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CONTROLLED SPIN-FLIP SYSTEMS

By LAWRENCE GRAY
Cornell University and University of Minnesota

We introduce a new tool into the study of spin-flip processes, which we call
controlled spin-flip systems. For each spin-flip process we define a related class
of controlled spin-flip systems. Our main theorem states that bounds on the
behavior of a spin-flip process can be obtained by studying the behavior of the
related controlled spin-flip system. Since controlled spin-flip systems are in
general easier to work with than regular spin-flip processes (they correspond to
finite state space Markov processes), our main theorem has applications to
some of the important problems concerning spin-flip processes. In particular,
we discuss several applications to the uniqueness problem. These include proofs
of some new results, as well as new proofs of earlier results.

1. Introduction and preliminaries. We will start with a brief introduction to the
theory of spin-flip process. Let ¥ be a countable set, and let = = {—1, 1}¥. Each
element £ = (£(x)),cy of E, or configuration, represents an assignment of + or —
spins to each of the points or sites in V. A spin-flip process (defined rigorously
below) is a type of stochastic process (£,),cr+, With state space =, whose dynamics
are prescribed by certain flip rates ¢ = (¢,(§)) ey, : cz- The flip rate ¢, (§) describes
intuitively the rate at which the spin at a site x changes or flips from £(x) to —§(x)

when the process is in state §.
To give a precise definition of a spin-flip process we need some notation. Assume

that ¥ and {—1, 1} are given the discrete topology, and = the product topology.
Let @ = D( [0, o ), E) be the path space of right continuous functions with left
limits from [0, o0) to E. For ¢ €[0, o), let £ : 2 > = be the evaluation map
wb> 0(f) = (@(x)yep- Let B = 0((€),cp0, ) be the o-algebra generated by the §.
Also put By = 0((£)oc;<,) for 1 € [0, ). For any %;-stopping time 7, let By be
the o-algebra consisting of sets @ € % such that @ N {7 <t} € Bf for all
t € [0, ). For any bounded function f : X — R, where X is some arbitrary space,
let || f|| = sup, cx|f(x)|- Let € = C(E) be the Banach space of continuous, real-val-
ued functions with domain =, with the norm || - ||. Let “V, be the collection of finite
subsets of V. For 4 € Y, let F = {f € C : f(§) = f(¢) whenever &, = &|,},
andlet § = U e, . For £ € E, x € V, define . € = by

(1.1) L) =€) y#x
-&y) y==x

We are now prepared to give a definition of a spin-flip process. The most useful
definition given so far is based on the work of Holley and Stroock in [7]:
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954 LAWRENCE GRAY

DEFINITION 1.1, Let ¢ = (¢,), <y be a collection of bounded, Borel measurable
functions from Z into [0, «0), called flip rates. Define an operator G : F — C,
called the pregenerator with rates ¢, by (G)(§) = =, <y (A, £ — f§). For
§ € Z, a probability P on (2, ®) is called a solution to the martingale problem for G

starting from §, or SMP(G, &), or a spin-flip process with rates c, starting at &, if
(1.2) P& =9=1,

and
(1.3) forall f €9, (fi§) — [6Gfi&)ds, P, BY> is a martingale.

For a detailed treatment of some of the properties of SMP’s, we refer to [7],
particularly Section 1 there. Proposition 2.4 and Lemma 2.9 below also help to give
some intuitive feeling for the meaning of the flip rates.

The main purpose of this paper is to introduce a new tool, Theorem 2.14, which
allows one to study the behavior of general spin-flip processes in terms of the
behavior of certain related systems (controlled spin-flip systems) that have finite
state spaces. The proof of Theorem 2.14 relies on an estimate (Lemma 2.9) which
allows us to use the idea behind Bellman’s principle of dynamic programming. This
principle has already been applied in a different way by Krylov [11] to get existence
theorems for Markovian SMP’s in a more general setting.

In Section 2, we prove the main result, Theorem 2.14. Sections 3 and 4 are
concerned with applications of Theorem 2.14 to the uniqueness problem for SMP’s,
Le., the problem of determining for which G and ¢ there is a unique SMP (G, £).
Section 3 contains a set of sufficient conditions for uniqueness (Theorem 3.1,
which turn out to be necessary and sufficient if the flip rates are continuous
(Theorem 3.4). Theorems 3.1 and 3.4 both follow easily from Theorem 2.14. Section
3 also contains a discussion of the useful properties possessed by processes which
satisfy our uniqueness condition. Section 4 contains some applications of Theorem
3.1 to the problem of showing uniqueness for specific classes of SMP’s. In the first
application, we prove a new uniqueness result, while in the second, we give a new
proof of an earlier result of Liggett. This new proof is more probabilistic and
intuitive than earlier proofs.

For some of the basics concerning the martingale approach to spin-flip
processes, see [4], [5], and especially [7]. General references on infinite interacting
systems are [3], [13], and [17].

2. Controlled spin-flip systems. In this section, certain non-time-homogeneous
Markov processes with finite state spaces are described. We call these controlled
spin-flip systems. We also prove the main theorem, which shows that the behavior of
a spin-flip process can be bounded, in a certain sense, by the behavior of a related
controlled spin-flip system. First, we define a control:

DEFINITION 2.1. Choose 4 € V;. We call a function ¢ : [0, ) X {—1, 1} -
{—1, 13" a control for A (or simply a control) if there exists a finite sequence of
times 0 = 1, <, < ... <, such that for fixed n € {—1, 1}4, g(¢, ) is constant
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over each of the intervals [#,, 1)), [t}, 2,), - - -, [t,_}, t,), [£,, ). Denote the collec-
tion of all controls for A by ¥, and let K = U 4 H,.

Before we define controlled spin-flip systems, we need four more bits of notation
(borrowed from various authors) which will be useful throughout this section. The
first is for pasting together two partial configurations: for 4 € YW, n€{—1, 1}4,
and { € {—1, 1}, definen X ¢{ € = by

(mx$(x)=n(x) x€4
={(x) xeV\A.

The second piece of notation will be used to denote the probability measure on
that is obtained by using one probability measure up to a fixed time ¢ > 0, and
then continuing after time ¢ according to a family of probabilities. More precisely,
let P be a probability measure on (2, B) and P® = (PP®);c=z a measurable
family of probabilities on (2, ), with PP(§, = £ =1 for each £ € . For
t €0, ), denote by P ® P the measure on (2, B) determined by the

following: for finite sequences 0 <s, <5, < ... < S <t Sppy < Spin
<...<s, <ooand Borel sets A}, A,, - -+, A, C Z, set
PO ®1P(2)(§s, EALE, ENy- - - & EN))
=[PV EA,,- - & €A, L € dE)
XPOE, | € Mperhy i € Az - -5 &, EA,).

