have
E, 'density. Example 2 shows that the information provided by (1.6) can be far
from best possible. Here is an example where the rate of convergence given by
Theorem 3 is the best rate available. An integer is square-free if it has no squared
prime factors. Let Q C N be the set of square-free numbers. Using a known
result due to Walfisz along with Theorem 3 yields
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COROLLARY 4.
. 6
Seeq bl m p) = —| < E()
where
E(n) < C, exp{—C,log? n(log log n)~%}
for C,, C, constants. If the Riemann hypothesis is true, then E(n) < Cyn~tvt¢ for
any e > 0.

Returning to probabilistic language, Corollary 4 suggests a probabilistic way
to determine 7 by flipping a coin n times and determining if the number of heads
is square-free or not.

2. Proof of theorems.

PROOF OF THEOREM 1. That (1.2) implies (1.3) is Theorem 128 in Hardy (1949).
The main steps of the remaining parts of the proof will be stated as a sequence
of auxiliary lemmas. Letting 4 C N be a fixed set throughout the proof, define
the real-valued step function:

2.1)  flx)=1 if 220 < x<2(2(i + 1)) for some icA
=0 otherwise.

LEMMA 5. A has E, density | if and only if
(2.2) lim,_,, (2r0?)~t §=, f(x + e~ dx = | with o* = 2(1 — p).

LemMMA 6. (1.3) holds if and only if (2.2) holds with o* = 2},

LemMa 7. (1.4) holds if and only if for any ¢ > 0

(2.3) lim, .. o f(x + f)dx = .
&€

Since the Fourier transform of the function
(waz)—*e‘”’”"2

does not vanish, Wiener’s Tauberian theorem (see, for example, Hardy (1949)
Theorem 220) implies that if the limit in (2.2) exists for any ¢* > 0 it exists
for all ¢* > 0. Thus (1.2) is equivalent to (1.3). Further, Wiener’s Tauberian
theorem implies that if the limit (2.2) exists then the limit (2.3) exists. Thus
(1.2) or (1.3) imply (1.4). That (1.4) implies (1.2) requires a separate argument.

In what follows, k denotes an unspecified constant which need not be the same
from equation to equation.

ProoF oF LEMMA 5. Using bounds for the normal approximation to the bino-
mial measure, as given in Feller (1968, Chapter 7, formulas 3.9 and 3.10) we
see that

(24 Xiea®P( = p)t = iea rnp(l — p))=* eXP{H} + R,
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where R, ; satisfies

k
(2.5) RolRud < X
n

Next we compute, writing ¢* = 2(1 — p),
(2ro?) 1 §=, fx + 2(2np)t)e~=i" dx
(2.6) = Tiea (2ot G et dx
e—2((2i)%—(2np)b)2/02
= 2lica

R
(mwio®)t + R

where R}, ; satisfies a condition analogous to (2.5). In comparing the sums in
(2.4) and (2.6) we are free to only consider i satisfying

2.7) ieS, where S, = {i: |i — np| < n*log® n}

since well-known bounds on the tails of these sums (Feller (1968), page 151)
show they are negligible for large n. Thus, the difference between (2.4) and
(2.6) is bounded by

—(i—np)2/2np(1-p) 3
2.8 ie e__— {] — <ﬂ7> f(i,n,p)} 1,
(2.8) 2iies, (2anp(1 = p))} . e + o(1)

where
i p) = { M - o (@0 = oy
= (CL B (i + 32np))
A straightforward argument shows that, for i¢ S,,
(2.9) fliyn,p) =0 <W) ,

while clearly, for ie S,,
(I’E)* — 140 <_(1°g ”)2>.
i n}

Using this and (2.9) in (2.8) shows that the sum in (2.8) goes to zero as n goes
to co. It remains to relate the integral on the left of expression (2.6) to the
integral (2.2). Toward this end we calculate for # and ¢ real numbers,

|(2r*)™4 §20 {f(x + 1) — fix + u)}e =" dx|
(2.10) < (2mo?)~h (=, em @m0t _ gmamn¥a0d gy
| = (2o (gt e d
< (mo?)Hu — o] .
For given ¢ define n(r) = [*/8p] where [x] denotes the greatest integer less than
or equal to x. Then clearly 2(2pn(f))t = t + O(1/t) as t — oo. This and (2.10)
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show that
lim,_, §=, f(x + e~ dx = lim,_,, {=., f(x + 2(2pn)t)e~"* dx
= lim,_, Y e, 0(i, n, p).
This completes the proof of Lemma 5. [J ’

ProOOF OF LEMMA 6. The normal approximation to the Poisson measure as in
Feller (1968, page 194) or Hardy (1949, Theorem 137) implies that

e—(i—H%/22

—1
ZieA ZzeA (2 Z)‘} + Ri,l
where 312, |R; ;| < k/2t. From here, the proof of Lemma 5 holds essentially
word for word. []

Proor oF LEMMA 7. We easily compute that \

1 1 ‘ . {
o §6/(x + 1)dx = — {Zt<2(2i)§<t+e;ie‘4 (2(2(i 4+ 1)) — 2(2i))} + O <_}_)
4 1
= ey Dits<icierarmica 1 + O <7)
4 1
= Z:t2/f3<i<t2/8+et/4 seal + O < . )
1
e(x/2)*

where x = /8. The last sum is (1.4) with ¢ replaced by ¢/2}. This completes
the proof of Lemma 7. []

