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RENORMALIZING THE 3-DIMENSIONAL YVOTER MODEL

BY MAURY BRAMSON! AND DAVID GRIFFEATH
Courant Institute and University of Wisconsin

It is shown that a discrete time voter model in equilibrium on Z; ap-
proaches the O-mass free field of 3-dimensional Euclidean field theory under
appropriate renormalization. This result is of interest because the strong corre-
lation between distant sites gives rise to the renormalization exponent — 3
instead of the usual — 2. Dawson, Ivanoff, and Spitzer have examined models
on R; which exhibit precisely the same limit. Because the process we consider
lives on a lattice, our method of proof is necessarily quite different from theirs.
In particular, we make use of a “duality” between voter models and coalescing
random walks which has been exploited effectively by Holley and Liggett.

1. Introduction. Based on recent developments in mathematical physics (cf.
[11], [14], [22]), Sinai [16], Dobrushin [3], [4] and others have begun to investigate
the macroscopic structure of strongly dependent random fields. If § = (§(i));cz, is a
real-valued random field on the d-dimensional integer lattice, Sinai introduces the
renormalized fields DJ§ o > 1, k=1,2,- - -, given by

(D&M = k™2 gy crarn[£0) — EEG)]-

a=0,1,---,1) €2Z,)¢is called self-similar of order a if D2§ = & (=, and —,
will denote equality and convergence in distribution respectively) for all k. Simi-
larly, if F is a generalized random field ([3], [4], [S]) on d-dimensional Euclidean
space R, defined over the Schwartz space & of rapidly decreasing functions, then
Dobrushin considers the renormalized fields R*F, « > 1, r > 0, where

(R*F)(¢) = r~“/?[F(q,) — EF(9,)], ¢E€ES.

Here ¢,(x) = ¢(x/r). In this setting F is called self-similar of order a if R™F(p)
= ,F(¢) for every ¢ € & (i.e., R*F = ,F).

If £ is any translation invariant field on Z,, if £, is defined by &, = DZ§ and if
¢, - £, as k — oo, then & will be a translation invariant self-similar random field
of order a. When £ has sufficiently weak correlations, then taking a = 1 one
obtains a limiting field £, with independent Gaussian values at each site. In cases
of strong correlation, on the other hand, one must take a > 1 to obtain a limit.
This is the situation of interest, when the self-similar random field &, describes a
nontrivial macroscopic dependency structure. Analogous remarks apply to
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Dobrushin’s setting. Thus, if F has weak correlations and F, = R'F, then we
expect
F, —»,C® = a constant multiple of white noise as r — oo.

® is the Gaussian self-similar generalized random field with covariance functional
E[2(@)2(¥)] = [a,e(X)¥(x) dx.

For strongly dependent F one must take « > 1, and more interesting self-similar
generalized random fields arise. Important examples of such are the isotropic
Gaussian self-similar generalized random fields with covariance functionals

M E[F@)F()] = Cla,Jn, 702 ix ay

for appropriate (dimension-dependent) parameter values x (cf. [4]). We shall be
concerned almost exclusively with the case d = 3, k = 1. This well-known field, to
be denoted here as ¥ when C = 1, is called the “O-mass free field” in 3-dimen-
sional Euclidean field theory. Recently, Dawson and Ivanoff [2], and Spitzer [18]
have independently investigated the renormalization of strongly correlated
equilibrium fields for certain Markovian time evolutions of infinitely many par-
ticles on R, They have proved that critical branching Brownian motions in
dimension d > 3, as well as certain critical branching random walks, have renor-
malization limits of the form (1) for some of the possible parameter values k. In
particular, they obtain a limiting field C¥ from critical branching Brownian
motion on R;. Dawson [1] has proved related results for some generalized Markov
processes. See also the recent paper by Holley and Stroock [10].

