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THE ALMOST SURE STABILITY OF QUADRATIC FORMS'

By JAMES M. WILMESMEIER? AND F. T. WRIGHT
University of Northern Iowa, and University of Missouri-Rolla

Let w, be a doubly indexed sequence of weights, let { X, } be a sequence of
independent random variables and let 0, = 27 ,_ ,w, X, X,. Sufficient condi-
tions for the almost sure stability of Q, are given and the “tightness” of these
conditions is investigated. These quadratic forms are weighted sums of depen-
dent variables; however, their stability properties are very much like those
established in the literature for weighted sums of independent variables.

1. Introduction and statement of results. Let X, X,,- - - be independent
random variables, at least two of which are not degenerate, let w, be a doubly
indexed sequence of real numbers and let @, = 27 ,_ W, X X,. If {Y,} is any
sequence of random variables for which B,”'Y, — a, — 0 a.s. (in probability) with
{a,} a sequence of real numbers and {B,} a sequence of positive numbers which
diverge monotonically, then Y, is said to be stable almost surely (in probability)
with respect to {a,} and {B,}. If it is clear which sequences {a,} and {B,} are
under consideration we will simply say that Y, is stable almost surely (in probabil-
ity). Our main purpose is to consider sequences which stabilize Q, almost surely.
Varberg (1966, 1968) has considered the almost sure and quadratic mean conver-
gence of 0, and Whittle (1964) has investigated the asymptotic normality of certain
quadratic forms. Griffiths, Platt and Wright (1973) studied sequences which stabi-
lize Q, in probability.

A large portion of classical probability theory consists of the study of the
stability properties of S, = 3% _,X,. More recently, the almost sure convergence of
the weighted sums X,a, X, has been considered as well as dependent sequences
{X,} such as martingales, Markov sequences and stationary random variables.
(Chapters 3 and 4 of Stout (1974) contain a discussion of many of these results.) In
the dependent case, the treatment of the weighted sums has been less thorough
than that of S,. The quadratic forms Q, can be viewed as weighted sums of
dependent variables and, under certain assumptions, are also martingales. We shall
see that the almost sure stability properties of Q, are very much like those of the
weighted sums of independent variables 7, = 2/ _ 0, X.

For comparison we state some of the stability results for 7, provided in the
literature. Let v,y > 0 for k = 1,2, - -, let ¥, = 2% _,0, > o0, and let M(x) =
card. {k: V; /v, < x} for x > 0. Assuming the X, are independent and identically
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distributed as X, Jamison, Orey and Pruitt (1965) proved the following results:
THEOREM 1. If E|X| < oo and

(1) fxzfy>|x|y—3M(y) @ dP[X < x] < o0
then V,7'T, — E(X) -0 as.

THEOREM 2. Fix r €[1,2). The conclusion of Theorem 1 holds for a given
sequence of weights {v,} and all X with E|X| < oo if and only if lim
sup,_, . M(x)/x" < 0.

For Theorem 2 they only gave the proof of the case r = 1, however, the proof for
1 <r <2 is essentially the same. Heyde (1968) considered the more general
norming constants B,, with B, a sequence of positive numbers which diverge
monotonically. (Throughout our investigation B, shall always denote such a
sequence.) With M| (x) defined as M(x), except V,, is replaced by B, and with { X}
independent and identically distributed as X, he proved the following;:

THEOREM 3. If M\(x) satisfies (1), then T, is stable with respect to {B,} and
a, = B 'S} .0 E(X, dyx <5, /v, Furthermore, a, — 0 if

¥)) E(X)=0 and [|x|ffy°M(y) dy dP[X < x] < o0.
or
(3) %2y ~*M\(y) dy dP[ X < x] < oo.