1
Zz<1,<a:+e(a:/2)’} d€d 1 + 0 (x&)

It only remains to show that (1.4) implies (1.2). Let
b, =1 if ieAd
=0 otherwise.
Let a, = b, — I. Condition (1.4) becomes
(2.11) forany ¢ >0, 0>0, thereisan N sothatfor n > N,
| Znsiznrent @i < Onb.
We first show that if (2.11) holds, then it holds uniformly in e. Specifically,
(2.12) for any positive real numbers J < a < b, . thereisan N so
that for n >N, |}, icaremt @] < 0nt for sela,d].
To prove (2.12), find N so large that n > N implies 5/nt < 1 and
(2.13) | X nsignirat @ < tnt

with r = 0/8, t = min (9/8, ¢*/16b). Then, forn > N, let x, = n. x, = n + rnt,
and inductively, x;,; = x, + r(x,)t. LetIbe the index such that x, < n 4 snt<x,,,.
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Thus x,,, — x; < 2rn* and

]Znsiénﬂn% ail = Zz(=o |Zz,~§j<zi+1 ajl + 2rn}

< SIot(x) 4 2mt = L (x,,, — x,) + 2rm}
r

IA

5o + 2tnt 4 2rnt
’

IA

ont .
This completes the proof of (2.12). []

We must show that

(2.14) <d.

1 n n
7w 2it=o (F)a;

Using the boundedness of the sequence a; and the central limit theorem (Feller
(1968), Chapter 7), we first choose numbers »,, w and z, such that for n > N,

1
,n Zn/z—wn&gisn/2+zn& (Z‘)az M

1
@15) | S
Let N, > N, be so large that for n > N,,
0
2.16 eso 4| < —n?
(2.16) | Sieso @l < 5m

uniformly for 0 < s<z+ w=25 where S(s) ={i:nf2 —wnt <i<n/2—
wnt + snt}. Summation by parts now shows that the sum on the right side of
(2.15) can be written as

(2.17) 2 Tees (@) = (£)AG) + g(n)
where

A) = Tiernusias 1o = 15
Using (2.16), the sum in (2.17) is bounded by

(2.18) 2iiesn () + ()] +

2” 10
We also clearly have

Diesan [(2) — ()l = X123 — (i)l = 2{(wm) — 1} = %

Using this in (2.18) completes the proof of (2.14) and Theorem 1.

ProOF OF EXAMPLE 2. If w = ¥ is a primitive ath root of unity, it is ele-
mentary that for integers #,

if a divides &
=0 otherwise.

Il
N

a—1 y,yjh
i=o W
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From this we have an identity of C. Ramus (Knuth (1973), page 70):
1 ) . _
(2.19) - 25 0P+ (1= )" = Zjao (5)P°(1 = p)*?

(using the convention that (*) = 0 for integers ¢ > ). The left-hand side of
(2.19) is 1/a + E(n, p, @) where the error term

1 .
E(n, p,a) = - Lizi(peit 4+ (1 4 p))».

Writing ¢ = 2xj/a, define R and 6 by ((1 — p) + pe*¥) = Re”. Thus R* = (1 —
4p(1 — p)sin*(¢/2)). A Taylor expansion shows that log R < 2p(1 — p)sin®(¢/2).
Use of sin x > (2/r)x for 0 < x < #/2 yields:

l(l — P) + Pe27rij/a|n — Kl — p) + peZIri(a—j)/aln — |Rln o enlogR

< e—mp(1-p)sind($/2) < e—8np(1-p)j/a

The required upper bound for E(n, p, a) follows by replacing j by 1.

Proor oF THEOREM 3. If 4 C N has E, density /, then it is well known that
lim, - (1 — x) X};c, x* = [. Indeed, (1.2) implies (1.3) and Peyerimhoff (1969),
Theorem III, page 17 shows that (1.3) implies the indicator function of 4 has
Able density. The Hardy-Littlewood Tauberian theorem (Hardy (1949), Theo-
rem 95) implies that 4 has C, density /. For the converse, let

a, = 1 ie A
= 0 otherwise.
Assume that 37 ,a, = In 4 O(f(n)) where f(n) varies regularly at infinity with
.exponent o, 0 < p < %. Throughout the proof let p, 0 < p < 1, be fixed and
let g =1 — p. We must show that

(2.20) toar'e () = 1+ 0 (1)),
n
Write the left side of (2.20) as
Do ai]’i‘]"_i(?) =q" Yioa(P)r

with r = p/q. Itis convenient to deal with the sum in the second form. Summa-
tion by parts gives

(2.21) St afr' = A(n) + T3 AGA)
where A(j) = >}i_,a, and _

N = (Y — (it — s (P D+ T =)
@) Q)= = G = e (L

Using the hypothesis, (2.21) becomes
(2.23) = O(m) + 1 1527800 + Z52 0(f()AG)
= 0(n) + ¢ + O(ZIH GG -
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We now bound the sum on the right side of (2.23).
(2.24) L5 AI() = maxyg;e, )N X5 AG)])
< Kf(n) Z=2 18] < K1)
qrn

In the next to last inequality we have used the fact that f(n) ~ sup,.,.,f(x) as
on pages 19-20 of Seneta (1976). From (2.22) the A(j) are of constant sign for
0<j=np—1and for np— qg < j<n. Thus the last inequality in (2.24)
follows from the standard bound for the maximal term of the binomial distri-
bution (Feller (1968), page 151). Using (2.24) in (2.23) completes the proof of
Theorem 3. []

PrROOF OF COROLLARY '4. Let
Q(x) = Ziez;ieQ 1

E(x) = Q(x) — x% .

and

Walfisz (1962) proved that
E(x) = O(x* exp{—c log! x(log log x)~*})
while Vaidya (1966) proved that if the Riemann hypothesis is true, then
E(x) = O(xt*e).

The stated results now follow from Theorem 3 by noting in both cases the bound
for E(x) varies regularly at co with suitable exponent. []
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