Next, we will use the following notational convention concerning expectation
operators: whenever we denote a probability measure by a letter (such as “P” or
“Q”) together with possible subscripts, superscripts, etc., we denote the correspond-
ing expectation operator by replacing the letter by an “E.” For example, the
expectation operators for P{" and P{" ® P® would be E{ and E{® ® E®
respectively.

Finally, if P is a SMP (G, £), and if 7 is a B! -stopping time which is P a.s. finite,
we let (P "), cq be a collection of measures on (2, B ) such that for P- almost all
wEQ P*" is a SMP (G, {,,), and such that for all A € B, P>"(A) =
P(A"|Bg)(w) P as., where A" = {w € 2: 6,0 € A). Here, 6, : @ - Q is the shift
operator defined by (6,w), = w,)+,- Such a collection exists by Theorem 1.2 of [7],
although our P " is not the same as the P™ of [7). Instead, P“ " is in some sense a
“shifted” version of P™“. Obviously, (P“ "), g is not uniquely determined by P
and 7, but we will assume that one such collection has been chosen for each P and
7. We are now ready to introduce controlled spin-flip systems:

DEFINITION 2.2.  Let G be a pregenerator with rates c. Choose ¢ € K, for some
A € Vy, and let ¢y, ¢, - - - , ¢, be as in Definition 2.1. For k =0, 1, - - -, n, let
P® = (P®), .- be the (unique) spin-flip system with rates ¢®, where

cP@O=ctl, X ot £l,) x€4
=0 X EV\A.
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Set P9 ¢ = (P® ©), .z, where
Py =(((P"®,PY)® PY)®, ...)0, P".

L£]
We call P* € the spin-flip system with rates ¢ controlled by ¢, or simply a controlled
spin-flip system.

ReMARK 2.3. For each k, the system P® corresponds to the Markovian
semigroup e’ where G, is the closure in C of the pregenerator G, with rates ¢®.
Thus, PP ¢ is a Markov process on (2, %, $;) which is in general not time
homogeneous. Pg”G may be thought of as a spin-flip process on the state space
{—1, 1}* with a pregenerator that changes at the times 7, according to the control
@; since @ only depends on time and the configuration on the set 4, the controlled
system also corresponds to a Markov process with finite state space {—1, 1}*. On
the other hand, P§ % may be viewed as a spin-flip process with rates ¢ in which the
configuration outside of 4 is controlled by ¢. The controlled configuration outside
A influences the flip rates for sites in 4, affecting the behavior of the system on 4.
For technical reasons, however, we leave the configuration outside of 4 fixed in
our definition of P ©. Finally, we note that for f € ¥, )

f(gt) - f:)szAcx(gslA X (p(s, gA']A))(f(x‘i:s) - f(gs)) ds
is a P$ °-martingale for each { € E, so that PP © falls under the general definition
of SMP given in [7].
To prove the main result concerning controlled spin-flip systems, Theorem 2.14,
we first need a proposition and a lemma. The proposition is a corollary to the
results found in Section 1 of [7], and is not new.

PROPOSITION 2.4. Let P be a SMP (G, §). The following hold for all A € <,
h > 0, and Bj-stopping times T such that P(t < o) = 1:

(25) E(#{s€[r,r+h]: &, #& JIB) <hZ,eqllell P as.

L

(2.6) Forall s €[0, ), P(§#¢£-)=0.
2.7 P(Elr, sE[r, T+ h],r#s: & #F&, and
&, 76,19 < (hZcallel) P as.
(2.8) P(3s €[0,0) and x,y EV,x#y:&(x)#&-(x) and

) #&-(y) =0.

(We have used £ - here to denote lim, , £ and # to denote cardinality.)

PrROOF. The left side of (2.5) is equal to E“ "(#{s € [0, h] : §;, # &-|, )P as,
so we only need to prove (2.5) for r = 0, since P " is a SMP (G, §,)) for P almost
all w. Similarly, we need only prove (2.7) for r = 0.

For 4 € V, define 84 : [0, o) X 2 - RY by

(04(s,w)), =1 x€4
=0 x€eV\A.
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Then (1.11) and (i) of Theorem 1.10 of [7], with § = 84, imply that
[62xer[ (005, ), ] dr,(s, ©) = 62, epee(€(w)[(874(s, ©)), ] ds

is a P-martingale, where v, (7, w) is the number of sign changes made by £(x, w) in
[0, 7). Taking the expected value of this martingale at ¢z = h easily implies (2.5),
which in turn implies (2.6).

Now define

04(w) = h A (inf{s > 0: £()s # &-(©)u})-
Then the left side of (2.7) is bounded above by
E(P(3s € (04, h] : &, # &1, |B))P(o, < h),
since P(§,, # £,-|,) = 0 by (2.6). But by (2.5) both
P(3s € (o4 k] : &, #&-,1By) and  P(o, <h)

are P a.s. bounded above by A3 . ,||c,||- This implies (2.7).
We now verify (2.8). Choose x,y € ¥, x #y, For n=0,1,2,- - -, define
stopping times o, inductively as follows: 6, = 0, and for n > 0,

0,(w) = n A\ (inf{s > 0,_,(w) : §(x) # &-(x) or &(¥) #&-())).
It is easy to see that (2.8) follows if for all n > 0 and for P-almost all w,
Peon(g, (x) # &(x) and £ (y) # &(»)) = 0.

Fix n > 0. Then for P-almost all w, P*** is a SMP (G, §, (,(w)). Fix one such w.
Define f € ¥ by

fE) =1 if&(x) # & @(@)(x) and £(y) # & (@)(»)

=0 otherwise.
Then

Peot, (x) # &(x) and £,(») # £(») = E*((&,))
= E**([3Gf(&)ds) =0. [

Before continuing, we set up some notation for certain finite processes which will
be useful as approximations for infinite spin-flip processes. Let G be a pregenerator
with rates c. Then for 4 € Yy, n € (=1, 1}, and { € {—1, 1}"™, let P, o,
denote the (unique) SMP (G™ 9, n X {), where G™ ) has rates ¢™ ) defined by

cmOG=c(mx¢) ifE,=nandx € 4
=0 otherwise.