Heyde has also developed the results necessary to obtain an analogue to
Theorem 2. Fix r € (1, 2) and consider fixed sequences {v,} and {B,}. If lim
Sup, o, M (x)/x" < 00, E(X) =0 and E|X|" < oo then the hypotheses of Theo-
rem 3 hold (notice that M,(x) =0 for some x >0) and so B,”'T, >0 as.
Conversely, if lim sup,_,,, M,(x)/x" = oo then there exists a symmetric random
variable X with E(X) = 0, E|X|" < oo and EM,(|X|) = oo. So appealing to Theo-
rem 5 of Heyde’s work B, 'T, cannot converge to zero almost surely. We state this
result as

THEOREM 4. Let 1 <r < 2, let { X, } be independent and identically distributed as
X with E(X) = 0, and let {v,} and { B,} be fixed sequences. Then B,”'T, — 0 a.s. for
all X with E|X|" < o if and only if lim sup,_,, M,(x)/x" < oo.

(Heyde (1968), Chow and Teicher (1971) and Wright, Platt and Robertson (1977)
have investigated the stability properties of 7, when E|X| = c0.)

In investigating the quadratic forms Q, we wish to allow for the possibility that
the X, ’s are not identically distributed and so, for y > 0, we define

F(y) =sup, P[|X,| >y] and G(y)=sup. P[|XX,| >»]
Typically, the assumptions on the random variables are expressed in terms of
moment or moment-like conditions. However, the diagonal terms w; ijz and the
off-diagonal terms w, X;X, (j #k) are different in this respect; for instance,

E|X)|" < o and E|X,|" < oo imply that E|X;X,|” < oo but only that E[(ij)’/z] <
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0. (A more detailed discussion of the relationships between the tail probabilities F
and G is found in Section 2 of Griffiths et al. (1973).) For this reason we first
assume w; = 0 and then consider the linear sum 7_,w, X7 later. Furthermore, we
will assume w, = wy; for j,k =1,2,- - - ; this is no restriction since one can
always obtain such symmetric weights without changing the value of Q, (i.e.,
(Wi + wy;)/2). While we will state the results for these quadratic forms in terms of
B,"'Q,, the sequence motivating the discussion is B, = W, where W, =
37 k=1|Wi|- Define N(x) = card. {(j, k) : j <k, B,/|wy| < x} for x > 0. If Q, is
stable in probability with respect to { B,} and some sequence {a,}, then Theorem
3.1 of Griffiths et al. shows that, in the identically distributed case,
max, ¢ ; x<nlWil/ B, — 0 and so, for sequences {w;} and {B,} to be considered,
N(x) will be finite for each x.

In the results that follow an integral of the form [ f(x)|dG(x)|(f f(x)|dF(x)|),
with G(F) a nonincreasing function, should be interpreted as a Lebesgue-Stieltjes
integral with respect to the measure determined by — G(— F). The proofs of the
following results are given in Section 2.

THEOREM 5. Let w;; = O and E(X)) =0 forj =1,2,- - - .If
4) G(x)>0 as x—>o00 and [Tx*[Zy3N(y) dy|dG(x)| <
and
©) J&x 5y T2N(y) dy]dG(x)| < oo,

then Q,/B, —0 as.
To clarify the meaning of conditions (4) and (5), it should be noted that the sum

-of expressions (4) and (5) is
[&xf5((x/y) A\ Dy 7*N(y) dy|dG(x)|
=3,k S % 5y e ((X/¥) N\ )y =2 dy|dG(x)|
= 2j<kf3°fl)w"‘lx/3"(u A1) au|dG(x)|
= 2}<kf3°¢(wjkx/3k)|d6(x)|s
where ¢ is the symmetric function defined by ¢(v) = fg(u A\ 1) du for v > 0.
Consequently, >, E((w; By 1Xij)) is finite if conditions (4) and (5) hold.
The question arises, could stability results like those in the first part of Theorem
3 be obtained for Q, if the X,’s are not necessarily centered at their means?
Consider the following example: let w,, = w,; = v,_, for k =2,3,- -, let
w; = 0 otherwise and X, X, be ii.d. as X with E(X) = p # 0. Then Theorem 1
gives conditions under which Q,/ W, — pX, a.s. So with the “natural” choice for
B, the answer in general is no. However, one could write
B~ 1Qn - Bn—IZ;,k=1wjk"‘jp‘k = Bn_lzf,k-lek(xj - p‘j)(Xk - Mk)
+2B,7 125 o Wik (Xe — )

