The Annals of Probability
1979, Vol. 7, No. 3, 477-493

LOCAL SAMPLE PATH PROPERTIES OF GAUSSIAN FIELDS

BY LOREN D. Prrt! AND LANH TAT TRAN?
University of Virginia and Indiana University

A zero-one law is derived for a class of Gaussian fields {X(¢) : € R%)}
including the generalized multiparameter Brownian motion. Under very general
conditions, the joint distribution of the suprema of several Gaussian processes
defined over compact metric spaces is shown to be absolutely continuous with a
bounded density. Sufficient conditions are given for the existence of proper
scaling limits of {X(¢)}. The results are then combined to study local oscilla-
tions and local maxima.

1. Introduction. The work described in this paper started with our attempt to
prove the result in Section 6 that for a broad class of continuous but nondifferen-
tiable Gaussian fields the local maxima of the sample functions are countable and
dense. The proof we found of this result is rather elementary but requires several
short pieces of technical preparation. Each piece is of independent interest but they
are quite unrelated and just barely fit together. Although as a result the paper lacks
uniformity, we find the results interesting.

In Section 2 we consider fields {X(?) : + € R?} with stationary increments and
prove a new zero-one law at ¢ = O for a fairly large class of such fields. Our result
includes McKean’s (1963, page 346) zero-one law for Lévy’s multiparameter
Brownian motion and extends the results of Tutubalin and Friedlin (1962). Exam-
ples and extensions of this zero-one law are also given.

In Section 3 we show under very general conditions that the joint distribution of
the suprema of several Gaussian processes {X/(f):¢t € T;}j =1,- -, n is ab-
solutely continuous and has a bounded density. Here the sets 7; are compact
metric spaces. For n = 1 this is a slight improvement of Ylvisaker’s (1968) result
but for n > 2 it is, we think, completely new.

In Sections 4 and 5 we consider Gaussian fields { X(¢) : ¢ € R?} with stationary
increments and treat the existence of scaling limits of the form

¢ 'X(A4,0) >:Y(r) as n—oo
where ¢, — 0 is a sequence of numbers and {4,} is a sequence of nonsingular
d X d matrices with ||4, || - 0. When combined with the zero-one law of Section 2
this gives the striking result (Theorem 4.1) on the local oscillations of Gaussian
fields.

Finally, in Section 6 we apply these results to describe the set of local maxima
for yet another “very general” class of Gaussian fields:
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2. Zero-one law. In this section, let {X(¢): ¢t € R } be a mean zero real or
complex valued random field with X(0) = 0. We assume that X(¢) has stationary
increments and a continuous covariance function
2.1 R(t,s) = EX()X(s), t,5,ER"

We treat t = (¢, -+, #;) € R? as a column vector. Dot products E‘ftj}\j are
written both as 7+ A and (¢, A). It is known (see Yaglom (1957)) that R(z, s) has a
unique Fourier representation of the form
(22) R(t, 5) = [ra(e™™ — 1)(e™** — 1)A(dN) + {t, Bs).

Here B = (b;) is a positive semidefinite matrix and A(d]) is a nonnegative measure
on R? — {0} satisfying

A2
23 I

( ) f R? 1 + lAIz

For T > 0 let J((T) be the Hilbert space of random variables obtained by
closing up the space of all finite combinations

A(dA) < .

(24) X=aX(t)+" - +a,X(1,),
|t] < T in the L? norm || X || = (E|XP)2. Set
(2:5) ¥(0) = n {I(T): T >0}.

We say that X(¢) satisfies the (wide sense) zero-one law at ¢ = 0 iff JC(0) = {0}.
If F(T) is the o-field generated by IC(T) and if {X(#) : ¢ € R?)} is a Gaussian field
then the wide sense zero-one law at ¢ = 0 is equivalent to the zero-one law for the
“tail” o-field

50) =N {9(T): T > 0}.

For A € R¥ and h > 0 we let

B\, h)={x€RY: ]\ - x| <h}
be the closed ball centered at A of radius A.

THEOREM 2.1. If for some h > 0
(2.6) lim infm_m|)\|“+2A(B(>\, h)) >0
then X (t) satisfies the zero-one law at t = 0.