We are now ready for a lemma which is of key importance to the proof of our main
theorem:

LeMMA 2.9. Let P be a SMP (G, §), and choose h > 0 and A € YV,,. Define a
Borel measure p.on {—1, 1} by

u(:) = (1/h)sP(y,., € -)ds.
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Then
(2.10) zne(—l, l)AIP(£h|A = "I) - f(—l, I)V\AP(G,ﬂA,{)(ghh = n)u(df)l

< 6(hZcallel)’.

PROOF. Let g, be as in the proof of Proposition 2.4. Since ¢ *¢)(¢") = 0 for all
x & A and all § such that &, # £,

(2.11) P(G,gu,{)(gh €)= P(G,éwf)(gu € )
for all { € {—1, 1} Also, by (2.8),
EXEAP(&’AIA =x£|4) + P(g’AIA = £|A) = l’

so by (2.7),
(212) Z,c-n iy 1PE =m) — [, PG, e o, = m)m(ds)]

<25, et iyt mmt P, = 1) = J-u PG g 0, = M)
< 2 Zcal PEy, =10) = S-1 0" Pie g 0, =51 M)

+3 ey amg Py, = 1) = P&, = )]
<23 ealP(E,, =0) = J-1 1" P 6, g sy, =) W)

+2(hZ e qlle.l)]-
For each x € V, define 8* : [0, c0) X & — R" by
@ (s )y =1 x=y
=0 x FYy.
Then as in the proof of (2.5),
62 cev[(07(s, @) ]dvs(s, @) = [62 ceve (§(w))[(87(s, w))x]ds
and

J6Zxev[(07(s, @) ]dre(s, @) = [6Z cerel D(E(@))[(87(s, )] ds

are respectively P- and P, gu,g)-martingales foralx €4 and { €{—1,1
By the optional sampling theorem,

P(£0A|A =,£4) = Ef§c(§)ds
= Efg‘cx@“ X §s|V\A)d9 and
P, £|A,§)(£aA|A =x§|A) = E(G, §00 f)fg‘cx(‘fw $)(E,)ds
= E(6 ¢, 0)/§c§q X §)ds
forall x € 4 and { € {—1, 1}". Substituting these expressions into (2.12) shows

}V\A.
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that the right side of (2.12) is bounded above by
2[2xeA|(Ef3‘cx(§|A X §:|V\A)d*")
—[cu 1y (B, g, oS X §)ds)u(db))]
+2(hZ ccalle )]

which is in turn bounded above by
(2.13) 2[2xEA|(Efgcx(£|A X £s|V\A)dg) — hf -, 1)"\”‘Cx(§|A X f)ﬂ(df)l

+3(hZelle.l)?];
since by (2.5), both
P(o, <h) and supge{_l,I)V\AP(G,flA,g)(oA < h)
are less than or equal to hZ  ,||c,||. By Fubini’s theorem and the definition of u,

Efgcx@u X §s|V\A)d5 =hf, 1)“‘”cx(§|,4 X §)u(dg).
Thus, (2.13) is bounded above by 6(hZ , . 4||c,|)*>- This implies (2.10). i

Lemma 2.9 says that over short time spans, the distribution of the configuration
of an infinite spin-flip process on a finite set 4 may be approximated by a convex
combination of distributions of very simple finite spin-flip processes with state
space { —1, 1} This is the key observation necessary to prove the main theorem:

THEOREM 2.14. Let P be a SMP (G, §). Choose A € , and a finite sequence
0<s5,<s5,<...<s,=T. Also choose {fYr-, C F*, with f, > 0 for each i =
1,2,3,- - -, m. Then with ® : Q - [0, o) defined by

q)("-’) = H:n=1f:(£s, (w))’
we have
(2.15) Sup, g, EF (@) > E(®) > infq,escAEEP’ G((I)).

Proor. We will first construct a nearly optimal control ¢, using the idea behind
Bellman’s principle of dynamic programming, and then we will use Lemma 2.9 to
compare P ¢ with P.

We will prove only the first inequality in (2.15), since the proof of the second is
analogous. We also assume without loss of generality that ||f|| < 1 for i =
1,2, --,m, and that T > 0. Finally, we will assume that s, is rational for
i=1,2,---,m The general case follows easily by approximating general
sequences {s;}7., by rational ones and then using (2.5).

Choose € > 0. Pick N € Z* such that

kT

N
(TS called/N <eand (s), < {5
N Jk=0

This is possible since the s; are assumed to be rational. For k =0, 1, - -, N, let
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t, = kT/N. Define ¢ € K, as follows: for t €[T, o0) and n € {—1, 1}4, let
o(t, 1) = {(N, n), where {(N,n) is some arbitrary element of ‘{—1, 1}"*. Now
assume that for some k € {1,2,- - -, N}, ¢(¢, 1) has been defined for all ¢+ €
[#%, ) and n € {—1, 1}"'. Define ¢, € K, by g.(¢, 1) = @(¢ + 1, 1), and define
®,_,:2->]0, o0) by

Py 1(w) = Hi:s,>:k_,fi(§s,—zk_,(°’))~
Forn € {—1, 1}*, choose {(k — 1,m) € {—1, 1} so that
EG,n stk-1,m) Or/nE™ (@) + &/N
> sup; e (—1,13"EG,5,¢) @1/nE™ (D))

and let @(z, ) = {(k — 1,7) for ¢ € [#,_,, t,). This completes (inductively) the
definition of ¢.
We now show that fork=1,2,- -, N,

(2.16) E®, E%v%®)+2e/N >E ®, E%5(®).

A simple inductive proof shows that the first inequality in (2.15) follows from
(2.16), since € > 0 is arbitrary. Fix k € {1,2,- - -, N}. Now write P = P %
for w € 2, and let 9 € B be a P-null set such that for w & 9, P® is a SMP
(G, §, _ (w)). We will apply Lemma 2.9 to P“ for w & 9U to get (2.16). Fix w & 9,
and to simplify notation, let £ = §,_ (w). As in Lemma 2.9, let

u() = J§/"Pe(4,,, € -)ds/ (T/N).