Our main objective in this paper is to exhibit an example similar to those of [1],
[2], and [18], but derived from an infinite particle system on Z,: viz., a discrete time
version of a Holley-Liggett voter model [8]. (“Voter models” were previously
studied by Clifford and Sudbury [0].) Let = = {0, 1}% = the space of configura-
tions § = (§(i));cz, of 0’s and 1’s on Z,. The systems we propose to study are
discrete time =-valued Markov processes (£,); the simplest example is described as
follows. At each time n =0, 1, - -, the site i € Z, is said to be occupied by a
particle if £,(i) = 1, unoccupied otherwise. Given the configuration §, at time n, site
i is occupied at time n + 1 with probability p,(§,), independently of other sites and
the past history of the process, where

né) = 'é_zj li—il= 1£3)-

Let »,, 0 < A < 1, be the Bernoulli product measure such that », {&{i) = 1} = A for
all i. The methods of Holley and Liggett show that if (§,) has initial distribution »,,
and if », P" denotes the measuré governing the state £, of the process at time n,
then », P"=u, as n— 0. (= denotes weak convergence.) u, is an extreme
equilibrium measure for (£,), is (of course) translation invariant, and is mixing with
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respect to shifts in Z;. Now let £ be a p,-distributed random field, and define a
corresponding generalized random field F, on R, by

F(p) = Ziczf)e(i) o9€S.
The main result of this paper asserts that for 0 < A < 1,
R3/’F, -»,C,¥ as r— oo,

where C, is a positive constant depending only on A. We feel the result to be of
interest because, in contrast to the examples of [1], [2], and [18], y, is a measure on
lattice configurations. As a result, the independence properties (e.g., infinite divisi-
bility) enjoyed by the models they study have no counterpart for us. Rather,
interference is inevitable in the lattice setting (cf. the last paragraph of [2]).
Fortunately, a “duality equation” alleviates this problem to a large extent. Since
(£,) lives on the lattice, we also obtain a “discretized” renormalization theorem for
Sinai’s setting:

Dks/3£ -, as k— oo,

where £ is a Gaussian self-similar random field on Z; whose covariances will be
given later.

Section 2 introduces a more general class of discrete time =-valued processes: the
local homogeneous proximity processes of [19], [8], [9]. In this context we exhibit
some examples where renormalized equilibria converge to white noise (= total
independence). Section 3 is devoted to renormalizing the 3-dimensional voter
model. A certain familiarity with duality theory for =-valued processes ([19], [8],
[9], [6], [7]), generalized random fields ([3], [4], [S]) and the method of semi-in-
variants and Ursell functions ([12], [13], [15]) will be assumed. Some concluding
remarks are made in Section 4.

2. Renormalization of weakly correlated proximity processes. Let = = {0, 1}%.
We discuss renormalization of equilibria for some Z-valued Markov processes (§,,):
namely, some discrete-time proximity processes of [19], [20], [8]. For each finite
subset B of Z, (J included) (the letters 4 and B will always denote finite subsets of
Z,), set xg(§) = 1 if §3i) = 1 for all i € B, 0 otherwise. Put x5 = 1. Let (pg) be a
(possibly substochastic) probability density on finite subsets of Z,. Define (§,; n =

0,1, - - - ) by means of a one-step transition function of the form
() P& *) =Iliez,pi(% ) (product measure),
where py(§) = pi(§, {1}) is of the form

3) i) = pg + 2 pizPpXi+5(6):

(i + B is B translated by the vector i.) Thus (§,) is homogeneous. We will also
assume that (§,) is local, i.e., pg > 0 for only finitely many B. Say that (£,) is
deficient if T ppy < 1. Let (P") be the semigroup for (£,); the process is called
ergodic if there is a (necessarily invariant) measure u such that »P” = u as n — o0
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for all initial ». Vasershtein and Leontovich [19] proved that deficient proximity
processes are ergodic.
Given a measure p on Z, let £ be p-distributed. Define the correlation functions

p(4) of £ (or ) by
p(4) = p{&(i) =1 forall i€ 4}.
Say that £ (or ) has exponentially decreasing correlations if
lo(4 U B) — p(A)p(B)| < Cie~ 45,

where C; and C, are constants depending only on |4 U B| (the cardinality of
A U B), and d(A4, B) = min;c 4 ;e pli — i is the distance between 4 and B.
Define a generalized random field F, on R, by

4 F(9) = Ziez fDo(i).

Malysev [15] has proved that if £ has exponentially decreasing correlations, then
(5) D¢ —,CE, as k— oo,

and

(6) R'F,-,C® as r— .

Here £, has independent standard normal values at each lattice site, ® is white
noise, and

Cl‘- = Eiezd[p{o, i} - p{O}p{i}].
We now show how to apply Malysev’s theorem to some weakly correlated proxim-
ity processes.

THEOREM 1. Let (£,) be a deficient local proximity process with transition function
p given by (2) and (3). Let u be its unique invariant measure. Then u has
exponentially decreasing correlations. Thus, if & is u-distributed and F, is defined by
(4), then (5) and (6) hold.