and apply Theorem 5 to obtain the almost sure convergence of the first expression
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on the right-hand side. The second expression is a linear sum with weights
v, = 227wyl and so conditions obtained from Theorem 3 could be stated which
would guarantee its almost sure stability. We will not state such results, but we do
combine the linear results with Theorem 5 to provide a result for quadratic forms
with possibly nonzero diagonal elements. Let Ny(x) = card. {k: wy, # 0, B, /|w,]
< x} for x > 0.

THEOREM 6. Let E(X)) =0 forj=1,2,- - .If G satisfies (4) and (5) and if F
satisfies
1
(6) J&x [y ~Np(y) dy|dF(x?)| < oo,

then Q,/B, —0 as.
The next result is an analogue of Theorems 2 and 4.

THEOREM 7. Let 1 <r <2, let E(X;) =0 forj=1,2,--- and let {w;} and
{B,} be fixed sequences. Suppose that
(7) fi°x log x|dG(x)] < oo,

8) G(x) >0 as x—o00 and [$x'|dG(x)| < oo,
and lim sup, ,  N(x)/x" < oo. In addition, if the w;; are not all zero suppose that
lim sup,_, o Np(x)/x"/* < oo, then Q,/B, —0 a.s.

It should be noted that for r > 1, (8) implies (7) and for r = 1, (7) is a stronger
assumption than (8). It would be of interest to know if (7) can be omitted in
Theorem 7. A comparison of Theorems 2 and 7 suggests that this might be the case
for B, = W,. For the case 1 < r < 2 the hypotheses of the theorem are tight in the
following sense.

ReMARk 8. (a) If w; is a sequence of weights with w;, =0 for j #k and
lim sup, ., Np(x)/x"/? = oo, then there is a sequence of independent and identi-
cally distributed random variables { X, } which satisfy (8) but Q, is not stable with
respect to {B,} and {a,} for any {a,}.

(®) If wy_y, 26 = Wat 261 = 0, for k=1,2,- - -, w, = 0 otherwise and lim
Sup,_,,, N(x)/x" = oo, then there exists a sequence of independent and identically
distributed random variables {X,} which satisfy (8) but Q, is not stable with
respect to {B,} and {a,} for any {a,}.

To show that the more general quadratic forms QF =3, ka},?)XjX +— 0 as. one

~ could show that 3, P[|Q¥| > ¢] < oo for each ¢ > 0. Hanson and Wright (1971)
and Wright (1973) have provided bounds for these probabilities which could be
used to show that this series is finite in certain cases.

2. Proofs. We state without proof the following result: if Hy(x) is a
nonincreasing function with Hy(x) >0 as x> o0 for i=1,2, if H,(x)>
Hy(x) for all x > 0 and if f(x) is a nondecreasing function of x for x > 0, then
JSf(x)dH (x)| > [f(x)|dH,(x)| for any a > 0. So that this result could be used in
the proofs of Theorems 5 and 6 it has been assumed that G(y) — 0 as y — 0. Of
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course, F(y) —0 and G(y)— 0 are equivalent since P[|X)| > y%] + P[|X,| > y%]
> P[|X,X,| > y] and P[|X,X,| > &¥] > P[|X}| > e]P[|X;| > y] for j # k.

PrROOF OF THEOREM 5. By the Kronecker lemma Q,/B, — 0 aus.
if Y, =3¢ck<nBc WiX;X, converges almost surely to a finite limit.
Since Y, is a martingale, we need only show that sup, E|Y,| < co. But E|Y,|
< 1+ 2E@(Y,)) with ¢(u) = u*/2 for |u| < 1 and ¢(u) = |u| — 3 for |u| > 1.
By the argument given by Kurtz (1972) for part (a) of Lemma 2.2, E(¢(Y,))
< ZE@(Yyy, — Y))-Since Yy, — ¥, = Zf-lekﬂBk:-llXijﬂ, conditioning
on X, and applying the same argument shows that

sup, E(¢(Y,)) < 2, E(e(wi B 'X,X,)),
which was seen to be finite in the discussion following Theorem 5.

