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ON STOPPING TIMES FOR rn DIMENSIONAL
BROWNIAN MOTION!

By BURGESS DAviIs
Purdue University

Let X(¢) = (Xi(£), - -, Xa(t)) be standard » dimensional Brownian mo-
tion. Results of the following nature are proved. If z is a stopping time for
X(2) then | X(z)| and (nr)? are relatively close in L? if n is large. Also, if n
is large most of the moments EXi(z)k, i = 1,2, ---, n, are about what they
would be if X(z) were independent of r.

1. Introduction. Let X(r) = (X,(¢), X)(1), - -+, X,(¢)), t = 0, be standard n
dimensional Brownian motion, that is, X,(7), X,(¢), - - -, X,(f) are independent
Wiener processes. This paper will be concerned with inequalities involving
stopping times for X(r), usually with an eye for what happens as the dimension
n approaches infinity. Several such results are already known. Let X0 =
X(¢) = |X(r)/nt|. Then the law of large numbers gives that, for each fixed ¢,
X(#) — t* in probability as n — oo, and it is easily shown that, for all p > 0,
E|X(t) — t}> - 0 as n — co. Next we mention some recent results of D. L.
Burkholder in [2], which were the motivation for this paper.

Let X(1)* = sup,g,s; X(s). Burkholder shows that if n is large, then for any
stopping time r the L» norms of ¢}, X(r)*, and X(r) are all relatively close.
That is, given p > 0, ¢ > 0, there is an integer N such that if z is a stopping time
for X(r) and 0 < Er?”* < oo then

(1.1) 1—e< BX@O) - 4o, n>N,
Erv/?

and
EX(z)?

(1.2) 1 —e< ET(;Z <1+, n=N.

Theorem 1.1, stated below, can be considered a refinement of these results since
it can be used to show that the random variables 7%, X’(r)*, and X’(r) are all
relatively close in L? if n is large, that is, the L? norm of the difference of any
two is much smaller than the L? norm of either one. This is discussed more
fully in Section 2.

THEOREM 1.1. For each positive number p there is a constant C,, not depending
on n, such that for all stopping times t,

Esupos,sT |X'(t) — t‘)lp é Cpn—p/zETp/a .
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Let A(k) = 2¥k!/(2k)! be the inverse of the 2kth moment of the standard
normal distribution, k a nonnegative integer. It is easily shown that if v > O is
a random variable which is independent of X(r), t = 0, then A(k)EX,(v)* = Ev*,
i=1,2, ..., n, and that EX,(v)**' = 0 provided Ev**V/”* < co. The following
theorem says that, in some sense, stopping times for X(r) do not pay much atten-
tion to most of the components X,(¢) of X(), if n is large.

THEOREM 1.2. Let k be a positive integer, and let ¢ > 0. There is an integer
j(k, €) = j which does not depend on n such that, if t is a stopping time for X(t), at
least n — j of the ratios A(k[2)EX,(t)*|Ec*?, i = 1,2, ..., n, are within ¢ of 1, if
k is even and 0 < Et*? < oo, and at least n — j of the ratios EX,(t)/Et** are
within ¢ of 0 if k is odd and 0 < Er** < oo.

Of course, it is well known that if = is a stopping time for X’(t) then Ett < oo
implies EX;(r) = O for each i, and that if Er < oo then EX,(r)* = Er for each
i, so there is nothing new here for k = 1,2.

The following inequalities, due to Burkholder and P. W. Millar (for the ex-
ponents p > 1) and to Burkholder and R. F. Gundy (for the exponents 0 <
p < 1) are well known. There are positive constants k,, K,, for each p > 0,
such that if Z(¢), t > 0, is standard Brownian motion and T is a stopping time
for Z(t) then

(1.3) k,ET*"* < E Sup,c,<r | Z(1)|? < K,ET?" .

The paper [1] is a good reference for these and related inequalities. In Sec-
tion 4 a simple proof of the left side of (1.3) for the exponents of 0 < p < 2
and the right-hand side for the exponents 0 < p < 1 is given. We remark that
there are proofs of (1.3) for the exponents p > 1, including the original one,
that do not extend to the exponents 0 < p < 1.

