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A LOCAL LIMIT THEOREM FOR LARGE DEVIATIONS
OF SUMS OF INDEPENDENT, NONIDENTICALLY
DISTRIBUTED RANDOM VARIABLES

By DAvID MCDONALD
University of Ottawa

A local limit theorem is given for large deviations of sums of independent,
nonidentically distributed, integer valued random variables.

Introduction. Let &, §,,- - ,%, (n=1,2,- - ) be an array of integer val-
ued random variables such that for each n, §,, - - - , £, are independent. The local
limit theorem for large deviations deals with the asymptotic behaviour of

pn(x) = P(gnl +£n2 +-- +£nn = x)
as n — oo, when the integer x increases with n. For nonidentically distributed £,,, a
local limit theorem for large deviations is given in [2]. Here we give conditions
which are easier to check and which yield a simpler proof using the “Bernoulli
part” decomposition introduced in [1].

Results. Let p, = E¢,, B} =3%_ E(¢, — ) and 4, = 37 _, u, (all nota-
tion is as in [2]). Define the following conditions:

@) lim sup,,_,w%Z','c_lE exp al{,| < oo for some positive constant a.
(II) There exists a constant ¢ > 0 such that
lim inf,,_m%B,,2 >ec.

{II) lim inf,,_m% k=122 _ o min (P&, =), P&y =j + D} > 0.

Note that (I) and (II) are as in [2]. Condition (IIT') here replaces (III) in [2]. We
show

THEOREM 1. Suppose conditions (1), (II) and (II1') are fulfilled and let w(n) be a
sequence such that lim,_, w(n) = oo; then

p(x) = (277;%3" exp ( EICEVE JYCEPS, ME A,,))(l ro(22)),

2B? n

uniformity for x in 1 < |x — A,| < n/w(n), where for each n, A\,(7) is a special power
series converging uniformly with respect to n for sufficiently small 7.
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Lemmas and proofs. For complex z define, as in [2],
M, (z) = E exp z(§x — py) and M,(z) = *=1M,, 1 (2).

The proof in [2] essentially involves finding a bound for
M,(z, + it)
6y Je<lign M)

where z, is a positive, sufficiently small, real number. Here we obtain a bound for
(1) more easily using the following decomposition.

DerINtTION 1. If &, is expressed as &, = Y, + ¢, L, where ¢, and L, are
Bernoulli random variables, such that P(L,, = 0) = P(L,, =1) =1 and L, is
independent of (Y, &,), then ¢, L, is called a Bernoulli part of £, (the trivial
representation ¢, = 0 and Y,, = £, is always possible).

LeMMA 1. Let &, be represented as in Definition 1. If € > 0 then there exists a
B > 0 such that for all k and all ¢

E exp (z, + it)é,;

Eexpzl, | P (= Boy)
where
_ Ee expz, Yy,
%~ "Eexp 2, Y,
PrOOF.

E exp (z, + it)é,,

=E €Xp [(zo + lt)( Ynk + enkLnk)]
= E{exp [(z, + )Y, ]lew = O}P(e,,k =0)
+E{exp [(z, + i)Y, ley = 1}. E{exp [(z, + it) L, ]}. Pey = 1).

Furthermore,
Eexp [(z, + it)L, ] =3+ exp (2, + it)

_ z, + it h z, + it)
= exp ( 3 ) cos ( 3 .
Hence,

' + it ]
Eexp (z, + it)y, = E exp [ (2, + it)( Y +%8nk)][°°5h ( < 2 : )} :

Also,

E exp z,¢, = E exp [zo( Y. +%e,,k)][cosh z,/2]™.
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Hence,

E exp (z, + it)é,,
E exp z,§,

Enx

+ it
cosh (z" ! )

E exp [za( Y, +%e,,k)] 3

E exp [zo( Y + %s,,k)]| cosh z,|™ 7

If z = x + iy then |cosh z|* = cosh® x — sin® y. Therefore

z, + it\|™ sin® t/2 | &,
cosh(" ) =[coshz,/2]"*|1 - ——— | ==.
2 [ /2] ( cosh? zo/2) 2
However for |¢| € [e, 7] there exists an 0 < a < 1 such that
)
| _ sin t/2 <o
cosh’ z,

Therefore

E exp (z, + it)é,,
E exp z,§,

E exp [zo( Y, + %enk)] [cosh z,,, | ™ a
E exp [zo( Y, + %s,,k)] [coshz,,,]™

Next,
E exp [zo( Y, + %enk)] [cosh z, ,, |
= E exp [zo( Y, + %e,,k)] [cosh z, , ™
= (1 — a)e® cosh z,,,E¢,; exp z,Y .
Hence,

E exp (z, + it)é,,
E exp z,{,

Esnk €xp 2, Ynk
E exp [zo( Y, + %e,,k)] [cosh z,,,]™

< 1-(1- a)e*cosh(z,,)

<1- (l _ a) Esnk €Xp onnk
Eexpz,Y,
<e (-9% = g~Fu where f =1 — a. 0
DeFINITION 2. Let g, = 272 _, min {P(§, =), P(§,x =Jj + 1)}, and define

Qn = 2’I‘c-lqk'
It is shown in [1] that £,, may be written as §,, = Y, + ¢,L,, wheree, L, isa
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Bernoulli part of §,, and P(e,, = 1) = g,. Hence a nontrivial Bernoulli part may be
extracted.