Proor. First, we need some preparation. To each random variable

2.7) X = Zj;lan(tj)
we associate the function f(A\) = AX given by
(2.8) SO = T (e — 1),

It follows directly from (2.2) that

o o O
(2.9 E|X|2 = fR.,|f()\)|2A(d>\) + Eﬁj=l—éx(°)5>—\;(°>by..
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Now bring in the weighted L? space L*(A) with norm

(2.10) 1£1a = (I/OPAEA)?

and the subspaces Hy(T) of L%(A) of all functions of the form (2.8) with || < T for
all j, together with the closures H(T) of Hy(T) in L*(A) and HO) = N {H(T): T

> 0}.
The functions f(\) in Hy(T) are all restrictions to R? of entire analytic functions
f(2) of the d complex variables z = (z;, - - - , z,) € C*. Pitt (1975) has shown that

under the condition (2.6) there is a T, > 0 so that whenever 0 < T < T the
function

(211) L(T, z) = sup {|f(z)| : f € Ho(T) and || f]ly < 1}
is finite for all z € C? and satisfies an inequality of the form
(2.12) L(T, z) < M(T)eT*®l  for eache > 0.

Let L(T) =sup {L(T,z):z € C? and |z| < 1}. Since each function f(z) in
Hy(T) is analytic and satisfies f(0) = 0, it follows from Schwartz’s lemma for
analytic functions that f(z) satisfies

(2.13) IA(D] < L(T)I|fllal2l,  forz] < 1.

From (2.13) we see that each f in H(T) satisfies

< L(T)|I fllas 1<j<d.

_a-.f_(o)
(2.14) o

J

Now let X and f(A\) = AX be given by (2.7) and (2.8) with || < T, for all ;. Since
B = (b;) is positive semidefinite it follows from (2.9) and (2.14) that there exists a
finite constant ¢ > 1 with
(2.15) AX s < 1X]| < cl|AX 5.

Thus the map X — AX = f(\) extends by continuity to a continuous invertible
map of JC(T) onto H(T) for T < T, and IC(0) = {0} iff H(0) = {0}. Theorem 2.1
is thus reduced to the following analytic result. '

THEOREM 2.2. If (2.6) is satisfied for some h > 0 then H(0) = {0}.

Proor. It follows from (2.12) (see Pitt (1975)) that each function f(A) in H(0) is
the restriction to R“ of an entire function f(z), (z € C?) of minimal exponential
type in the sense that |f(z)| = 0(e®!) as |z| - oo for each & > 0. Moreover from
(2.13) we see that f(0) = 0.

The proof will be completed by showing:

(2.16) each f(A) in H(0) is a polynomial
and :
(2.17) each polynomial in L?(A) is a constant.

To prove (2.16) we need a lemma from Pitt (1975), see also Lin (1965). Here
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®(\) = fe"™p(¢) dr is the Fourier transform and L*(B(0, T)) = {g(f) € L?
(R, dt) : @(f) vanishes off B(0, T)}.

LemMa 2.1 (Pitt (1975), page 306). If A(d)x) is a positive (not finite) measure on
R? and if for some h > 0,

(2.18) lim inf,, _, .A(B(A, h)) >0,
then there exist ¢ > 0 and T > 0 with
(2.19) cf gl ANPAN < [ ol FNPA(AN)

for all f € LYB(O, T)).

Now set A(d\) = [A[**2A(dN). Then A(dM) satisfies (2.18). Let T >0 be a
number for which (2.19) holds. We set S =3 T and choose ¢(f) € L*(B(0, S)) such
that $(A) > O for all A € R¢ and such that

RV RV
(2200 0 <lim infw_,mI—J‘I’—(I))‘\—Tm < lim sup|>\|_m-1—_(:;(l-%

Note, for any f(A) = Sa(e”™ — 1) € Hy(S) that fA)$A) = \f’()\) with ¥(s) =
2a(p(s — t) — @(s)) and ¥(s) € L*(B(0, T)). By (2.20) and Lemma 2.1 we have
(2.21) SRl M)A < const. fgdl FN)GN)A(AN)

< const. [gd fAN)PA(AN).
Thus ¥(\) = fN$\) € L2 and || ¥, < const. ||f||,. Moreover, since ¥ is sup-
ported on B(0, T) we have by Schwartz’s inequality
[ < (Vol. (BO, T))[1 ¥
< const. || f||a-

In particular, \i’(A) is bounded and by (2.20) we see that

(222 | /)] < const. (1 + N@D*Y)] f]|.

Since (2.22) holds for all f € H(S), by continuity, it holds for all f(A\) € H(S). We
conclude that each f(A) in H(0) is an entire function of minimal exponential type
with polynomial growth on R?. It follows easily from the Paley-Wiener theorem
(Stein and Weiss (1971), page 108) that f(A\) must be a polynomial and thus (2.16)
follows.

To prove (2.17) and thus complete the proof we simply observe that (2.20) and

(2.21) imply that

LA
fm>1—|}\|d+z dA < 0

for each f € H(S). But elementary estimates show this is impossible if f is a
nonconstant polynomial.