PrOOF. In the manner of [6], construct a dual process ({-’ ) with state space
£ = {finite subsets of Z,} U {A} (x, = 0) such that

(7 Efxi€)] = Ei[xz(®)] forall ¢ Eek.

Since (£,) is deficient, each site occupied by the dual sends the entire system to A
with probability at least ¢ = 1 — X zpp > 0 during each unit of time. Therefore,
since & and A are traps for (§,), £, = lim,_, £, € {&, A} P;-a.s. for any initial §.
Letting n — oo in (7), the correlation functions p(4) for the equilibrium p satisfy

®) o(4) = B,(%, = D).
Define T(g,4) = the hitting time for {J, A}; then P (Tiz,a) > 1) < (1 = ¢)" for all

A # . Now fix nonempty sets A and B, and construct 1ndependent processes (£1),
(£B) on a joint probability space, distributed according to PA and PB respectively.
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These duals can be interpreted as branching particle models, as in [8] or [6] for
example. Define (¢!%) as the (pointwise) “union evolution” of () and (&%)
endowed with a collision rule: whenever a particle from (&) collides with one from
(éf), then the former survives and the latter disappears. The extant partrcles of
&) will be P, ,-distributed. Denote by P the joint law governing @&, 8¢
n=0,1---) Adopt the convention £cA for all £€Z, and set Tap =
min{n : S“ N& =3, & U +A) (= o if no such n exists). Then &2 = &1

£ on {r,, = o). Hence, by (8) and the construction,

p(4 U B) — p(4)p(B) = E(xpos — Xg - Xin)
= E(xpor — X uin)
< P(r45 < ).

Let L be the maximal displacement of an offspring of a particle of the dual in one
time unit; L < oo because (£,) is local. Then clearly 7,5 > (d(4, B)/2L)F-a.s.,
while P((!) hits {&, A} by time d(4, B)/2L) > 1 — (1 — &)l B)/2L] ([x] denotes
greatest integer < x.) The theorem is trivial when e = 1. For 0 <e <1 we
conclude that

0< p(4 U B) — p(4)p(B) < 72— (1 = )DL,
whence p has exponentially decreasing correlations.

A more delicate situation arises in the case of the Stavskaya systems [21]. For
prescribed i, j € Z : i <}, these are a one parameter family of proximity processes
&), 0 €10, 1], such that py = fand p,; ;... ;, = 1 — 6. Each such family has a
_ critical value 8* (depending on i and j), strlctly between 0 and 1, such that (£?) is
ergodic if § > 6* but not if § < #*. In particular, if v, and », are the delta measures
at “all 0°s” and “all 1’s” respectively, and if (P;') is the semigroup for (£2), then
voPg = v, when 8 > 6*, while » Py’ = py 7 v, when 8 < 6*. Proofs of these asser-
tions may be found in [21]. By combining MalySev’s theorem with a result of
Vasil’ev one obtains a renormalization result for small parameter values.

THEOREM 2. Let (£%) be a nonergodic Stavskaya system for some fixed i <j, so
that voPg = py #v,. If & is py-distributed and F, is defined as in (4), then for 6
sufficiently small, (5) and (6) hold.

Proor. Use the “method of contours” to prove that u, has exponentially
decreasing correlations when 6 is small enough (cf. Theorem 4 of [20]).

We note that the behavior of Stavskaya systems near § = #* is not known. If (§,)
is nonergodic at § = #*, then it is quite conceivable that u,. has strong correlations.

3. Renormalizing the voter model on Z,. Throughout this section we study
3-dimensional discrete-time voter models ([8]): i.e., the proximity processes (£,)

with d = 3, and 2,z p(;) = 1. Abbreviate p; = p;,. We assume that p; > 0 for
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only finitely many i, so that (¢,) is Jocal. In addition, we restrict attention to
nondegenerate isotropic voter models. Letting Z = (Z,, - - - , Z,) be (p;)-distributed,
the assumptions here are

(i) the group generated by {i : p; > 0} is d-dimensional,

(i) EZ,) =0 1 <k <d,

(i) E(Z,Z) =0, E(Z}) = E(Z}) 1<k <!<d (We remark that ((ii) and
(iii)) implies ((i) or p, = 1).) The model mentioned in Section 1 is nondegenerate
isotropic, with

p=g =1
=0 otherwise.