For i=1,2,---,m, we have, by assumption, both ||f|| <1 and 5, — #,_, &
(0, T/N), so that Lemma 2.9 implies that

EgrO(®,_;) — E° ®r/yE% (D, _))
=[E¢—%(®_1) = E6,8, s(e-1.8)) ®r/wE™ (D) ]
+ [E(G, B 8(k-1,5.)) O/ nE™ ()
—Ji-u, 1y E@G,5,,0) ®r/nE™ (. 1)#(d§)]
+ [f(—l, D"VEG 2, ¢) Or/nE® AP )(dl) — EC @p/yE™ G((Dk—l)]

> Ey + E; = 6((T/N)Z eqlleil)’,
where E| and E, are the first two expressions in square brackets. By the definition
of {(k — 1,§,), E, > — ¢/N. Also

E > =2, e, PR Eryn, = M)

~P(o.g, s(x-1.8,)Er/m, = 1)

since for i=1,2,---,m, 5;— t,_, €0, T/N) and | f|| < 1. Let G’ be the
pregenerator with rates ¢’ defined by

€)=, Xt §) x€EA
=0 xX€EV\A.
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Then by definition

P62 s(k-1.8))Er/n, = M) = P(6,5, ¢(k-1.5.))(Er/m, = 1) and

P'(&rym, = m) = P2 (&r/my, = m)

for all n € {—1, 1}, where P’ is the unique SMP (G’, EM X $(k—1, EIA)). Sub-
stituting these into the above expression for a lower bound for E, and applying
Lemma 2.9 to P’ yields

E > —6((T/N)E e allel)’
This implies that
Eg-v9(®,_,) +2¢/N > E*% ®p/yE™ H(D—1)-

s'k 1)
Thus,
E, ® E%-»r %(®) + 2¢/N

= E’k 1 ® E(pk i G[(Hi:s,<tk_,f;(§s,))
XE,  ®E%-o(ll;, ., f(E)BE)] +2e/N

Be—1

= E[(Hi:si<rk_.fi(£s:))Eg'l:I:G (q)""l)] t2e/N

> E[(Hi;s,<rk_,ﬁ(§s;))E" 1 @/ nEP G(q>k—-l)]
= E ®, E*®).
This completes the proof of (2.16). [

By being less restrictive in the definition of controls (e.g., allow ¢ to depend on
the past), one can obtain (2.15) for more general ®. The advantage to defining
controls as in Definition 2.1 is that any controlled spin-flip system corresponds to a
Markov process on { — 1, 1}* for some 4 € V. Such finite Markov processes can
be analyzed using various techniques, such as “coupling,” which cannot be used on
general spin-flip processes. This fact will be exploited in the next section.

3. Uniqueness. We first derive some general criteria for the uniqueness of
SMP’s in terms of the behavior of the corresponding controlled spin-flip systems.
The first of these, Theorem 3.1, is an immediate corollary to Theorem 2.14.
Theorem 3.1 is similar in spirit to Propositions 5.5, 5.6, and 5.7 of [14].

THEOREM 3.1. Suppose 3P such that P is a SMP (G, §). Then P is the unique
SMP (G, §) if

(32) for all ® as in Theorem 2.14, we have lim, ,y. 4c~SUPpes, ES °(®)
= lim, v, aev;infpe, E A®).
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REMARK 3.3. A simple modification of the proof of Theorem 2.14 shows that
for ® and A4 as in Theorem 2.14,

supyey, ,EE (@) (inf,es, ,EE (D))

decreases (increases) as B increases, so the limits in (3.2) exist, and are Borel
measurable functions of the configuration &.
If we have continuous flip rates, we can do even better:

THEOREM 3.4. Let G be a pregenerator with continuous rates and choose § € Z.
Then there exists a unique SMP(G, &) iff (3.2) holds for G and §&.

ProoF. Let {4,}7-, C V, be a sequence such that 4, 7 V as k — oo, and
choose ¢, € f}CAk for k=1,2,3,---. A standard argument shows that the
sequence { PP ¢}%_, is relatively weakly compact. The argument is based on the
following two facts: = is compact; and for each 4 € Y, T € [0, o0), and ¢ > 0,
there exists N € Z* such that sup, Pf “(# {s : §, # &_|4} > N) <e. The sec-
ond fact follows from (2.7). This same type of argument has been referred to in
Theorem 2.2 of [7] and Theorem 1.15 of [10]. Now, since for each k =
,2,3,---, andf € 9,

J&) = JoZcencxlbls, X oils, £14))(AE) — A&))ds

is a PP ¢ -martingale, we can use the proof of the first assertion of Theorem 2.3 in
[13] to show that every weak limit point of the sequence {Pg& “}¥_, is a SMP
(G, £). These facts together with Theorem 3.1 now imply Theorem 3.4. []

REMARK 3.5. When the flip rates are not continuous, G and £ can be such that
no SMP (G, §) exists even though (3.2) holds, or a unique SMP (G, §) exists even
though (3.2) fails. An example of the first case is (G,, £ 7), where £ “(x) = — 1 for
all x € V and G, has rates

D@ =1 if £=¢"
=0 otherwise.
For the second case, take (G,, § ~), where G, has rates
cPE) =0 if &y)= —1 forinfinitely many y
=1 otherwise.

In computing the bounds in (2.15), we will rely often on a technique known as
coupling, which we describe here. Since this technique has been used often before,
we will try to be brief. For some added details, see [13].

We will only use the “basic coupling” of [13], modified slightly to fit controlled
spin-flip systems. Suppose we have two controlled spin-flip systems P$ ¢ and
Pg> %, where G and G’ have rates ¢ and ¢’ respectively, and where both ¢ and ¢’
are in ¥, for some B € V. Assume without loss of generality that the sequence
tg, ty, + + * , t, of Definition 2.1 is the same for ¢ and ¢’. For k=0,1,2,- - -, n,
let P® and P® be the systems of measures used in Definition 2.2 to define PF ¢
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and P ¢ respectively For each £¢0, ¢@ € E, and for each k, let ﬁé’ﬂ)’ ¢, be the
basic coupling of P{) and P and let

P — [ P® e, 5(25] -

We will string the P®’s together at the times 7, as in Definition 2.2 to get the
basic coupling of Pg*“ and PZ" . Fori=1,2,and ¢ > 0,let {9 : @ X @ - = be
the coordinate map (w“) w(z)) N w(’)

DEFINITION 3.6. Let P ¢, PE> ¢, and (P “)i _ be as above. The basic coupling
of P¢° and P¥>“ is the probablhty measure P(g ¢y on 2 X @ given by

Peey= (PQ:) ®,PV) ®,F¥) ®, ...) 8, P,

where the symbol “®,” is used in the way that is analogous to the way it was used
in Definition 2.2.

Note that the first and second marginals of P(g ¢ are P and PE> 9 respec-
tively, and that P(g ¢ is Markovian. An intuitive description of the baS1c coupling
is as follows: if the spins for the two coordinate processes in the coupling differ at
site x € B, then those spins flip independently, thus bringing them into agreement
as fast as possible; if they agree at x, they flip simultaneously at a rate equal to the
minimum of the two individual flip rates, so that they stay in agreement for as long
as possible; in addition, in this second case, the spin in the coordinate with the
higher flip rate must flip alone at a rate equal to the difference of the two flip rates.