Examples and extensions. We conclude this section with several examples.
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The first three are covered by Theorem 2.1. The fourth falls outside the domain
of Theorem 2.1 but the theorem is easily modified to cover it. The last example
satisfies the zero-one law at # = 0 but condition (2.6) fails so spectacularly that
there is no hope of getting at it by the techniques of this section.

ExampLE 2.1. Let {X(¢) : € R?} have the covariance
(2.23) R(t,s) =2 {|t|* + |s|* — |t = 5|}, with0<a<2.
The special case a = 1 is the Lévy Brownian motion investigated by McKean
(1963). It is elementary to check that R(z, s) has the representation

dA
|A|d+a
where c(a, d) is a constant. Condition (2.6) is trivially satisfied here and thus X(¢)
satisfies the zero-one law at ¢t = 0.

(2,24) R(t, S) = c(a, d)fRd(ei")‘ _ 1)(e—is.}\ _ 1)

ExaMPLE 2.2. Let {Y(¢): ¢ € R?} be a stationary process with covariance
function
(2.25) EY(0)Y(s) = e with ¢>0 and 0<a <2

and let X(¢#) = Y(f) — Y(0). Starting from (2.24) it is an elementary exercise in
Fourier transforms to show that the covariance R(z, s) = EX(¢)X(s) has a Fourier
representation of the form (2.2) with an absolutely continuous measure A(dA) =
AM)dA where A()) satisfies

(2.26) lim infy,_, o ]A]***A(A) > 0.
Again (2.6) is trivially satisfied and X(¢) satisfies the zero-one law at ¢ = 0.

ExampLE 2.3. Condition (2.6) does not require that A(d\) be absolutely con-
tinuous. In fact, if A(d]) is a discrete measure concentrated on the integer lattice of
R? with A({n}) = A, then

R(1,5) = [(e"* — 1)(e™"* — 1)A(dN)
is the covariance of a periodic field X(#). Condition (2.6) holds for each > 1 iff
(2.27) lim inf, , |n|**?A, > 0,
and under this condition X(¢) satisfies the zero-one law at ¢ = 0.

ExaMPLE 24. Let d =2 and AQ\) = I, (1/(1 + [AP). If we set A; = A, = x
and A = (x, x), then letting |x| > 00 we see [\|**2A(B(\, h)) ~ const. 1/[A as
| x| = co. Condition (2.6) is thus violated. There is however an easy way out in this
case.

The key observation here is that except for the very last step, the proof of
Theorem 2.1 holds under the weaker condition:

For some N > 0 and some A > 0

(2.28) lim infy_, . A\[VA(B(, K)) > 0.
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With only notational changes in the proof of Theorem 2.1 it can be shown that
condition (2.28) implies:
Each nonzero f(\) € H(0) is a polynomial of degree less than (N — d) with
f(0) = 0, and a given polynomial f(}) is in H(0) iff f € L?(A).
Moreover,
(2.29) dim 3C(0) = dim H(0).
Thus we can state

THEOREM 2.3. If condition (2.28) is satisfied, then H(0) is the finite dimensional
space of all polynomials f(\) € LX) satisfying f(0) = 0. If in addition each poly-
nomial f(\) € L*(A) is a constant then X(t) satisfies the zero-one law at t = 0.

Theorem 2.3 is an extension of the result of Tutubalin and Friedlin (1962) and is
easily seen to apply to Example 2.4. It is, however, far from being the complete
story and the next example shows that there are processes for which the zero-one
law is satisfied but for which no condition like (2.28) is satisfied.

ExaMPLE 2.5. Letd =1 and

(2.30) AQ\) = ﬁ cos?(log [\])-

One shows easily that

[log AA)|
2.31 P2 dA < o0.
(231) I 1+ AP
Starting with (2.31) it follows directly from a result of Levinson and McKean

(1964, pages 113—114) that the subspace H(0) of L%(A) consists exactly of all entire
functions f(A) in L%(A) which are of minimal exponential type and that

M(z) = sup {|f(z)| : f € H(0) and | f||y < 1}
is a finite continuous function of z € C'.

We will now show for the A(A\) given by (2.30) that M(z) =0 and hence
H(0) = {0}.

To see this note that for any a = e"” with n =0, £1, £2,- - - ; A(ad) =
a~2A(\). Thus for any f(\) € L%(A) we have [|a~2f(aN)|ly = ||fQ)|s But if fQ\) is
of minimal exponential type so is a~ zlf(aA) and hence f(A) —» a‘%f(a)\) is a unitary
map of H(0) onto itself. We conclude that

(2.32) M(Q\) = e"™/?M(e~""A)  forall A € R' andalln.
But the argument leading to (2.13) shows that
(2.33) M(X) = O(]A)) as |A|}0.