For any random variable ¢ the above decomposition simply implies the existence
of a new probability space {2, %, P} and random variables Y, ¢ and L defined on
it such that

@ P(L=0=PL=1)=3,

®) Pe=1)=q=32 ,min{PE=/),PE=j+D),Pe=0=1-g

(c) L is independent of (7Y, ¢),

@) PE =)= P(Y + eL = )).

Intuitively we interpret Y + eL as follows. We observe Y and then flip a coin
(dependent on Y). If the coin is heads (corresponding to ¢ = 1) we add an
independent Bernoulli value L to Y. If the coin is tails (corresponding to ¢ = 0) we
add nothing. g is the probability the coin is heads and hence the probability the
independent Bernoulli value L is added to Y. Hence ¢ measures the amount of
Bernoulli part in the distribution of £.

LemMa 2. If (I) holds then (IIT') implies

lim inf, %2',;- 1@, > 0 where a is as defined in Lemma 1 with z, < %

PROOF.
E exp z,| Y| > E[ e, exp (—2,Y,)]
= {(CXPZ Yu)~ |8nk = I}P(ﬁnk 1)
P(Enk ) P .
> E{expz,Y o, = 1 by Jensen’s inequality,
= P(ey =1)

Ee, expz,Y,,
Pey = 1)

o Eexpz,Y,

S PZ(Enk = 1)
g o E exp z,| Y|

Therefore P(e,, = 1) < a2E exp z,| Y, |- Hence,
2
1
(;Ek-lP(snk = 1)) < (;E’I‘mla},E €xp zoIYnkl)

1 | Q-
< (71‘ 'I::-lak)(zzk-l(E exp z,| Ynk|)2)

( k-lak)( 2% E exp 2z |Ynk|)

( Ek_lak)( Si=1E exp 2z,[ €] + 1].
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Therefore,

2
(lim infn_,w%E'L_IP(snk = 1))

lim inf, "o >

~>» 00

(hm SUP, 00 %27(- lE €xp zzolgnkl)' 12y 220

Since 2z, < a, the denominator of the above expression is finite by (I). By (III) the
numerator is positive. Hence lim inf, | 3% 0, > 0. []

ProOOF OF THEOREM 1. The proof of the theorem in [2] depends upon bounding
the integral in the expression in equation (8) in [2]. That is, for e > 0 and z, > 0
sufficiently small (we may take z, < a/2) we must bound (1) here.

M,(z, + it) E exp (z, + it)é,,

M,(z,) Eexpzt,

< exp (—B2%o1)

where a, and B are as in Lemma 1. Also, by Lemma 2, for n sufficiently large,
exp (—B2% - ;) < exp (— Bdn) where lim inf 1/nZ% _ a, > 6 > 0. Hence

M,(z, + it)
Mn(zo)

n
k=1

< exp (— B6n).

This estimate may now be used to complete the proof given in [2]. []
Consider the following independent random variables:

P¢, =0 =1  forallk,
P, =2)=3  forkodd,
P, =3)=3  fork even.

Clearly condition (III’) here and (III) in [2] are violated. Nevertheless, it is clear
that the array

£n1+§n2’§n3+£n4a'"’gnn_l"'g,m n=12---
(take &, + &, - - -, &, if n is odd) satisfies (I), (II) and (III'). Hence

En+&)+ -+ (o + &) =20 b
satisfies Theorem 1. This “blocking™ technique is used in [1].

Note. The Bernoulli part decomposition given gives other useful bounds.
Suppose S, = 2% _,£, admits the decomposition given in [1] (note: we need not
assume {§,,}%., independent): .

Sn = Zn + ZI;CJLILk’

where N, is a nonnegative, integer valued random variable and {L,}7., is a
sequence of independent Bernoulli random variables such that P(L, = 0) = P(L,
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= 1) =3 and {L,}?_, is independent of (Z,, N,). If f,(s) = E exp is S, then
()] = |E exp (is[ Z, + 2z L])
= |Z5_oE exp (i5[Z, ,, + Z7_,L;]) - P(N, = m)|
where P(Z, ,, = z) = P(Z, = z|N, = m). Hence
|£,()| < Egp_olE(exp (isZ7.\L,))| - P(N, = m).

However

E exp (is=p_ L) = TI7_ (3 + 2e¥).
Hence

|E exp (isZ%.,L,)| = (cos s/2)™.

Therefore

l()] < Z32-o(cos s/2)"P(N, = m)

= E(cos s/2)™.

If ¢ > 0 then for s such that e < |s| <7 coss/2 < a < 1 for some a. Hence
) [£(s)] < Ea™
where

0<axl, fore <s <.
Clearly if §,), £,,, - - - £, are independent and each has the decomposition given in
Definition 1 then we may represent S, as above:

Sy =2Z, + 2Ly,
where Z, = 3% _,Y,, and N, has the same distribution as =% _ e, (see [1]).
Therefore (2) gives:
Ifi()] < Ty Ea™
=Ihai(1 = (1 — a)P(ey = 1))
<exp (= (1 — @)2%o P(ey = 1)),
<exp (- (1-a)Q,)

where a < 1 and Q, is as in Definition 2.
If &, - - -, &, are not independent (2) may still be useful.
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