We now list two properties of the basic coupling in the form of propositions.
These are already known, so we omit the proof of the second and only sketch the
proof of the first. Both proofs are based on the following fact: let & be the
analogue of ¥, i.., the set of all functions f: £ X = — R such that there ex1sts
A€, satlsfymg fi¢&, -)e F and f(-, 6 € JA for all £ € E. Let P{*°, P’ ~,
and P(E ¢ be as above. Foreach k =0, 1,2, - -, n, let G, be the restnctlon to %
of the 1nfm1tes1mal generator of the process assoc1ated with P® (see [13] for the
form of G,). Then

@7 forallf€F,  fED EP) — [6Gof(E", £2) ds
is a ﬁ(f, ¢ -martingale, where k(s) = max{k =0, 1,2, - - ,n: 4 < s}

PROPOSITION 3.8. Let P be the basic coupling of PP € and P>, where ¢, ¢/, B,
G and G’ are as in Definition 3.6. Assume that §|p. = §|p for some B’ C B. Let
7: QX Q>[0, 0] be a Bfy X B-stopping time which is P- a.s. finite. Then

(39) Bt e[0,1]: £V # £7)5)
< E(fazxeB'ch(gl(l)IB X (P(f, gt(])IB))
— (EP 5 X EP g X 91, £ 5 X EP1pop))l 1)
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SKETCH OF PROOF. Define g € F by

gV, £@) =1 i £0), £ £P,,
=0 otherwise,
and let 75 be the Bf) X Bj-stopping time defined by

15 = 7 A(inf{t > 0: £V, # £2,)).

Now evaluate the martingale in (3.7) at time 75 with f = g, take expected values,
and use the optional sampling theorem to get (3.9).

Proposition 3.8 will be useful in verifying (3.2), since with ®, 4, and T as in
Theorem 2.14, we have

(3.10)  |EP°(®) — EZ ()|
< @) B3t €[0, T] : &0, # £21,).

PrOPOSITION 3.11 (see [13]). Let everything be as in Proposition 3.8, with B’ =
. Assume further that £ > ¢ (i.e., &(x) > &(x) for all x € V), and that for all t > 0
and 7V, n® € {—1, 1)% such that "V > n® we have

[e(n® X (2, 1)) = ci(n@ x ¢'(£, n®)) ][nP(x) + nP(x)] < 0.
Then PV > ¢@ for all t € [0, o)) = 1.

We are now ready for some of the consequences of Theorems 2.14 and 3.1, As
remarked in [7], uniqueness is important in the case of continuous flip rates
because it implies some very useful properties. However, in general, the stronger
condition (3.2) is needed to get all the same properties.

We will use Theorem 2.14 to prove the two theorems below, which show that
(3.2) implies (a) stability under various approximation procedures, which includes a
type of Feller property; and (b) that the stationarity of a measure can be checked
using only the pregenerator.

THEOREM 3.12. Let G be a pregenerator with rates c, choose § € E, and suppose
that (3.2) holds for G and & Assume 3P; such that P, is a SMP (G, §). For
k=1,23,---, let G, be a pregenerator with rates ¢, such that at least one of
the following two conditions holds:

(3.13)  for each x € V,lim,_,||c® — ¢ || = 0;

(3.14) there exists a sequence {A.}¥-, C Vo, Ax 7 V, such that for each k =
1, 2’ 3’ R

cBOE)=f (-1, 1y €Elq, X g)ug’f&k(dg) X € A,
=0 x € V\A,

where for each k = 1,2,3,- - -, andn € {—1, 1}, ].L,(’k) is a Borel probability on
{—1, 13" (One may think of the measures i as boundary conditions.)
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Finally let {P{}%., be a sequence such that for each k, P{" is a SMP (G, &), and
such that & — . Then P, = weak-lim, P{V.

PrOOF. By Theorem 2.1 of [7], the sequence {P{}7_, is relatively weakly
compact under either condition. Thus it is enough to show in each case that if P’ is
a weak limit point of {P{M}¢., and if ® is as in Theorem 2.14, then Ey(®) =
E’'(®). Fix such P’ and ®. By Proposition 2.4, ® is P’-a.s. continuous on £, so by
Theorem 5.2 of [1], E/(®) = E'(®) if lim E{N(®) = E,(®). To show this last
equality, let 4 and T be as in Theorem 2.14. Choose § > 0. By (3.2), choose
B € ¥, such that B D 4 and

|sup, e 5, EP €(®) — inf,cq, EP °(®)| < 8/6.

Now assume (3.13). Choose K € Z so that for k > K, 3, c5llc® — ¢ || <
8/(6T||®|)) and £ = &5 We will show that for k > K, |[EXH(®) — E,(®)| <.
Fix k > K. Then

|EEO(®) — E((®)| < sup,cq,|ELO(R) — EL (D) ‘
+sup e, |EF H®) — EF 9(D)] + supgcq,|EF °(D) — E(D)),

since & |5 = §| 5 for such k. Now apply Theorem 2.14 to the first and third terms on
the right side of this last expression, and apply Proposition 3.8 and (3.10) to the
second term to get:

(3.15)  |E{P(®) — E(®)| < |supgeq, B (@) — inf, o EF (D)
+ T(2x€B||c§ck) - cx”)”(D”
+|sup, 5, EE O(®) — inf, e, E °(D)].

(In this application of Proposition 3.8, let both the sets B and B’ of Proposition 3.8
be the set B of this proof.) By the way in which B and K were chosen, the right side
of (3.15) is less than

|supg g, EF (®) — inf,cqc, EP %(P)| + 8/6 + 8/6
< 2(supyeq, | EP O(®) — EP %(®)|) + [sup, s, B °(®) — infyeq, EF (D)
+48/3.
Now if we replace the quantities in this last expression by the upper bounds used
already above, we see that the whole expression is less than 8, completing this part
of the proof.