Letting n— + oo in (2.32) and using (2.33) we get M(\) =0, and hence
H@©) = 0.
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3. Joint distribution of the suprema. We now consider the joint distribution of
the suprema of several separable jointly Gaussian processes, {X/(¢) : t € T}.j=
1, cee n.

Our assumptions are:

3.1 The sets 7; are compact metric spaces.
(3.2) The covariance matrices
R(ty, -, t,)=Cov(X'(t), -, X"(1,)),

tj eT,
are nonsingular and jointly continuous in the 5.

J

(3.3) P{maxj sup, e 7| X’ ()| < oo} =1L

We set §/ = sup {X’(t) : t € T} for 1 < j < n, and we prove the

THEOREM 3.1.  If conditions (3.1), (3.2) and (3.3) hold then (S, - - - , S™) has an
absolutely continuous joint distribution with a bounded density.

ProOOF. Let T be the Cartesian product 7} X - - - X T, and denote points in T
by t= (¢, - -, ). R" denotes the space of n-dimensional real column vectors
X =(x',- -+, x")* Here * is the transpose. In R" we will use the norm |%| = max
{Ix", - - -, |x"|} and for any n X n matrix 4 = (a;), we will use the corresponding
matrix norm

|4 = supizjlaijl'

Let I be the n X n identity matrix.
We introduce the Gaussian vector process

(34) XO=(x"t), -, x"(1);t=(t, - -,4)ET.
Let R(t, s) be the covariance matrix function
(3.5) R(t,s) = Cov(X (t), X* *(s)) = Cov(X ’(t,.)Xf(tj)).

Note that (3.2) implies R(t, s) is jointly continuous and that R(t, t) = R(ty, -+, t)
is nonsingular.
As a reduction of the theorem we prove

LemMMA 3.1.  Without loss of generality it may be assumed that for all t and s in T,
(3.6) IR(s )R\, t) — I <3.
Proor. By the compactness of the 7;’s and the continuity of R(t, 5) we may

cover each T, with open sets Uj‘, cee, Uj” such that for each set U of the form
U= Uj' X - -+ XU~ we have

(.7) IR(s, )R-t 6) — I|| <1 forall t and s inU.

Define the variables $/(U) = sup {X’(t) : t € U} and note that if the theorem
holds under the assumption (4.6) then (S'(U), - - - , S*(U)) has a bounded density
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gu(3). If we also note that for any set B c R" the inclusion (S!,---,S") € B
implies (S'(U), - - -, §"(U)) € B for some U, we may conclude that
(S% - -+, 8") has a density g(5) which is bounded by T ,g,(5) and hence is
bounded.

This is the only place where the continuity of R(t) and the topology of the T’sis
used. The separability of the {X/(z):¢ €& T;} is now used to guarantee the
existence of a sequence {t,; kK > 1} in T with §} = max {X/(t) =1<i <k} &
a.e. The distribution of (S}, - - - , S) then converges weakly to the distribution of
(S',- -+, 8" and the theorem will follow directly from

PROPOSITION 3.1.  Let X(t) = (X'(t) - - - X"(t))* : t € T'} be an n-variate Gaus-
sian process defined on some nonempty finite set T = {t;,- - -, t. }. If i(t, t) is
nonsingular for all t € T and if condition (3.6) holds, then the variables S’ = max
{X’(t) : t € T} have an absolutely continuous distribution with a bounded density

g(5) satisfying

2y, _1

(3.8) 18)| < ( ;) (det R(t,, £,)) .
PrOOF. Introduce the matrix function
C(t) = (c;(t)) = R(t, t,)R™'(t,, t,) and set X = X (t,).
We define the process Y(t) = X(t) — C(t))&7 and write
X(t) = C(HX + Y (¢).

One can check directly that Cov (X, Y(t)) =0 for all t € T. S_ince {f(t)} is
Gaussian we may conclude that X is independent of the process { Y(t)}.

Setting S = (Sl, - =+, 8") we see that for any Borel set B C R" the conditional
probability that S € B given the o-field F(Y) generated by the process { Y(t)} is
(3.9) P{S €B|Y}=P{X eF~\(B)}
where F(x) is the random vextor function with components
(3.10) Fi(X) = max {Z7_c,()x’ + Y() : t € T}.

But (3.6) shows that 3|cy(t) — §,| <j for all i=1,---,n and t € T. From
this and (3.10) we see that F_()?) has the form F(x) = X + ¥(x) where ¥(-) satisfies
the contraction condition [¥(X) — ¥(y)| < 3|¥ — | for X and y in R". Applying
the most elementary inverse function theorem (see, e.g., Schwartz (1969), page 14),
we conclude that F(x) maps R” one-one and onto R” and that the inverse map
J(5) = F~!(5) satisfies the Lipschitz condition
(3.11) |7 (5,) — J(5,)| < 2|5, — &), 5, and 5, in R™.