Let £ = {finite subsets of Z,}. Voter models on Z, have dual processes (&,) with
state space % the duals are coalescing random walks. Thus (£,) is comprised of a
finite number of random walks, each with displacement density (p;), and evolving
independently except for the following collision rule: whenever two or more walks
attempt to occupy the same site at the same time, they merge into one. The
processes (£,) and (2,,) are related by (7). For 0 < A < 1, let », be the product
measure on = with »,{§{i) = 1} = A for all i, and let py'(4) be the correlation
functions for », P". In (7), set £ = A and integrate with respect to », to get

of(4) = E,(A\&), aefn=01---,
the discrete time analogue of (5.9) in [8]. Since |¢,| is nonincreasing, N =
lim,_,|£,| exists P,—as. for each 4. Letting n — oo, it follows that there is a
measure y, such that
nP" = u, as n— oo,

and whose correlations satisfy
© ) =EN) 4€ek.

Equation (9) will be the basic duality relation for our purposes. It implies im-
mediately that p, {x} = A for all x. In particular, uy = v, and p; = », (“all 0’s” and
“all 1’s” are traps for any voter model). Holley and Liggett proved that each p, is
Birkhoff ergodic and extreme in the class of invariant measures for (£,). Of course,
it inherits translation invariance from », and homogeneity of the voter model.
Results on convergence to , from initial measures other than », may also be found
in [8]. Finally, we note that the situation is quite different for local homogeneous
voter models on Z, or Z,: there p, = Av, + (1 — A,

(Al of these preliminary results were derived in [8] for continuous time voter
models; they translate to our setting in a straightforward manner.)

As in [8], the underlying random walks without interference will be central
objects of study for us. Let X} denote the walk which starts at i € Z; and makes
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transitions according to (p;). The family of processes {(X!); i € Z,} can be
constructed simultaneously on a joint probability space. Then (é,,) can be repre-
sented on this space in various ways, since, for example, particle coalescence can
always be considered as survival of one particle and extinction of the other. We
will make extensive use of such representations, omitting the routine details. Also
as in [8], the difference random walk (Y,) = (X!, — X') formed from two indepen-
dent copies of (X,) plays a key role. Denote the displacement density of (Y,) by
(¢); thus ¢; = 2;p;p;_;. We are now prepared to state and prove our main result.

THEOREM 3. Let (£,) be a nondegenerate isotropic (local homogeneous discrete
time) voter model on Z,, determined by the density (py). Fix A € (0, 1), let & be
p-distributed, and define a generalized random field F, on R, by

F(9) = ZiczfDo() o €S.
Put F, , = R3/3F,, r > 0. Then there is a constant C) > 0 such that
F, ,—-,C\¥ as r-—> o0,

where ¥ is the Gaussian self-similar generalized random field with covariance
Sfunctional

E[H@¥W)] = B ) = o fn, T iy

With (Y,) and (q;) defined as above, let
y=Pr{Y,#0  forall n>1]Y,=0},
m; = ziez,lilzpi,
and let § be the group generated by {i : q; > 0}. If § = Z,, then
3M(1 — Ay J

G =[ 4am,

ProoOF. The desired limiting generalized random field has characteristic func-
tional

E[eic,nl'(qz)] = L(p) = eXp{ - %B(% ‘P)}

Writing L,(p) = E[eF»/®), it suffices to show that lim,_ L (¢) = L(p) for all
¢ € §. To establish this, we prove directly, for each g, that

(10) B, (9) =, ¥(9) as r— oo.
Let M"(p) denote the mth moment of F, (¢). Also, let S"(¢) denote the mth
semi-invariant of F, (¢), i€, S(p), m=1,2,- - -, make up the Taylor series

coefficients of

log E[exp[ —p- F (9)]] = $=1§L:7(gll‘m
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(cf. [12], [13], [15]). By the method of moments, (10) follows once we show that
lim, ,  M"™(¢) =0 m odd
=[1-3-----Qm— DICI[B(p, p)I"™/* m even.

Equivalently, by the method of semi-invariants, it suffices to show for each ¢ € 5,

(11) lim, ,,,S?(¢) = CiB(9, 9)
and
(12) lim,_ . S"(p) =0  forall m > 3.