Now assume (3.14) instead of (3.13). Choose M € Z so that for all m > M,
g =¢,|p and 4,, D B, where B € Y, is as above. We will show that for m > M,
|E{™(®) — E,(®)| < 8. By Theorem 2.14 and the choice of B, we will be done if we
can show that for all m > M,

(3.16) sup, e, EE €(®) > E{M(®) > inf oo EP (@),

since for ¢ € ¥y, EF ¢ = E} C, The proof of (3.16) is essentially the same as the
proof of Theorem 2.14, and we will therefore be brief. We prove the first inequality
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in (3.16) only. We will assume that ® satisfies the additional restrictions imposed at
the beginning of the proof of Theorem 2.14. Fix m > M and choose ¢ > 0. Now
define ¢ € K, by following word for word the definition of ¢ in the proof of
Theorem 2.14, using the set B of this proof in place of the set 4 of the proof of
Theorem 2.14. We will prove an analogue to (2.16), namely, fork =1,2,- - -, N,

(3.17) E{™ ®, E%-%(®) +3¢/N > E{" ®, E™ 5(®),

where ¢, @,_;, and N are as in the proof of Theorem 2.14. The proof of (3.17)
follows closely the proof of (2.16). Note that the first inequality in (3.16) follows
from (3.17) just as the first inequality in (2.15) follows from (2.16). Fix k €
{0,1,- - -, N}. Now write P* = (Pé"’”))“” %-1 for w € Q, and fix w such that P“ is a
SMP (§, (@), G,) Let §=§ (w). Define p’ to be the Borel measure on
{—1, 1}"8 determined by

w8l p=mand{|y,, € Z)
= [J3/¥Pe(& | 05 = m)ds/ (T/N) ] u$™(Z)

for all n € {—1, 1}*~\% and Borel sets Z in {—1, 1}"4~. Notice that p’ and the p
of the proof of Theorem 2.14 are different. Let ®, _, be as in the proof of Theorem
2.14. Then

(3.18) Ep-9(®4_,) — E® ®p/nE™ 9(®4_y)
> —6((T/N)Z epllcd)’ — e/N
—1f =11y E(G, 85 1) O1/nE™ C( D) ()
—E° ®r/nE¥ (@ y)l-

(See the proof of (2.16), and, in particular, the derivation of lower bounds for E,
and E,, which works here even though p’ is different than p.) Now define p (as in
the proof of Theorem 2.14) to be the Borel measure on { —1, 1}**? determined by

n(-) = [P y\5 € -)ds/ (T/N).
Then the right side of (3.18) is bounded below by
= 12((T/N)Z esllell)’ — e/N
—f =1,y 2E(6,8,,5) ®r/nE® (@, _)w'(ds)
— =132 E(G, 8 1) B1/wE® C( D4 )(F))|

by Lemma 2.9 applied to P“. By the same sort of reasoning used in getting the first
inequality in (2.12) in the proof of Lemma 2.9, and by the way in which N is
chosen, the quantity above is bounded below by

—2¢/N — 22xe3|f{—1, 13"\ 2P g, Elg,ﬂ')(ga,, =xr§)#'(d§)
= [ =1, 1y P (Gt ) &y =)0,



CONTROLLED SPIN-FLIP SYSTEMS 967

which is bounded below by
(3.19) —2e/N = 2%, cglf (-1.1)"%] P6, 8 1) (&, =3)
— (T/N)e (85 % &) w(db)|
=23, e/ (-1, 1)V\B[P(cm, 20 0) (&, =)
— (T/N)e{™ (85 % &) | (),

since by Fubini’s theorem,

S, 1)"\"C§<m)(2|3 X §)#(d§) = [(-1, l)V\ch(ZIB X {)p.’(d{)
for all x € B. Now by the same application of (2.5) and the optional sampling
theorem which was used to get (2.13), both of the sums in (3.19) are bounded above
by (T/N)Z . eszllc.|)% so that (3.19) is bounded below by —3e/N. This yields

G.17). [

REMARK 3.20. By taking ¢® = ¢ for all k, we get a type of Feller property from
Theorem 3.12, namely, if ® is as in Theorem 2.14, if (P;); <= is a collection such
that for each £ € =, P, is a SMP (G, §), and if 4 : £ — R is defined by A(§) =
E(®), then h is continuous at all points £ such that (3.2) holds for G and §.

THEOREM 3.21. Let =', G, and (P;); c= be as in the previous remark. Assume in
addition that =’ is Borel, and that if £ € =’ then (3.2) holds for G and &. Let p be a
Borel measure on = such that w(=') = 1. Consider the following four conditions:

(2)  [=E(fENNED = [=fOudE) forall f€ Candall t >0
(23)  [2GAOWEH =0 forall fEF;

B2 [ SEE(gENdE) = [ZE(fE)gE)dE) for all f, g€ C
and all t > 0;

(G252 fEGg@)m(dé) = [=GfE)gOmdE  forall f, g€ F.

Then (3.22) is equivalent to (3.23) and (3.24) is equivalent to (3.25). (The measure y is
called an equilibrium state for (Pg).cz if (3.22) holds, and a time-reversible
equilibrium state for (P;); <z if (3.24) holds.)

Proor. The proof that (3.22) = (3.23) and (3.24) = (3.25) is standard. We will
show that (3.23) = (3.22). The argument that (3.25) = (3.24) is virtually the same.

Assume that (3.23) holds. We use a modification of a technique found in [6]. It is
enough to show (3.22) for all f € ¥. Fix f € ¥, and choose {4,}7_, C ¥, such
that 4, » V and such that f € .. For g € {—1, 1}, let p be the Borel
probability on { —1, 1} defined for Z c {—1, 1} by

P*%k)(z) = p.(£ EX: ‘E'Ak =n and § v, € Z)/I»"(g EE: £IAk = "1)
when p(§ € = : £, = 1n) > 0; otherwise, let ,u,(,") be arbitrary. For k =
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1,2,3,- - -, define pregenerators G, with rates ¢®, where
=7 (=1, 137 S8l g, X § )Mé’fik(dK ) XxE€A4,
=0 x € V\4,.

Then by Fubini’s theorem, we have for k > 1 and g € F*, [G,g(§)u(d§) = 0 so
that for all ¢ > 0,

JEPSfE)(dE) = [f(E)u(d?),
where for each £ € Z, P{® is the unique SMP (G,, £). By Theorem 3.12, Ef(§) =
lim, EXf) for ¢ > 0, f € F, and ¢ € =/, and so (3.22) follows by the bounded
convergence theorem. []

REMARK (added in revision). Let Z; = {{ € Z : (3.2) holds for § and G }. Then
if it is known that there exists a SMP(G, §) for each £ € Z, it would be desirable
to take ' = = in applications of Theorem 3.21. We therefore remark that Z; is a
Borel set for any G (it is in fact a Gs-set). The reason for this fact is as follows Fix
G. For each @ as in Theorem 2.14, let

Z(P) = {5 € E : limyyy, sexSUPex, EF °(®) = limpy, geinfpe o, ES (cp)}
It follows from Remark 3.3 that Z(®) is an open set for each such ®. Furthermore,
it can be easily shown that there is a countable set ®,, ®,, ®,,- - -, such that
Zs=NZ(,).