“The map J(5) is differentiable a.e. (in fact it is piecewise linear) and the Jacobi
matrix (3J°/9s’) satisfies
'
ds

7

> %<2
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Thus
2
aJ’

—EE<4

Z,

and by the Hadamard determinant inequality we see that
det ( &/ )
s’
Combining this with (3.9) we see that when conditioned on %(Y), S has the
conditional density

(3.12) A(5) = <2 ae.

g(51Y) = w(J (9)AG),

where w(x) is the density of X. Since X is normal with covariance matrix R(t,, t,))
we have

w(x) < (@7)"R(t, t,)) 2
This and (3.12) give the inequality

o= 2\" = 4
26 7) < (2) (Rt t) 2
Thus S has the density g(5) = Eg(5|Y) which satisfies (3.8).

ReMARK. The topological assumptions in the theorem can be removed by
assuming the sets 7} are countable and equiping 7, with the metric dy(z, 5) =
(Var (X/(¢) — Xf(s)))2 and then completing 7; in thls metric. It is easy to show
that condition (3.3) implies the completed spaces T are compact and we may easily
deduce

PROPOSITION 3.2. If the sets {T,,j =1, - -, n} are countable and if condition
(3.3) holds then the condition

(3.13) inf {|det (R(t)); tE T, X - - - XT,} >0
implies that S has an absolutely continuous distribution with a bounded density.
Condition (3.13) cannot be removed. In fact, if {B(#) : 0 <t < 1} is the stan-

dard Brownian motion and f(#) = 1 + 2 log; (#)/log, (¢) it can be shown using
Kolmogorov’s test (see Itd and McKean (1964), page 33) that

X(1) = B(1)/ (2t log, (1/0)f(1/1))?
satisfies .
P{sup {X():0<tr<1}=1}>0.

In conclusion we mention that the techniques used to prove Proposition 3.2 can
be combined with the results of It6 and Nisio (1968) to show for any sequence
{X,} of mean zero Gaussian variables with M = sup X, < co a.e. that either M
has a density p(x) with p(x) > 0 for all x or there is a number a > 0 such that M
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has an absolutely continuous distribution concentrated on (a, o) with the possible
exception, illustrated with the above example, that P{M = a} > 0 can occur.

4. Scaling limits and oscillations of Gaussian fields. Let {X(7) : 1 € R?} be a
real mean zero Gaussian field with continuous sample functions, stationary incre-
ments and X(0) = 0. We will call X(¢) proper if for all sufficiently small ¢ > 0 and
all real x,

(4.1) P{sup,_ . X(1) < —x} > 0.

The process X(f) is proper unless the spectral measure introduced in (2.2) is
supported on some proper linear subspace of R“ To see this we observe by
Theorem 4 of Kallianpur (1971) that a sufficient condition for the properness of
X(?) is that for each small ¢ > 0 the reproducing kernel Hilbert space ¥ (X) of
{X(#)} contains a function ¢(¢) satisfying 0 < ¢(?) for all ¢ with |7| = .

Now set @(f) = f(e"* — 1)f(A)A(dN) where f(A\) € L*(A) is even and satisfies
f\) < 0 for all A. It is known that @(¢) € H(X). Since A(dA) > 0 is even we have
4.2) o(?) = [(cost- A — 1)f(A)A(dA) > 0
with @(#) > 0 unless cos ¢+ A = 1 for each A in the support of A(dA).

The set ¥ = {¢ : () = 0} is a closed additive subgroup of R“. If X(¢) is not
proper, @(#) will have arbitrarily small zeros, and the identity component ¥V, of ¥V
will be a linear subspace of R? with ¥, 5 {0}. It then follows from (4.2) and a
continuity argument that A is supported on the subspace V3~ = {A:¢-A =0 for
all ¢ € V,}. Since ¥, # {0}, V5~ SR The proof is complete.

We note that Lévy’s Brownian motion and all the examples in Section 2 are
proper.

It is also worth noting that when A is supported on some subspace ¥V SR? it
follows from (2.2) that R(s, ) = Z, ;5,b;¢; for each s perpendicular to V. From this
it is elementary to show that for s perpendicular to ¥ we have E|X(s)? =
E|X(—s)? = — EX(s)X(—s). By the converse of Schwartz’s inequality X(—s) =
— X(s) and the process {X(#)} is not proper.

To summarize this discussion in a neat way we introduce the matrix M, = {m;}
of weighted moments

AP
1+ A8
The measure A(dM) is concentrated on a proper subspace ¥V C R? iff M, is
singular, or what is the same, iff det M, = 0. Thus we can state

my = [eAN)) A(dN).