The proofs of Theorems 1.1 and 1.2 are based on Ito’s stochastic calculus and
the methods and results of Burkholder and Gundy which deal with one dimen-
sional Brownian motion.

2. Inequalities for |X(¢)|. The integer n will always stand for the dimension
of the Brownian motion X(r). If Z(r), t = 0, is a stochastic process (possibly
multi-dimensional) we let Z(f)* = sup,,; |Z(s)|. We will always be operating
with respect to the o-fields .%(s) = o(X(f), t < s), and the statement that a
process is a martingale will mean with respect to these o-fields. Every Brownian
motion b(f), t = 0, to be considered has the property that for each fixed s, b(¢ +
5) — b(s), t = 0, is a standard Brownian motion independent of 7(s). We will
make frequent use of Tto’s stochastic calculus. A reference for this is chapter
two of McKean’s book, [3].

For future reference we state now a generalization of (1.3), also due to
Burkholder and Gundy (see [1]). Let @ be any positive nondecreasing function
on [0, o) satisfying ®(0) = 0 and ®(24) < a®(4) for some constant a, = a and
all positive numbers 2. Then there are constants k and K depending only on «
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such that if Z(r), t = 0, is a Wiener process and 7 is a stopping time for Z(f) then
(2.1) kED(t}) < EQ(Z(7)*) < KED(7t). ‘
We will be particularly interested in the right hand side. The crucial inequali-

ty involved in the proof of this is (6.4) on page 26 of Burkholder’s paper [2],
which says that if 3 > 1, 6 > 0, and 7 is a stopping time for Z(¢), t = 0, then

o2
(F—1)

The main theorem in this section is the following:

2.2) P(Z(z)* > BA, ¢ < 60) < P(Z(z)* > 1), 1>0.

THEOREM 2.1. Let ® be as above. Then there is a constant A, independent of n
such that, if t is a stopping time for X(1),

(2.3) EQ(r(t)*) < Ao EQ(7Y), where y(t) = |X(0)] — ((n — 1)) .
ProoF. We will prove that, if 8 > 1 and 6 > 0,

_ % Pa)*z 9, 1>0.
TR >
If 7 is replaced by Z this is identical to (2.2) except that some inequalities are
strict in (2.2) but not in (2.4), which is of no consequence in the resulting inte-
gral inequality. Thus (2.3) follows from (2.4) exactly as the right side of (2.1)
follows from (2.2).

For n = 1, (2.3) is the right side of (2.1). Thus we assume n > 2. We use
the notation of McKean’s book [3]. See especially page 47. Thus let r(f) =
|X(7)| = (31, Xi(1)’)t. The stochastic differential of r is

dr = da + (n — 1)2r) dt,

(2.4) P(r(e)* = fA. o < 80) <

where a(f) is the one dimensional Brownian motion given by
X,(5) dX,(s)
2.5 a(t) = 35 2K XLS)
2.5) () = 1 2508
This is Problem 6 on page 47 of [3]. Of course the stochastic differential of the
nonrandom function ((n — 1)#)? is

d((n — 1))t = ((n — 1)}2t}) dt .
Thus y(f) = r(t) — ((n — 1)t)t satisfies
(2.6) dy =da 4 [(n — 1)(2r)™ — (n — 1)¥2t)"] dt
=da — [(n — 1)ty[2rtt]dt.

Now define, for 2 > 0, ¢;(x) = (Jx| — 2)*/(|x] > 2). We will prove that the
process Q(f) = ¢,(r(t)) — t, t = 0, is a supermartingale. To show tlﬁs fix 2and
define, for 0 < ¢ < 4, \

1
P(¥) = o 11,9 dr.
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It is readily checked that P, has continuous first and second derivatives. Now,
using (2.6), Ito’s lemma gives

dP(y) = P/(y)da + }P."(y) dt — P/(y)[(n — 1)¥r/2r1*] dt,
so that, for r > 0,

d[P(r) — 1] = P/(r)da + [$P."(y) — 1]dt + [—P/(y)(n — 1)¥y/2rt*] dr .