(Of course, S,\(p) = M,)(p) = 0 for all r.) We will demonstrate (11) and (12) with
the aid of the Ursell functions u(ij, - - - , i,,) (= truncated correlation functions) of
@Gy, -+ »i,) € (Zy)" with respect to u,. Given a partition 7 = (7, - - -, m,) of
(1,- - -, m}, where all m,, 1 < <s, are nontrivial, if we write 4, = {i,: / € =},
then u(i,, - - - , i,,) is defined as

(13) Tﬂl - l)s_l(s - l)!21r=(1r|, e ,w,)p(Al) et 'p(As),
where p(4,) is defined in (9). A combinatorial argument shows that

5 . . i i
19 S =S, et o) o)

(cf. [12], [13], [15]), a representation we will employ throughout the proof. For
convenience, we divide the proofs of (11) and (12) into three propositions.

PROPOSITION 1. Eguation (11) holds.

ProoF oF ProposITION 1.  Using (9), we find that u(i, i) = A(1 — A) for each i,
while for i#j, u(i, j) = A1 — A)ﬁ(,’ N = 1) = M1 = M)A — i), where h(k) is
the probability that the difference random walk (Y,) ever hits 0 when it starts at k.
Since (£,) is nondegenerate isotropic, so are (X,) and (Y,). Results in Sections 26
and 7 of [17] guarantee a constant C > 0 such that

(15) h(k)~|—% as ko oo,k €8

with C = 3y/4mm, if § = Z,. Fixe > 0. If |Z,/S| = K, then for any M > 0,
_ 1 i (J
5
r 2i,jez, (j—i€s, li-il>M |j — il <P(;)<P(7)

_ 1 iy (i
- =T 62i,jel,:j—ie€,|‘-1-—irl>¥ i i (p(;)(p(;)

r r

> K 'B(p,9p) as r—oco.
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Setting CZ = A(1 — A)CK ~!, and using (15), we can choose M large enough that

lim sup, ,,|r —°%;_;cq, u—i|>M(“(i’ D= A(llj_f?ﬁc)(p(i)(p(%)

. < eGIB(p: 9)-

Also,
- NI .
rZ <t J)<P(;)<P( %) ~0(r=3).
Using (14), we conclude that

lim sup, ,.|S*(¢) — CB(p, 9)| < eCIB(g, 9).
Since ¢ is arbitrary, the proof of Proposition 1 is finished.

PROPOSITION 2.  Let u(iy, - - -, i,) be an mth order Ursell function for u,. Then
Iu(i,, c ey, im)l < KmP{i|,~ .. ,im}(N = l),

where K, is a constant depending only on m.
(Note that i, = i,. for some /, !’ is allowed.)

Proor. Construct m independent random walks X!, starting at the respective
sites i,, with displacement density (p,), on a joint probability space. Let P and E be
the probability law and expectation operator on this space. For each (nontrivial—
this means that no member of = may equal &) partition 7 = (7, - - - , m,) of
{1, -+ -, m}, let X7 denote the process such that walks whose superscripts belong
to the same =, interact, whereas those with superscripts from distinct members of =
do not. The interaction is as follows: if X and X/ collide, then X/ survives (i.e.,
does not disappear) if and only if / < /’; interaction takes place at time 0 whenever
i, = i,. Thus (X{" ")) is the totally independent process (no interaction),
* whereas (X{{"""*">") can be identified with the dual £, starting at {i,, - - - ,i,} in
the obvious way. Intermediate (X7) have intermediate collision rules, and are all to
be thought of as evolving simultaneously on the same probability space governed
by P. Equation (13) states that

(13) iy, - -5 0,) =20 (= 1) = DIZ sy (4 - -p(4,).
For each 7, let N,, = lim,_, |X7|. Then from (9) and the construction,
uliy, i) = B0 (= 1) (s — DIZ,EQ™)

= £3),
where
=37 (1) (s = IS AN
Now suppose that (7', #”) is a (nontrivial) partition of {1, - - - , m}. It is known
([12], [13], [15]) that the right side of (13) can be rearranged into a finite sum of the

form , _
(16) 2 £ [p(4, U 4)) — p(4))- p(4y) ]o(43) - - - - -p(4,),
over all partitions « such that =, C =’ and =, C =”.
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Since the rearrangement procedure is purely combinatorial, exactly the same
manipulations show that for m > 2, T can be rewritten as

T =3 +[AN AN,
where 7 = (m, U my, 73, + -, ), @ = (m, 7y 73, - - -, 7). (The lemma is trivial
in case m = 1.) Suppose N, ... . > 1. Then there is some partition (', 7”) such
that no process (X.) with a superscript in 7’ ever collides with any (X/") with a
superscript in 7”. Hence N; = N,, for all 7, = entering into the last sum X, and so
Z=0o0n{Ng,...,my > 1}.On (N ... ny =1}, [E] is clearly bounded by

Km = 2;’;1(5‘ - 1)”{7 = (ﬂl’ ) Ws)}l'
Thus
uGiy, - - - i) KK, P(N,. ooy =1) = K, Py .. (N=1),
completing the proof of Proposition 2.