PROPOSITION 4.1. A mean-zero Gaussian process {X(2):t € R} with
stationary increments, continuous sample paths and covariance function R(z, s)
given in (2.2) is proper iff det M, # 0.

We now come to the main idea in this section. This is a new regularity condition
that R(¢, s) is assumed to satisfy and which we formulate in terms of the existence
of certain proper scaling limits of X(¢). The utility of this condition is illustrated in
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Theorem 4.1. Section 5 contains a general set of technical conditions for the
existence of scaling limits, together with several examples.

Let C = C(R?) be the space of real valued continuous functions on R? with the
topology of uniform convergence on compact sets. For a fixed process X(f) (or
Y(¢)) we write py(dw) for the probability measure on C induced by X(?), i.e.,
px{w: () <a,1 <i<n}=P{X(t)<a,1<i<n).

We will say Y(?) is a scaling limit of X(7) if there exist sequences ¢, > 0 of
numbers and {4,} of invertible d X d matrices which satisfy

(4.3) ¢, —>0 as n — oo,
4.9 l4,]| =0 asn— oo,
(4.5) for Y,(¢) = ¢, 'X(4,¢)

by, — py weakly onC as n — oo.

If {Y(#)} is both proper and a scaling limit of {X(#)} we say that { X(¢)} admits a
proper scaling limit.

The next theorem, which concerns the local oscillations of {X())}, illustrates the
point that the existence of proper scaling limits for {X(#)} reflects a considerable
amount of regularity in the local behavior of the sample functions of {X(#)}.

Let {X(?) : t € R} be a real Gaussian field with X(0) = 0, stationary incre-
ments and continuous sample functions. We say {X(?)} oscillates infinitely often
near t = 0 if there exists a sequence of nondegenerate ellipsoids E, C R“ which are
centered at t = 0 and which shrink to 0 as n — o with

(4.6) P{inf X() : t € E,) > 0 for infinitely many n} = 1
(4.7) P{(sup X(?) : t € E,) < O for infinitely many n} = 1.

TueoreM 4.1. If {X(¢) : t € R?)} satisfies the zero-one law at t =0 and if
{X(0)} has a proper scaling limit {Y(t)} then X(t) oscillates infinitely often near
t=0.

Proor. Since Y() is proper we may find an ¢ > 0 with

P{sup ,_.Y(t) <0} >0.
Now let E, denote the ellipsoid {s = 4,7 : |¢f] = &}. But for ¥,(¢) = ¢ 'X(4,1) we
know that p, converges weakly to u, on C.
Thus
P{[sup,cz X(¢) < 0] infinitely often} > lim inf P {sup,_.Y,(¢) < 0}
> P{supy,_.Y,(r) < 0}

> 0.
Since E, shrinks to 0 and since X() is assumed to satisfy the zero-one law at t=0
we see that (4.7) holds. The proof of (4.6) is obtained by reversing the appropriate
inequalities.



488 LOREN D. PITT AND LANH TAT TRAN

5. Existence of scaling limits. In this section we present general sufficient
conditions for the existence of proper scaling limits. These conditions are stated in
terms of the spectral measure A(d\) appearing in (2.2). The methods are based on
the work of Belayev (1960) and Garsia (1972). The end result, Theorem 5.1, is quite
sharp but also is often very difficult to apply. At the end of this section we give two
less general but easily applied criteria for {X(f)} to admit a proper scaling limit.

Starting with a continuous mean zero Gaussian field {X(#)} with covariance
function R(t, s) given by (2.2) and an invertible matrix 4 we observe that the
covariance function of the process X(A¢) is given by

(5.1) R,(1,5) = [(e"* — 1)(e™** — 1)A,(dN) + {t, A*BAs)

where A* denotes the transpose of 4 and A, is the measure A, {E} = A{(4*)"'E}.
In the remainder of this section f(x) > 0 will denote a fixed increasing function
on [0, o) satisfying the conditions:
(a) F(x) = x for 0 < x < 1 and lim,;, f(x) = + oo.
(5.2) (b) For all sufficiently large x, [ f(x)/x] is decreasing.

© F———73<x
xf(x)(log x)*
Any such function f(x) will be called a dominating function.
Associated with the measure A, and each dominating function f(x) we associate
the number

(5.3) cX(A) = [z L*(ADA(dN) + trace (4*BA),
and the d X d matrix with entries

VAP
my; = [pa————A,(d]),
ij fR"l + P\I“ A( )
and determinant
(5.4) D(A) = det (my).
Note that c%(4) may well be infinite but that condition (2.3) implies that the
matrix (m;) is well defined. Also note that (m,;) is positive definite so D(4) > 0.
With the convention that D(4)/[cX(A)) = 0 if c(4) = + oo we can state

THEOREM 5.1. A sufficient condition that {X(¢) : t € R} admits a proper scaling
limit is that there exists a dominating function f(x) for which
(5.5) lim, gsup, <.{ D(4)/[c¥(4)]"} =1 > 0.