Since both terms in brackets are never positive this gives that P(y(f)) — ¢,
t > 0, is a supermartingale, and since P,(x) — g;(x) uniformly on compact sets we
have that Q(t) is a supermartingale.

Now the proof of (2.4) and thus of Theorem 2.1 will be completed. If a > 0,
letr, = inf{t > 0:|r(f)] = a}. Let ¢ > 0and y > O be fixed numbers. Let T =
T2 Ay, where A stands for minimum. Then O(s) = Q(s A T), 0 < 5 < oo,
is a bounded supermartingale, and so

. EQ(T A(t,+0) £ EQ(T ATy,
implying
Eq(r(z At A (ta+ 0) A ) — Equ(r(z At A Y))
SEqr At A(ti+o)AY) —(E(r ATy AY).
Now ¢,(r(z52)) = ((B — 1)4)* while g,(y(f)) = 0 if t < 7,, so that the above ine-
quality gives
((B=DPty Sy, TS0, T =T+ 0)SoP(r; ST AY).
Let y — co. This yields

B-=1) 2Py =071, +0) S0P, =<7).

Now {r, < 7} = {y(r)* = a} so that we have (8 — 1)*2P(y(7)* = B4, Tt S 0) <

oP(r(r)* = 2), and letting ¢ = 9%°2* we get (2.4), completing the proof of the

theorem.
We also have

(2.7) EQ(supys.s. [IX(1)] — (n)H]) < ED(r(e)* + =)
< EQ(21(7)*) + EQ(27Y)
< ao EQ((1)*) + ap EO(r!)
< ag(A4o + 1)ED(7) .
Taking ®(x) = x?, (2.7) gives Theorem 1.1.

Note that
(2.8) |X(2)] — (n7)}| < supyges. [|X(1)| — (n0)},
and
2.9 - 1X(2)* — (n7)}] £ sUpgis. || X(1)] — (mo)?] .

Using these inequalities and (2.7) it is easy to show that N exists so that (1.1)
and (1.2) hold. For other interesting results related to these, see [2].
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3. Proof of Theorem 1.2. Unless otherwise indicated, sums will be taken over
i=1,2,...,n,s0 that 3,7 will be shortened to };. As before, n is the dimen-
sion of the Brownian motion. For each nonnegative integer k we define
G, .(s) = G,(s) and H, ,(s) = H,(s) by

G.(s) = = X X(s)%, and H,(s) = §§ 3 Xy () dX, (1) .

The following extension of (1.3), due to the same people responsible for (1.3),
will be needed. Only the right hand side will be stated. Let Z(f) be a Wiener
process and f(t, w) be a nonanticipating functional. Then, for each number
p > 0, and all stopping times 7,

(3.1) E'sup ozus. |16 f(s, @) dZ(s)” < K,E($; f(1; w)* di)”,
where K, is the same constant as in (1.3).
By Ito’s lemma, for each integer k = 2,

(3.2) Gu(f) = kH,_(1) + ﬁ’i_zﬂ §6G,_o(s) ds .

The next lemma estimates the first of these components. The constants K, are
those of (1.3).
LEMMA 3.1. Let j be a positive integer and p > 1. Then, if t is a stopping time

for X(1),

3-3) Esup,g.c. |H;(t)* < 9(ps n, j)ETP+072,
where g(p, n, j) = Ki/Gxbn*? if p > 2,

9(pmj) = Kigin, if 1<p=<2, and
g(l’ n, ]) — (1 + Kj+l)n(2.i+l)/(3i+2) .