PrOPOSITION 3. Eguation (12) holds.

PROOF OF PROPOSITION 3. Applying Proposition 2 to (13), it suffices to show
that

-3 A i i
(17 r Zmzilv""imez3P{iI""7im}(N= l)(p(-rl_) ..' (p(L:.)_)O
as r — oo, for ¢ nonnegative. Let us denote a nontrivial partition of {1, - - , m}

into two subsets 7; and m, by (7, m,), and abbreviate N, = N,,. A simple
set-theoretic argument shows that

P{i,, N ,i,,,)(N = l) < 2(.,,', .,,z)ﬁ(ih. BN PRI T ke.,,'}(N,,l = l) .
ﬁ{il,' BN PRI :kevrz)(quz = 1) * s(il, Y im; D) '”2)3

where s(iy, - - -, i,,; m, 7,) is the probability that, conditioned on N, =1 and
N,, = 1, the two remaining particles eventually coalesce. Therefore, to demonstrate
(17), we show that

S A A
(18) r2 Zil,...,,mezsl’{ib. .. ’in—l}(Nﬂ| = 1)‘ P{i,,,' .. ,im}(N,”z = 1)'

. . i i
sy, » vy 0y ,,1,,,2)..(,,( 1). ce ¢(7m) 0,

-
where m, = {1,- - - ,n— 1}, my={n,n+1,- - - ,m},2 <n <m. Also, set n, =
n—landn,=m-—n+ 1.

We now proceed to reduce the left side of (18) to the form

Sm— A A ) i im
Ar~2 1211,...,%]){“,. . ’inl}(N’”l = 1) P(i,,,' . »im}(Nﬂz = 1)’(])(71) S e ‘(p(T)
~ A i
= Ar"'r‘%”'zih...,ian{ih...,inl}(N.,,, = 1)<P(71)‘ te '(p(—-)'

s 3 in im
rrmE P, (Nay = 1)‘#’(7) """ ‘P(T)’
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where A4 is independent of r. This reduction will enable us to employ induction on
m to conclude that (18), and hence (17), is valid. To effect such a reduction, we
partition (Z;)* into subsets c, henceforth called configurations, such that the ordered
k-tuples (i, - - -, i) and (i}, - - - , i;) belong to the same configuration iff there
exists an a € Z, such that (i, + a,- - - , i, + a) = (i}, - - - , i}). Denoting the parti-
tion by G, and noting that ﬁ,(N,,' = 1) is a function of the configuration, we
rewrite the left side of (18) as

(19) TS o Soee, S5, PN, = PN, = 1)
, i iy
S i) o2) - o),

where (i, - - -, i,)€c @, -, i,) € ¢’. We also introduce the following nota-

tion:
i i
(C, )3 V= _l e e e e o ﬂ
seray=e(2)- - o )

ren-iy=o(2)-- - o 2),
g)=P,N, = 1),
g()=P.(N,, = 1),
n=inf{k: |X7 =1)(=0 if N, >1),
ke O(x) = P[X™,,, — X7, =x|1, V1, < o; i =01, =0]

~ |5

(Again, P [+] - ]is a function of the configuration.)With A(y) defined as in Proposi-
tion 1, note that

s(iy, -+ oy by my, mp) = kXA, — i, + x)
for (i, - - - ,i,) €¢, @, - - -, 1i,) € ¢ It follows that (19) equals
=373, 3, 8(0)g(¢)2, 2y f€ @ ,) - Sk O®AG, + i, + X).