The proof will be broken into several pieces. First we let 4, be a sequence of
matrices with ||4, || — 0 and / = lim,_, { D(4,)/[c(4,)]'} > 0. Set ¢ = c*(4,) and
Y,(?) = ¢, 'X(4,?). Denoting the covariance function of Y, () with

R,(¢,5) = ¢, *R(A,t, A,5),

we claim the sequence {R,(7, s)} has a subsequence which converges uniformly on
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bounded sets. To see this, note that Y,(¢) has stationary increments so
R,(t,5) =3{R,(1,1) + R,(s,5) — R,(t — 5, — 5)}.

Setting S;%(/) = R,(1, ?), it suffices by Ascoli’s theorem to show {S?(¢)} is locally
uniformly bounded and equicontinuous. But S2(0) =0 and |[S,(¢) — S,(s)| =
Y, = 1Y) < S,(¢ — s5). Thus we only require a function y*(u) > 0 on
[0, 1] with y*(0 + ) = 0 and

(5.6) [S2(¢)| < ¢*(|¢|) for all n and ¢ with [¢] < 1.

To obtain the bound (5.6) we observe that (5.1) gives

(5.7) S2(t) = c,,‘2{2f(l —cost-A)A, (dN) +<t, A¥BA, ).
Setting A,(dA) = ¢, A, (dA) we observe that the definition of ¢? gives both
(5.82) e, 242 BA, | < 1,

(5.8b) SFA(ADAL(AN) < 1.

The next lemma is a slight modification of a result of Belyaev (1960); see also
Cramér and Leadbetter (1967), page 181.

LemMA 5.1.  Let f(x)? satisfy condition (a) and (b) of (5.2), and suppose that A(d\)
is an even measure satisfying
[FH(ADA(EN) < 1.
Then for some constant c that is independent of A,

(5.9 2f/(1 —cost- MA(dN) <[c/f*(1/|t)], t€ R
Substituting in A, (d)N), (5.8) and Belyaev’s lemma give
(5.10) S2(f) < Y1) = + |t~

c
1
)
|4l
This gives the desired estimate (5.6).

By choosing a subsequence if necessary we may assume that R, (¢, s) converges
locally uniformly. It follows that the finite dimensional distributions of {Y,(¢)}
converge to those of some limiting process { Y(#)}. To show that the measures p,
converge weakly to the measure u, on C we must check that

(5.11) the measures { ji,, } are tight on C.

We will then show that

(5.12) p(z, s) = lim,_, R, (¢, s) is the covariance function of a
proper process Y(¢).

The question of tightness follows directly from (5.10) and Theorem 1 of Garsia
(1972). In fact, Garsia shows that if p(u) is increasing on [0, 1] with p(0 + ) = 0 and
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SX(t — 5) = E|Y,(f) — Y,(s)] satisfies

SX(|t — s|) < p(u)forall |t — 5| < d?u,
then for any cube 7 in R“ with edges of length 1 we have

(5.13)
|Y,(0) = Y,(s)| < 16{(log B,)*p(It  s|) + (2d)? /£ ~*\(log (1/u))* dp(u)},

where

B, = f1fsexp H{(¥,(0) = Y,(5)/p(Is — 1l/d %)) dids.

By Fubini’s theorem one checks that EB, < 4 - 23. It then follows from (5.13) that
the { py } are tight on C provided only that

(5.14) fo(log (l/u))% dp(u) < .
Integration by parts shows that (5.14) is equivalent to

(5.15) ka&L7W<w
u (log 1/u)?

By (5.10) we may take p(u) = (const.)/ f(d% /u), and a simple change of variable
argument shows (5.15) is equivalent to (5.2c).

Turning now to the properness of Y(#) we observe that condition (5.8b) enables
us to choose a subsequence for which the measures A,(d\) converge weakly to
some finite measure A(dA) on R¢ — {0} satisfying (2.3) and that for some matrix B

p(t, s) = lim R (1, 5)
= [(e"* — 1)(e”** — 1)A(d]) + {t, Bs).

The matrix M, of Proposition 4.1 satisfies M, = lim M, . Thus det M, = lim
det M,. But det M, = D(A,)/[c*(4,)]' >+ 0. Hence det M, +# 0 and by
Proposition 4.1 we see that Y(¢) is proper.

