The Annals of Probability
1979, Vol. 7, No. 1, 186-191

AN INVERSE BALAYAGE PROBLEM FOR BROWNIAN MOTION

BY A. F. KARR AND A. O. PITTENGER

The Johns Hopkins University and
University of Maryland, Baltimore County

Let B be a standard n-dimensional Brownian motion, let 4 be compact
and let » be a probability measure on 34. We treat the following inverse exit
problem: describe the set M(») of all probability measures u.on 4 such that
PH{B(T) € - } = »(-), where T is the time of first exit from 4. Elements of
M() are characterized in terms of integrals of harmonic functions with respect
to them. For n = 1, extreme points of M(») are computed in closed form; for
n > 2, extreme points of M(») are characterized. Geophysical and potential-the-
oretic aspects of the problem are discussed.

1. Introduction. Motivated by a model for a distillation process used in
petroleum refining, Ray and Margo [14] posed the following problems for a
Markov chain X with finite state space S = S; U S,. Let states in S, be transient
and states in S, be absorbing. A probability » on S, is the balayage of a probability
p on S, provided »(-) = P*{X(T) € - }, where T is the first hitting time of S,.
Then, find all » that are the balayage of at least one u and for each such » find all p
of which » is the balayage. Subsequent papers by Ray [13] and Pittenger [11]
treated various aspects of the problem but failed to obtain either complete or
explicit results. Karr and Pittenger [10] obtained characterizations, when S, is
finite, of the compact, convex set

M(v) = { p: v is the balayage of u},

of the extreme points of M(»), and of those measures in M(») that are maximal
with respect to a partial ordering defined in terms of the excessive functions of X.
In particular, [10] contains an explicit identification of the extreme points of M(»)
when X is a one-dimensional random walk and S, is an interval whose endpoints
comprise S,. The approaches in [11], [13] and [14] were algebraic, whereas that in
[10] relies heavily on probability and potential theory.

It is natural to consider the same questions for processes with continuous time
and state space and the purpose of this note is to describe some work in this
direction. Our context is Brownian motion in n-dimensional Euclidean space and
our problem, specifically, is the following.

Let (B,) be n-dimensional Brownian motion, let A C R" be compact, and let » be
a probability measure on 04.
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(1) Describe the set M(») of probability measures p on 4 such that »(-) =
PH{B(T)€E€ -}, where T=inf{t >0: B, & A}.
(2) Characterize the extreme points of M(»).

For simplicity we assume in this note that 4 is the closure of a simply connected
open set.

In Section 2 we solve the one-dimensional problem explicitly; the result is
qualitatively the same as that obtained in [10] for one-dimensional random walks.
Section 3 contains characterizations of the elements and extreme points of M(») in
higher dimensions, but the latter characterization can hardly be called explicit. We
also discuss a geophysical interpretation of the problem and an example which
demonstrates that the nice structure of the one-dimensional problem fails to carry
over to higher dimensions.

2. The one-dimensional problem. Here A =[a, b], 94 = {a, b} and v is a
prescribed probability measure on {a, b}. For a given probability A on 4, the direct
problem of computing the P>-distribution of By, where T = inf{: B, & A} is
easily solved: it is well known that for x € 4,

(1) P*{B,=a}=(b-x)/ (b~ a),

and then one need only integrate with respect to A. Our problem is the inverse of
this: find all u such that P*{B(T) € - } = »(-). The following result constitutes a
complete solution to the problem.

(2) THEOREM. Let m = v(a)a + v(b)b. Then u € M(») if and only if u(a, b]) = 1
and

3) J1a, yep(dx) = m.
The extreme points of M(v) are precisely the following:

(a) e,,, the point mass at m;

and
(b) the family {n, ,:a <x <m <y < b}, where
_y—-m m—x
4) n"*y_y—xs"+y—x€’"

Proor. Since (1) implies that
P{Br=a}=(b- a)_l(b = Jla, b]x#(dx)),

it follows at once that (3) is necessary and sufficient in order that a probability
measure g on [a, b] belong to M(»).