Proof. It can be shown, using the same reasoning suggested by McKean to
prove that the process a(r) of (2.5) is a Brownian motion and that the equation
preceding (2.5) holds, that W(s) = {; (2 X,(1)'dX,(1)/G,;(¢)}) is a standard
Brownian motion and that

H(1) = 1 Gyy(s)? dW(s)
Applying (3.1) to the functional G,;(s) gives

(3.4) Esup,.s. |H;(1)|? < K, E(§ Gy(s) ds)** .
Let 7, = supyg.<. |Xi(f)]. Then
(3.5) E(§5 Gyyls) ds)s = E(3] §; X (o) ds)"

< E(T o).
If p = 2 we have, using (1.3),
E(E 774 < (8 (BCroy )
n?? max,g;g, E(r7,%)"
n?’? max (Er?U+D/AVG+D( By ptitD)i/ D

P/2( FrpG+1/2)1/(G+1) PUIH+1/2)3/(G+1)
n?’*(Er ) (Kpij+0 ET )

IA A IA -

— pp/AKI/GHD Erplit/a
= n??KiGHV ET .
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Ifl1<p<?2

E(X wrM)t < X E(ey)
é Z (Etp(j+1)/2)1/(j+1)(Kp(j+l)ETP(j+1)/2)j/(j+l)
= Ky Eersn.
If p =1, we let M = M(n) be for the moment an arbitrary positive number.
Define a; = 7,I(r; < Mt?) and 8, = 7,I(y; > Mrct). Then
(3.6) E(E o7 = KT w(@ + )

< E(3 ra M)t + E(T B
Now

E(X a2yt < E(X MPeithyh = MipdEct+vie,
Also, for each ¢ > 0,
MEzi?[(y, > Mt}) < Ey,* < K E79?,
so that
E(3 BM)t = E(X <l(y: > Mchyr )t

< 3 E(zl(y; > Mzi)y 2t
< 2 [E(tKy; > Mizh)) G+ DA GHD( By d+1)i/G+D
<% KjﬂET‘”D“/M”‘)””“’(Kj“ET‘“‘”“)WWH)
— nKjHET(jH)/z/M .

Taking M = n¥?*? and using (3.6) we get the desired value for g(1, n, j).

Define A(k) as in the introduction, and let 2(0) = 1.

LeEMMA 3.2. For each nonnegative integer k and each p > 1 there are constants

C(p, n, k) which approach 0 as n approaches infinity such that if v is a stopping time
for X(t) then

(3.7) E supyg,z.| AK)Gyu()n™" — 4 < C(p, n, 2K)Ex» |
and
(3.8) E supog<. |Gaupi(D)/n]? < C(p, n, 2k + 1)Er@ktve/2,

Proor. Let I'(p, n, j) denote the smallest possible value for C(p, n, j) such
that (3.7) and (3.8) hold for all stopping times z. Clearly I'(p, n, 0) = 0 for all
pand n. Using equation (3.2),

(E supyges. |A(K)Gy(r)n™t — te[7)l/e
= (E SUpyges. [2kA(K) oy (£)1~ + k(2k — 1)2(K)§E Goy_o(s) dsn= — H|7)V»
< (E sUpogisc| 2kA(k)H,,_i(1)/n|?)"?
+ (E suPogis. [k(2k — 1)A(K) §§ Gyos) dsn™t — 14|17
=14 1I.
Using Lemma 3.1
I < 2ka(k)g(p, n, 2k — 1y/»(Eckoysojn ,
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while

Il = Esupg, . |k(2k — 1)A(k) §§ Gy_y(5) dsn™' — (& kst~ ds|?
=< E(§§ |k(2k — 1)A(k)Gyp_y(s)n~* — ks*—| ds)?
< E(7 SUpyg,c|k(2k — 1)A(K)Gyy_o(s)n~t — ks*—1|)?
é kp(ETkp)l/k(E suposan |2(k _ I)sz_a(s)n—l _ sk—llkp/k—l))(k—l)/k

kP . n 2%k — 2> ETkp)(k_l)/k

< ke(Eckv)vi (I‘ <k

— kT <k kp o, 2k — 2)"“”"‘&“, k>1.

Thus if k=1, (I 4 Iy = I» < (2ki(k))*g(p, n, \)n-*Ec** — M(p, n, 2)Er*»,
while

(I + Iy < 2(I> + I
< |:2”(2k2(k))”g(p, n, 2k — yn-»

+ 2rka‘l<k kp 2k — 2)""”"‘] Echo

= M(p, n, 2k)Et* , k> 1.