REMARK. The methods used to prove Theorem 5.1 can be used to prove
tightness of Gaussian measures in a far broader context than the context of the
theorem indicates. In particular, see Garsia’s (1972) paper and also note that in the
special case when fi(x) = [log (1 + x)]'*¢, (5.9) and (5.13) give Hunt’s (1950)
classical condition for the continuity of stationary Gaussian processes.

Theorem 5.1 and the arguments which lead to it can easily be modified to give
elementary criteria for the existence of proper scaling limits. We now state two
such.

Let S%(¢) = R(¢, ) be fixed and let 4 be a nonsingular matrix satisfying

(5.16) 4] < 1.
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Suppose also, ¥(#) > 0 is a function on R¢ — {0} satisfying

(5.17) f},—p(u)——, du <
u (log 1/u)?
where p(u) = sup {¥(?) : || < d %u}, and

TR 71
(5.18) mm,,,%# = +o

CRITERION 1. Suppose (5.16), (5.17) and (5.18) are satisfied and that there exist
positive constants a, b and ¢ < 1 with

(5.19) V(Af) = ¢¥(¢) fort € RY - {0},
and
(5.20) a¥(s) <S(t) <b¥(f) for|f < 1.

Then X(t) admits a proper scaling limit.

ProOF. Let Y,(f) = ¢ "X(A"). Then SX(¢) = ¢c~"S*4"). From (5.19) and
(5.2) we deduce
(5.21) a*V(t) < SXt) < b*¥¥(r), | <L
From (5.13), (5.17) and (5.21) we conclude the measures { py } are tight. Some
subsequence { py '} will then converge to a limiting measure { py} and S%(¢) =
EY?(¢) will satisfy a®>¥?(7) < S*(¢) < b>¥%(#), |7| < 1. From this and (5.18) we may
conclude that Y(?) is proper.

ExaMpLE 5.1. The examples (3.1) and (3.2) with covariances given by S X =
|¢|*; and S%(#) = 2(1 — e~ ")* respectively both have as proper scaling limits the
process Y(¢) with covariance

HH* + |s|* = |t = sI*}, 0<a<2

An example that is not even close to radial occurs with d = 2 and S XH = +
[¢|*2 where ¢t = (¢}, t,) and 0 < @}, @ < 2.

We now state a spectral version of Criterion 1 that is easily deduced from
Theorem 5.1. We leave the proof to the reader and comment that it may be easily
generalized using the methods of Section 2.

CRITERION 2. Let {X(#)} be proper and have covariance R(t, s) given by (2.2).
Suppose that there exists an invertible matrix A satisfying (5.16) and positive
constants a and b such that for each Borel set E C R%, aA(E) < A(A™'E) < bA(E).
Then {X(t)} admits a proper scaling limit.

- CoOMMENT. Examples which  exhibit nearly every imaginable type of scaling
behavior can be constructed. This can be done using the methods to construct
pathologies common to the theory of domains of partial attraction. See, e.g., Feller
(1971), pages 554-558.
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6. Local maxima.

DEFINITION 6.1.  X(-, ) has a local maximum at s if there is an open set 0 C R?
with s € 0 such that X(¢#) < X(s) for # € 0. This local maximum is called strict if
X(?) < X(s) for all t € 0 with # # 5.

THEOREM 6.1. Let {X(?) : t € R?} be a Gaussian field with stationary increments
and continuous sample functions:
() if {X(¥)} satisfies the zero-one law at t = 0 and has a proper scaling limit
{Y(2)} then as. the set of local maxima is dense in R,
(ii) if in addition R(t, s) is nonsingular for t # s then a.s. the set of local maxima is
also countable and each local maximum is strict.

PROOF. Part (i) is an immediate consequence of Theorem 4.1 and the stationary
increment property of X(7). We now prove part (ii).
Let S and T be two disjoint nondegenerate rectangles in R%. Then Theorem 4.1
implies that
P{(supX(?):t€ S)=(supX(?):t€T)} =0.

The intersection of {(sup X(¢) :¢ € S) = (sup X(¢) : t € T)} over all rectangles
S, T the vertices of which are rational is a subset of the set of w such that each
local maximum is strict. Following the same line of argument as in Freedman
(1971), page 38, it is easy to show that the set of local maxima is countable.

ExaMPLE 6.1. Let {X(f): ¢ € R?} have the covariance R(t, s) =3{|?|* + |s|*
— |t — s|*} with 0 < a < 2. This process was discussed in Examples 2.1 and 5.1. It
satisfies the conditions of Theorem 6.1.

REMARK. Recently Tran (1976) has shown that for the two-parameter Wiener
process, a.s. the set of local maxima is dense and each local maxima is strict.
However his method of argument was based mainly on the independent increment
property of this process and does not extend to any process considered here.
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