Recall that A(y) is less than 4,/(|y| \/ 1) for some constant 4,. Letting * denote
convolution, and setting y = i, + i, + x and |y|, = |y| \V 1, it follows that (19) is
less than

ém ’ c,r o, r c, ¢
Ar~im3 3 g(e)g(c)ZY (S0 * £ % k) () /Iyl
which is at most A

(20) A4 lr_ %m— 12620’ g(c)g(cl)zlyl/r< ,(f(c’ r * f‘(c', r * k("» C’))(y) / I_);l_l

3m— ’ cr c,r ¢, ¢’
+4,r 27712 208(0)8 ()2 rn (SO # S0 % K ON(y).
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To obtain an upper bound for the first term of (20), we introduce the further
notation: ‘

F©) = max, /©7(,),

@,(x) = maxy ¢ p(x + @)

(note that ¢, is also rapidly decreasing),

sy =o( L) a2,
S0 =F0@) A F,
M{eD =3, f5 ),

MED =3, [0,

M©? =3, f€04,),

Fio0) £/ MEe 7,

FEA)=F P,/ M.

The first term of (20) is at most

-3m- ’ c,r c,r ¢, c Y
Ayr=3m1S 3 (RS (10 S0 s k) ) /12
which equals

1)

A;r~ sm— Is P g(c)g(c )Mz(f ) pfCes r)zlyl/r<1(f2( , ) *f(c 1) x ko c))( )/ |YI1

Now, max,(fi>" * f€ 7 » k©))(y) < max, fi>"(y). Moreover, f{®” was con-
structed so that the value F{" = = max, fleny) = Fen/MED is assumed at at
least (2r)° different sites, and hence F{” < (2r)~>. Therefore, (21) is at most

AT S g OMIEIMED - (20 Syt / 2

< A,r~ 3m- 13,3, 8(c)g(c)M§e P M

for some constant 4, > 4, since sup,(2r) 2y, /,<11/(lyl;/7) < .
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Now the inner sum of the second term in (20) is less than M{“”M‘"?, With
A; = A; + A,, we conclude that (18) is majorized by

Ayr=3mIS S g(c)g(c) M M
S 5 p
= A3r_2 IZil,n',imP{il""'inl}(th = 1)'P{i,,,~-~,im)(N'ﬂ2= 1)

- i L,
= Ayt r2 |2i| ‘--,i,.,P{il : }(qu. 1).%(71). ce ‘p‘(T)
—3n i, i,
r 2 Zzin ,imP(i,, Im}( m 1) (p(—;‘— o o o o (p _._r_)
If we set
s A i i
THO) = 15, P g = D) (%)
then it follows that the left-hand side of (17), T*(¢), is at most

Srzids( '} ) THe) T (@),

Since (11) states that T%(¢) is bounded, and r“%T,’(q)) is clearly bounded, induc-
tion on m shows that r™~?/2T"(¢) is bounded as r — co. This is more than
enough to demonstrate (17) as r — oo. Hence Proposition 3 and the theorem are
proved.

4. Additional remarks.

() With (£,) as in Theorem 3, let £, be the field at some fixed time n,. Because
the process is local, there is a d = d(ny) < co such that §,|, and §, |, are
independent whenever d(4, B) > d. Clearly §,, has exponentially decreasing correla-
tions. Thus (5) and (6) hold at each time n, < oo, but not in the limit. The same
observation was made by Dawson and Ivanoff in [2].

(ii) In much the same way, one can prove a “Sinai-type” block renormalization
theorem. Namely, if £ is the p,-distributed equilibrium for a nondegenerate iso-
tropic (local homogeneous) 3-dimensional voter model, then

D} —,C\¢, as k—oo.

C, is as in the theorem, and £, is the isotropic Gaussian self-similar random field
on Z; with covariances given by

E[£,,().()] = f,f,lx—ly—l dx dy,

where I and J are the cubes of side 1 in R, centered at i and j respectively. Details
are left to the reader.
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(iii) Analogous results can be derived for continuous time proximity processes
and voter models, as formulated in [6], [7), [8], [9]. The dual of the voter model is
then comprised of continuous time coalescing random walks, to which the same
methods apply. In the continuous time simple random walk case, the difference
walk Y, is simply X, with twice the jump rates. The constant y for the correspond-
ing voter model (£,) is therefore known [17, page 103] to be y ~ .65046267, and so
C, can be computed to several decimal places.

(iv) Theorem 3 may be extended to local homogeneous voter models in dimen-
sion d > 3. The order in dimension dis @ = 1 + 2/d. Needless to say, if (§,) is not
isotropic, then the limiting self-similar field need not be isotropic.