PROOF OF THEOREM 6. We show that B,”'3% _ . X? — 0 a.s. follows from a
slight modification of Theorem 3. Examining the proofs given by Heyde, we see
that by taking the absolute value of the weights in the definition of M, and in the
truncation value and defining F(x) as here the following result holds: if (4) holds
for F then B, 'T, — a, — 0 as. with @, = B,” 'S} _ 0, E(X, Jyx < 5, /jp) 20d @, > 0
if [&Px[Py~2M,(y) dy dF(x) < oo. In modifying these proofs, it should be noted
that for P =1, 2

=(lnl/B)'E | X\ Tyx,) < B, 104}
< ZiF(B,/|v]) + zk('ka/Bk)Pf[O,Bk/|uk|)xP|dF(x)"

(Integrate by parts, bound the tail probability by F and integrate by parts again.)
To apply this result to the sum of diagonal elements we consider Fj(x) =
sup, P[X? > x] = F(x%). The hypotheses of the modification of Heyde’s result
must be checked. Recall that G(y) > 0 as y — oo if and only if F(y) >0asy — o0
and so Fp(y) >0 asy - 0. Also
J&x2 2y T Np(y) dyldFp(x)| < [§x[3y ~*Np(y) dy|dFp(x)|
and so we need only to show that the latter is finite, but this is assumption (6).

ProOF OF THEOREM 7. To apply Theorem 6 we must show that (4), (5)
and (6) hold. Since N(x) < Cx” for all x > 0 and some C > 0 and since N(x)
= 0 for some x > 0, (4) and (5) are easily established. Since N,(x) < C,x"/? for
all x > 0 and some C; > 0, expression (6) is bounded above by
C\(1 = r/2)"'¢x"/?|dF(x?)|. Griffiths et al. (1973) have shown that there exist
positive constants €, 8 for which F(x) < 8 ~'G(ex) for all x > 0 and so it suffices to
show that [®x"/ 2|dG(ex%)| < co.-However, changing the variable of integration
this integral becomes & ~’*x’|dG(x)|, which is finite by assumption.

ProoF OF REMARK 8. We establish part (a) first. Let X, X, X,, X;,- - - bea
sequence of independent and identically distributed variables. If Q, is stable with
respect to {B,} and some {a,} then B, 'S"_ ,w, (X2 — (X))*) >0 as. and by
Theorem 5 of Heyde EN,(|X? — (X{)?) < . We now construct a discrete distri-
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bution for the X,’s which satisfies (8) but EN,(|X? — (X{))|) = o0. Since lim
Sup,_, ., Np(x)/x"/? = oo, select a sequence of numbers x, > 1, which diverge

monotonically and which satisfy N, (x2)/x; > k*fork = 1,2, - - . Consider the
symmetric distribution which satisfies P[X, = 0] =%, P[|X,| = 1] =1 and
Pl|X,| = x ) = c/(k*y) for k = 1,2,- - - where c is chosen so that 3_,P[|X,|

= x,] =3. The integral in (8), in the identically distributed case, is E|X,X,|” which
is finite for this distribution since E|X,|" =1 + Z%_,ck 2. However, EN,(| X} —
X% > ZRNp(R)PIX| = x JPIX] = 0] = 47 'eZE_ Np(xDk ;" = co.

In part (b), Q, is again a sum of independent identically distributed variables if
the X, are independent and identically distributed. If Q, is almost surely stable
with respect to { B,} and some {aq,}, then by symmetrizing and applying Theorem 5
of Heyde we see that EN(|X,X, — X{X}|) < . Choose x; as in the proof of part
() except N(x,)/x{ > k? and consider the same distribution given there. Again (8)
holds but

EN(1X,X; — X{X3|) > Z¥. N(x)P[|X)| = x, ] P[|X,| = 1]P[X] = 0] =

167122 (N(x )k ™2 " = o0.
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