The rest of the proof of (3.7) is by induction. Since as n — o, g(p, n, 1)/n* —0
for each p > 1, we have M(p,n,2) -0 as n — oo, so that T'(p, n, 2) — 0 for
each p = 1, as n — co. This fact and the fact that g(p, n, 3)/n* — 0 as n — oo
give that I'(p, n, 4) — 0 as n — oo for each p > 1, and so on.

The proof of (3.8) is similar. Since G(s)/n! is standard Brownian motion,

Gy(s)

b4
-p/2 2
< n-?1K, Eco

Esupyg,<.

so that I'(p,n, 1) > 0asn— co. Ifk > 1,

Gai1a(?) ”>” ’
n

2k 2k + 1k
=< (ﬁ:_i (E(Hyu(z)*)?)® + (—:——) (B SUPosis. |§5 Garo(s) ds|?)V?

(E SUPysi<r

=1+41I.

The first of these terms goes to 0 as n — oo for each fixed k and p by Lemma
3.1, and

E supogi<. |§6 Gopi(s) dsn|?
= E(Tsz_l(t)*/n)p
< I'((2k + 1)p/(2k — 1), n, 2k — 1)@k =D/@k+D Eraktvp/
and (3.8) follows by induction.
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ProoF oF THEOREM 1.2. Inequality (3.7) with p = 1 implies
|AK)EG,,(t)n~" — E7*| < C(1, n, 2k)E7* .

If j(1),j(2), -+, j(m) is any subset of 1,2, ...,n then Y(r) = (X;4(?), - -,
X, () is standard m-dimensional Brownian motion, so that

(3.9) Im=12(k) Nry EX,(c)* — Ec*| < C(1, m, 2k)Ez* .

This holds even though r is a stopping time for X(f) and not ¥(r), since
Y(t + s) — ¥(s) is standard m-dimensional Brownian motion independent of
S7(s) = a(X(r), t < 5). (An alternative argument is to make rigorous the intui-
tively obvious fact that (3.9) holds conditionally given ¢(Z(¢), t = 0), where
Z(t) is the n — m dimensional Brownian motion generated by those components
of X(r) not in ¥(r).) Thus if N(¢) is the number of i such that A(k)EX,(t)* >
(1 + ¢€)E7*, we have by picking these i for j(1), - - -, j(m) in (3.9),

[(1 4 &)Er* — E7*| < C(1, N(¢), 2k)Ez* .

Thus N(¢) can be at most the largest integer / such that C(1, [, 2k) > ¢. Since
C(1, n, 2k) — 0 as n — oo this is a finite integer, and we get the same estimate
on the number of i such that A(k)EX,(7)* < (1 — ¢)Er*. The proof of the rest
of Theorem 1.2 is similar.

4. A proof of some of (1.3). We first prove the right hand side. Let 8, =
E sup,,<, | Z(t)|>. Note §, is a lower bound for K,. Letv = inf{t > T: ¢t = 2*
for some integer k}. Then v < 2T, and X7 _. P(v = 2¥) = P(v > 0). We have

E(ZAT)yy = E(Z(»)*)
= 2ifew ESUPug gkt [ Z(s) — Z(2F)P1(v > 2)
= Xi-w B(Z(24)*) P(v > 2%)
= Dite—w B, 22P(v > 2F)
= B, Dfece (Th2La 27)P( = 29)
= B,(277)(1 — 2-#/3)1Eyer
< B,(1 — 2-#/%-1ET?/?

The left hand side is similar. Let p(2) = inf{r > 0: |Z(¢f)] = 2} and let a, =
Ep(1)*2. Note (a,)'is an upper bound for k,. Letz, = inf{t > 0: | Z(¢)| = 2},
and let » = inf{t > T: t = 7, for some integer i}. Then Z(»)* < 2Z(T)* and
Do e P(Z(n)* = 2°) = P(Z(p)* > 0). Also, 7,,, — 7, is smaller in distribution
than £(2°3). We have

ET?? < Eqpl?
< N Bty — 770 > 70) S Liow Ep(23)7R(p > 7,)
= Bw a,(23PPZ0)* > %) = a,327%(1 — 2) B Z()*y
< a,37(1 — 277)E(Z(T)*)* .
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