Now it is immediate that ¢, is in M(») and is an extreme point. That each 7, ,
belongs to M(») follows by direct computation, while the argument that 7, , is an
extreme point of M(») is straightforward: if », , equals ap; + (1 — a)p, with y, in
M(»), then p,({x, y}) = 1, which forces p; = p, = 1, ,.
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It remains to show there are no other extreme points. To do this recall a result
used in the proof of the Skorohod representation theorem (cf. [5], page 277 or [7],
page 68), which asserts that if u satisfies (3), then there exists a probability measure
Q on (— o0, m) X (m, o0) U {(m, m)} such that for each Borel set B

©) w(B) = [Q(dx, dy)n,,,(B),

with 1, ,, = ¢, and —o0 <x <m < y < + 0. But if u([a, b]) = 1 then almost
surely with respect to Q, n, ,[a, b] = 1, which forces a < x and y < b. Hence the
integral in (5) is over [a, m) X (m, b] U {(m, m)}, and the proof is complete. []

We note that if mass outside A = [a, b] is permitted, the results above permit the
identification of that larger set of probabilities. The calculations are straightfor-
ward and are omitted.

To place Theorem (2) in the context of the potential theoretic discussion of the
next section, we note the following equivalences; cf. also Proposition (8) and
Theorem (10) below and Proposition 1 and Theorem 4 of [10].

(6) PROPOSITION. For u a probability measure on A = [a, b), the following are
equivalent:

(@) p € M@);

(b) [xp(dx) = m;

(¢) fhdu = [hdv for all harmonic functions h on A;

(d) Up = Ur at one point of A°, where Uy is the Newtonian potential of u,
defined by Up(y) = — [|x — y| u(dx);

(€) EX[T] = [x*(dx) — [x’u(dx);
* (f) There is a (possibly randomized) stopping time S such that P"{S < T} =1
and u(-) = P"(B(S) € - ).

Proor. Equivalence of (a) through (d) is computational. Since (B? — ¢) is a

martingale, (e) holds when (a) does by virtue of the optional sampling theorem.
Conversely, if (e) is satisfied then

v(a)a® + v(b)b? = [i, 5(x* + E"[T])p,(dx)

= fla, b]()C2 + (b = x)(x — a))pu(dx)
and [xu(dx) = m follows.
Sufficiency of (f) is a consequence of the strong Markov property and the fact
that T is a terminal time, and necessity is implied by a theorem of Baxter and
Chacon [4]. [] ’

In the same way we obtain the following result.
(7) PROPOSITION. For u € M(v) the following are equivalent:

(a) p is an extreme point;
(b) p=g¢, or p=mn,, as given by (4) for some x,y;
© p(-) = P"{B(Typp,) € - }, where supp p denotes the support of p.
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Of Propositions (6) and (7) very little carries over to the higher-dimensional case.
As an application of the foregoing, note that E*[T] can be viewed as a linear
functional on the compact, convex set M(») and therefore attains its maximum and
minimum at extreme points, the latter at u = 7, , = » and the former at u = ¢,,
since by (6e)
E™[T] = (m— a)(b—m)— (m— x)(y — m).

Extreme values and points at which they are attained may be similarly evaluated
for any linear functional.

Finally, note that the analysis of Theorem (2) applies also to a regular diffusion
(X,; P*) with scale function S. If we put m = »(a)S(a) + »(b)S(b) then the
extreme points of M(») are precisely

(@) €5-1(m)
and

(b) the family {n, , : a <x < S~ '(m) <y < b}, where

_ S -m m— S(x)
T = 50) - S * T S0) - S

3. The inverse problem for n > 2. To illustrate some aspects of the inverse
problem in higher dimensions, we consider the following analogue of the problem
of Section 2. Let A = G U 9G, where G is a bounded, simply connected open set,
and let » be a probability measure on 94 = 9G. Denote by H the set of functions
harmonic in G and continuous on 4 and by S the set of functions superharmonic
in G and continuous on 4. We then have the following analogue of Proposition (6).