(v) The methods used to prove Theorem 3 apply equally well to any voter model
whose random walks are transient and in the domain of attraction of a symmetric
stable law. Thus, if A(k) = 0(1/|k|*) for some k, a limiting field of the form (1)
arises. In particular, certain one- and two-dimensional voter models lead to such
fields. Of course these systems are far from local.

(vi) It would be interesting to know whether the Holley-Stroock space-time
renormalization [9] leading to the generalized Ornstein-Uhlenbeck process carries
over for the voter model. At the minimum, this would require an extension of our
techniques: the cancellation procedure employed below (16) in Proposition 2 will
no longer be valid.

Acknowledgment. We would like to thank F. Spitzer for introducing us to
renormalization theory, and for many helpful discussions. Thanks also to S.

Goldstein.

REFERENCES

[0] CriFroRD, P. and SUDBURY, A. (1973). A model for spatial conflict. Biometrika 60 581-588.

[1] DawsoN, D. (1977). The critical measure diffusion process. Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 40 125-145.

[2] DawsoN, D. and IVANOFF, G. (1979). Branching diffusions and random measures. In Advances in
Probability. Dekker, New York. To appear.

[3] DoBrusHIN, R. L. (1979). Automodel generalized random fields and their renorm-group. In
Multicomponent Systems. To appear.

[4] DoBRUSHIN, R. L. (1979). Gaussian and their subordinated self-similar random generalized fields.
Ann. Probability 7 1-28.

[5] GELFAND, 1. M. and VILENKIN, N. JA. (1964). Generalized Functions IV: Some Applications of
Harmonic Analysis. Academic Press, New York.

[6] GRIFFEATH, D. (1977). An ergodic theorem for a class of spin systems. Ann. Inst. Henri Poincare B
13 141-157.

[7] Harris, T. E. (1978). Additive set-valued Markov processes and percolation methods. Ann.

. Probability 6 355-378. :

[8] HoLLEY, R. and LIGGETT, T. (1975). Ergodic theorems for weakly interacting systems and the voter
model. Ann. Probability 3 643—663.

[9] HoLLeY, R. and STROOCK, D. (1979). Dual processes and their application to infinite interacting
systems. Advances in Math. To appear.



432 MAURY BRAMSON AND DAVID GRIFFEATH

[10] HoLLEY, R. and StrROOCK, D. (1979). Generalized Ornstein—Uhlenbeck processes and infinite
particle branching Brownian motions. Preprint.

[11] KADANOFF, L. P. and HOUGHTON, A. (1975). Numerical evaluations of the critical properties of the
two-dimensional Ising model. Phys. Rev. B 11 377-386.

[12] KLEINERMAN, A. (1977). Limit theorems for infinitely divisible random fields. Ph.D. thesis, Cornell
Univ.

[13] LeBowirz, J. L. (1972). Bounds on the correlations and analyticity properties of ferromagnetic
Ising spin systems. Comm. Math. Phys. 28 313-321.

[14] Ma, S. (1976). Modern Theory of Critical Phenomena. Benjamin, New York.

[15] MALYSEV, V. A. (1975). The central limit theorem for Gibbsian random fields. Soviet Math. Dokl.
16 1141-1145.

[16] SiNaL, J. (1976). Automodel probability distributions. Theor. Probability Appl. 21 273-320.

[17] SpiTZER, F. (1976). Principles of Random Walk, 2nd ed. Springer-Verlag, New York.

[18] SpITZER, F. (1978). Unpublished manuscript.

[19] VASERSHTEIN, L. N. and LEONTOVICH, A. M. (1970). On invariant measures of some Markov
operators describing a homogeneous random medium. Problems of Information Transmission
(in Russian) 6 71-80.

[20] VAsIL’EV, N. B. (1969). On the limiting behavior of a random medium. Problems of Information
Transmission (in Russian) 5 68—74.

[21] VasiL’Ev, N. B,, MITYUSHIN, L. G., PYATETSKI-SHAPIRO, I. I. and Toom, A. L. (1973; work dated
1972). Operators of Stavskaya (in Russian). Preprint no. 12, Institute of Applied Math.,
Academy of Sciences, Moscow.

[22] WiLsoN, K. G. (1975). Tl}fenormalization group: critical phenomena and the Kondo problem.
Rev. Modern /Phys. 47 773-840.

COURANT INSTITUTE DEPARTMENT OF MATHEMATICS
NEW YORK UNIVERSITY UNIVERSITY OF WISCONSIN
251 MERCER ST. MADISON, WISCONSIN 53706

NEw York, NY 10012