4. Applications to specific classes of pregenerators. In [15], Spitzer introduced
an interesting class of flip rates on = = {—1, 1}% called nearest particle rates.
Under the assumption that a result such as Theorem 3.21 applies, he was able to
completely characterize the time-reversible equilibrium states of processes with
nearest particle rates. We show that this assumption was valid by proving here that
the hypotheses of Theorem 3.21 are satisfied by a class of pregenerators which
includes those studied in [15]. See also [2] and [10] for a discussion of nearest
particle processes in the more general setting in which ¥ = R. Uniqueness results
slightly less general than the ones given here were proved independently in [2] and
[10].

Let V=127, and let Z;, = {£ € EZ: {(x) = 1 for infinitely many positive and
infinitely many negative x € V'}.

DErFINITION 4.1.  Let k be a positive integer. We call rates ¢ nearest k particle flip
rates if for all § € Z,,

e (§) = [1 (%, 8), L(x, &), - -+, (%, §), ri(x, 8), ry(x, §), - - -,
r(x, §)]if §(x) = —
- 8x[ll(x’ §), L(x, &), -+, hlx, €), ri(x, 8), ry(x, 8), - - -,
r(x, &) ] if &(x) = 1



CONTROLLED SPIN-FLIP SYSTEMS 969

where B, and §, are bounded functions from (Z*)* into [0, ), and /(x, £)
(r(x, &) is defined to be the distance to the ith nearest site y € ¥ strictly to the left
(right) of x such that £{(y) = 1. When k = 1, we also call ¢ nearest particle rates.
Here, we are thinking of a 1 as a particle and a —1 as a vacancy. The functions S,
and 0, are called birth rates and death rates respectively.

Before continuing with nearest k particle rates, we need a lemma concerning
general spin-flip processes.

LEMMA 4.2. Fix £ €EEZ and M € Z*. Let {A,}Y_, be disjoint subsets of V of
cardinality less than or equal to M. Suppose that G is a pregenerator with rates c such
that for some y € [0, o0),

SUP; . pmy=t0)Cx(§) <7V, forall x € U)_ A,
Then for any ¢ € K and T € [0, ), we have
(4.3) PO, 1y, - -ty E[0,T] 1 &, #&,

for each n = 1, 2, <., N) < (1 _ e"’TM)N,‘

ProOF. By relabeling if necessary, we may assume that §(x) = 1 for all x €
UN_4,. Fix T €0, «0) and ¢ € K. Let G’ be the pregenerator with rates ¢’
defined by

)=y &) =1
=0 otherwise.
Let P be the basic coupling of P# ¢ and P# ¢". By Proposition 3.11, POV < ¢@
for all ¢t € [0, o)) = 1, so that the left side of (4.3) is bounded above by

PPO(An, by, 1y €[, T] 1, #§, forn=12,--,N).
But this last quantity is less than
PP (ty, #*4,, foralln=12---,N)
since c(¢) = 0 if £(x) = — 1. Finally, since flips at different sites in 4 occur

independently in the process corresponding to Pg %,
PP (&, #* &, foralln=1,2,---,N)

= H]’Y'_"Pg)’ Gl(grh,, # £|A") = (1 - e_CYTM)N' D

To state and prove the main result concerning processes with nearest k particle

flip rates, we need the following notation: for k = 1,2,3,- - -, let
E,={(€Z:3An € Z* such that f{{x €V :éx)=1}n{y+ 1Ly
+2,- -,y + n}] >k for infinitely many positive and infinitely

many negative y € V'}.
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THEOREM 4.4. Let G be a pregenerator with nearest k particle rates c such that
sup,cyl|8,]| = 8 < . Then for each £ € E,, there exists a measure P which is a
SMP (G, £). Furthermore, for | =1,2,3,- -, and £ € E, E, is Pg-stochastically
closed. Finally, if k = 1, (3.2) holds for G and all {£ € E,, while if k > 1, and if in
addition sup_||c.|| = y < oo, then (3.2) holds for G and all § € E,.

REMARK (added in revision). Examples can be constructed to show that the
condition y < co cannot be dropped completely when k > 1.

PROOF OF THEOREM 44. Fix¢ € E|. Forn=1,2,- - -, letg, € K, . ;< be
defined by @,(%, M) = §p\(x: |xj<n)- BY Theorem 2.1 of [7], there is a measure P,
which is the weak limit of some subsequence of { P#~ “}°_,. We will show first that
for each / such that § € =), E, is P,-stochastically closed. Fix / such that § € Z,. By
the definition of =,, choose M € Z*, and y, € V fori =1,2,3,- - -, such that
the sets 4, = {y; + 1, y; + 2,- - - ,y; + M} are disjoint, such that #(4, N {x €
V : §(x) = 1}) >/, and such that the set U2 ,4; contains infinitely many positive
and infinitely many negative elements of Z. For each A € V, let I(4) = {i : 4, C
A} and let N(4) = #1(A). Also, let A4 = A, N {x:§x) =1}, for i =
1,2,3,... . Then by Lemma 4.2, if 4 € Y, and T € (0, o0), we get for all
n=123---,

4.5) Pg»S(Vi € I(4) there exist # €[0, T) and x; € 4;*such that
£(x)=—1) < (1 — e TN,

Since P; is the weak limit of some subsequence of { Pf» ¢1%_,, (4.5) implies

n=101
4.6) P,(Vi € I(A) there exist ; € [0, T) and x; € 4;"such that §(x;) = — 1)
< (1 _ e—STM)N(A).

This implies that E, is P,-stochastically closed.

Now we show.that P, is a SMP (G, §). Choose 0 <s <1, and let ¢ be a
continuous functional on € which is %j-measurable, and choose f € F. We will
show

(4.7) E(W(f(&) — [6Gf(€,)du))
= E(W(f(&) — [3GfE)dw)).

Define G, to be the pregenerator with rates ¢, where
() =cl§) |xI<n
=0 otherwise, n=123....

Then Pg» € is the unique SMP (G,, §) forn =1,2,3,- - -, so (4.7) follows if we
can show

(48) lim, Eg S(4(f(§) — [oGf(E)dw))
= E(W(f&) — [3G/(&,)dw)) for all r > 0.