(8) PROPOSITION. For each probability measure u on A the following are equiv-
alent:

(@) p € M>);
() fhdu = [hdy for all h € H;

(©) [fdu > [fav for all f € S,
(d) Up > Uv and Up = Uv on A, where Uy is the logarithmic (n =2) or
Newtonian (n > 3) potential of p.

PrOOF. If {p, : x € A4} is the set of harmonic measures for 4, as defined in [8],
for example, then P*{B(T) € dy} = p,(dy) for each x (cf. [t6-McKean [9D. For u
a probability measure on 4 and f € C(34) it follows that

E'[ f(Br)] = [auf(¥) [ ap(dx)o (),
so that p € M(») if and only if

) Jaaf )W) = [3uf(¥)] ap(dx)p,(dr)

for all f € C(d4). Since each & € H admits the representation
h(x) = [a40.(d)A(y),
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the equivalence of (a) and (b) is established. Equivalence of (b), (c) and (d) is
demonstrated in [1]. [

Proposition (8) shows that our inverse problem admits an interesting geophysical
interpretation: to what extent can the mass distribution of the earth be inferred
from its potential outside the earth? This interpretation is discussed in more detail
in [2]. The problem of finding conditions on a mass distribution under which it is
uniquely determined by its exterior potential has a lengthy history, cf. [12]. The
general inverse problem of potential theory (in which (8d) is taken to define M(»))
has also been investigated, cf. [1, 2, 3]. Choquet [6] employs an expression similar to
(9) in an analysis of the Dirichlet problem. Our probabilistic approach and
interpretation appear to be new.

Our next result characterizes the extreme points of M(») in the multidimensional
case but, unfortunately, not very explicitly. Note, however, the analogy to Theorem
2 of [10].

(10) THEOREM. For each p. € M(v) the following are equivalent:

(a) w is an extreme point,
(b) there exists no n € M(v) such that n # p, n < u and dn/dp. is bounded.

Proor. Both implications are shown by contraposition. If (b) fails, there is
0 < g € L®(w) such that dn = g du defines an element n of M(»). If a >0 is
sufficiently small that 1 — ag > 0 a.e. () then the definition

(11) MA)=(1—a)7 " (1 - ag) du
_ gives a probability measure A such that for h € H,

Jhdx=(1—-a) '[fhdp— afhdn)
= (h dp.

Hence A € M(¥) and (11) then evidently implies that u = an + (1 — a)A; therefore
(a) also fails.

Conversely, if (a) fails there exist a € (0, 1) and p,, p, € M(»), distinct from p,
such that

(12) p=ap + (1 - a)y,

The relation (12) implies that pu, < p and also that if f, = du,/du then f, < a™'
a.e. (), and consequently (b) also fails. []

Theorem (10) is evidently valid for any process (X)) ‘with continuous sample
paths provided one replaces H in (8) by the set of functions harmonic for (X)).

The statements (6f) and (7c) show that in one dimension the Brownian motion
(B) begun at m “sweeps out” all other elements of M(») on its way to the
boundary 04. We conclude this note with an example demonstrating that a
similarly pleasant situation does not obtain, in general, in higher dimensions. It
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therefore appears, as is also true for the discrete time and state space processes
treated in [10], that the one-dimensional case is (in yet another respect) very
special.

ExaMPLE. Let G be the open unit disk in R? and » the uniform distribution on
dG. Then ¢ ¢, € M(¥) and it is easily seen that e, & M(») for all other x € 4. For
lly|l sufficiently small, the P ®-hitting distribution 5 of the circle C of radius §
about y belongs to M(v) by the strong Markov property. For || y|| possibly still
smaller, but still positive, n is absolutely continuous with respect to (one-dimen-
sional) Lebesgue measure m on C with, furthermore, dn/dm bounded away from
zero, say dn/dm > 3 > 0. The measure A given by

MB) = Be,(B) + [gnc(dn/dm — B) dm
then agrees with  on harmonic functions by the very definition of harmonic
functions and is hence in M(»). However, since a singleton is a polar set for
two-dimensional Brownian motion neither &g g, nor A can lead to the other in the

manner of (6f).
Further results concerning the inverse problem will appear in a future paper.
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