Fix r > 0. It follows from (2.5) that y/f(§,) is a P,-a.s. continuous functional on £,
since P, is the weak limit of a sequence of SMP’s, so that

lim, Eg S(48)) = E(W)
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by Theorem 5.2 of [1]. By the definition of G,
lim, Eg» “($(So( Gf(E,) — Gf(E,))du)) =0,

so we have (4.8) if we show that

lim, Ef~ “(W(/5Gf(€,)du)) = E(y(s 0Gf(8,)du)).
This last identity follows from Theorem 5.2 of [1] provided [,Gf(£,)du is a P, — a.s.
continuous functional on £2. But this follows from the fact that (4.6) implies that

lim, ,,Py(Gf(£) = Gf(§,4 X §)  forall
¢e{-Lu}™ andall u€[0,r])=1

The proofs of the last part of the theorem for the cases k = 1 and k > 1 are so
similar that we combine them into one. To do this, we will use the letter p for § if
k =1 and for vy if k > 1. We will show that (3.2) holds for G and § under the
assumption that p < oo. Let {y,}i2,, {4;}i=1, M, I(-), and N(-) be as above, with

i=D i=D

| = k. If k =1, we may assume that 4, = 4,* foralli=1,2,3,... . Let ®, 4,
and T be as in Theorem 2.14. Without loss of generality, we can assume that
A={-n,—-n+1,---,n—1,n} for some n € Z*. Choose ¢ >0, and pick

B € %V, such that B O A4 and such that (1 — e *"™)¥ < ¢, where N = N((B \ A)
NZ7)N N(B\A) N Z*). We will show that for all ¢, ¢’ € Ky,

|E 9(@) — Eg>¥(®)] < 4¢]| @)

The idea of the proof is to use those sets 4; which are in B \ 4 as “buffer zones”:
as long as no flips occur on one such set to the right of 4 and one such set to the
left of A, the influence of the controls ¢ and ¢’ cannot get in to affect the behavior
of the system on 4. With this idea in mind, choose ¢, ¢’ € Ky, and let P be the
basic coupling of P$ ¢ and P§" . Proposition 3.8 implies that if y; <y;, then

P(3t €[0,7) : £V sy u ey * E2N( e m<x<yy) =0,
where 7 is defined on Q X by
m=TA(inf{r > 0: &Y # &, or &) # &,
or &) # &, or &) + glA,})'

But this implies that P3¢ € [0, ') : §{) # £&() = 0, where 7’ is defined on @ X Q
by

=TA (inf{t >0: forall i€ I((B\A)NZ )3, E[0,1]
such that £,(,|'A) # §, oOr £,(|2A) # £|A,})
A (inf{t >0: forall i€ I((B\A4)NZ*)31 €[0,1]

such that ’St(.:) # §4; OT 55123 #* §|A,~})-
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By Lemma 4.2, P(r' < T) < 41 — e~ *™)", since the marginals of P are P ¢ and
P¥-C. Hence, by (3.10),

|Eg (@) — EF9(®)| < 4|21 — e™P™)" < 4®]e. 0

One reason that the class of nearest particle processes does not satisfy earlier
uniqueness conditions is that in such processes, the flip rate at a site x may depend
strongly on the spins at sites which are very far from x. In cases where the
long-range dependence is weak enough, the most useful uniqueness conditions are
those of Liggett [12]. Liggett’s conditions also have the advantage of being
applicable when V is not assumed to have any particular structure. We will give a
new proof here of a generalization of Liggett’s uniqueness result, a version of
Corollary 1 of [4]. There are other generalizations of Liggett’s theorem in [4] and
[16], and we could extend our proof to handle them, but we do not wish to obscure
the main idea with technicalities.

THEOREM 4.9. Let G be a pregenerator with continuous rates c. Suppose there
exists \,),e, C R* such that inf A, = X\ > 0 and such that

(410) Sup, e VEyEV;y#:xsupf Ei%lcx(ys) - cx(£)| =K < oo0.

Then (3.2) holds for G and all § € E.

REMARK 4.11. Condition (4.10) does not imply continuity.

PrROOF OF THEOREM 4.9. Let @, 4, and T be as in Theorem 2.14. It is enough to
show that (3.2) holds for G and all { € = whenever T < 1/(2K), since once we had
that we could argue as follows: for each £ € Z, the measure P> '/@X) js a SMP
(G, & /2x)(w)) for Pg-almost all w, and as such would be uniquely determined up to
time 1/(2K). This would uniquely determine P, up to time 1/K. Then we could
continue inductively to show that P, is uniquely determined up to time n/(2K) for
all n > 0. Thus, assume T < 1/(2K). Fix £ € E. For each B € Y, and for
o, @, € Kp, let 15% 5, be the basic coupling of Pg» ¢ and Pg» . We first show by
induction that for eachn =0,1,2,3,- - -,

(4.12)

limBi’ V, B E%Sup?’p que‘JCBﬁq)], ‘Pz(at € [O’ T] : g‘(l)(x) 7& gta)(x))

A
< oo forall x e V.

The case n = 0 is obvious. Now suppose (4.12) holds for some n > 0. Choose ¢ > 0
and x € V, and pick B € 7, such that x € B and 2, ¢\ gSup; x|, (,§) — ¢ (&)
< A.e. This last is possible by (4.10). By the inductive hypothesis, pick C € Y,
such that C O B and such that for all y € B \ {x}

5 (1+¢)
sup,, qaze%cP%«pz(at €[0,T]: £E(y) 5,(2)(}')) < ﬁ_}\_ﬁ_
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Then by Proposition 3.8, if ¢,, ¢, € K, we have
Py, (31 €10, T] : £0(x) # £2(x))
< Ey, o (18le0c X oi(t, £01c)
= (801 X EP]ove X @1, £ X 2] c\4)) )
< szEB;y;&x[(supi’Eilcx(yg) - Cx(g)D
X P, o (3t €[0, T] : £(y) # £P(»))]
+3, enpsuPg ezl (,€) = e (&)l

< 1/ (ZK)EyEB;y;&xsupf'EE(Ay—(;—;n;i)'lcx(yg) - Cx(g,)l) + Axe‘

(Here, we write x for {x}.) But by (4.10), this last expression is bounded by

Af(l+e

—}T( on+1 + 8),
completing the inductive proof since ¢ > 0 was chosen arbitrarily.” Now when
n — oo in (4.12), we get (3.2) for ®, since by (3.10),

limg .y, p e%lsqu;esc,,Ef ") ~ inf¢e 5, E& G(q))|
< 2, eall®llimg . 5 eSUP,, g, ex, Py, (3 E[0, T] 1 §0(x) # £P(x)).
a

The author intends to show in a future paper that the method used in this last
proof can be extended to get useful improvements in uniqueness results that have
been obtained for a class of spin-flip processes known as stochastic Ising models
(see [7], [8], and [9]).
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