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STRONG RATIO LIMIT THEOREMS FOR ¢-RECURRENT
MARKOV CHAINS

By E. NUMMELIN

Helsinki University of Technology
Let {X,; n=20,1,---} be a ¢-recurrent Markov chain on a general
measurable state space (S, §) with transition probabilities P(x, A), x € S,
A € F. The convergence of the ratio AP"*™f/uP"g (as n — o0), where A and p
are nonnegative measures on (S, %) and f and g are nonnegative measurable
functions on S, is studied. We show that the ratio converges, provided that A, p,
f and g are in a certain sense “small,” and provided that for an embedded

renewal sequence {u(n)} the limit lim u(n + 1)/u(n) exists.

0. Introduction. Let S be a set and ¥ a countably generated o-field of subsets
of S.Let {X,; n =0, 1, - } be an aperiodic ¢-recurrent Markov chain on (S, %)
with transition probabilities P(x, 4), x € S, A € ¥ (see, e.g., Orey (1971), Chapter

1).
The main purpose of this paper is to study the convergence of the ratio
Uﬂ+mf
0.1 —_— asn— oo,
01) s

where m is a fixed integer, A and p are nonnegative measures on (S, %), and f and
g are nonnegative measurable functions on S.

One of our main results is the following theorem, the proof of which is presented
in Section 3. We shall denote by # the unique (up to scalar multiplication) invariant
measure of the chain {X,}. Let C be a C-set (cf. Orey’s Theorem 2.1, page 7); that
is, ¢(C) > 0 and for some integer k, some a > 0,

(0.2) P¥(x, -) > a¢o forall x € C,

where ¢, denotes the restriction of ¢ to C normed to a probability measure (i.e.,
dc(4) = ¢4 N C)/HC), 4 € F).

THEOREM 1. The sequence {u(n); n =0, 1,- - - } defined by
u(0) =1, u(n) = apcP"V(C) for n>1,

is a renewal sequence. If

. u(n+1) _
hmn—-)oo u(n) =

then for any probability measures X and p on (S, ¥) and any nonnegative measurable

1,
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Junctions f and g on S we have:
® If
nk(
lim sup,,_, AP = ) <
ocP™(C)
and if f is a small function (see Definition 2.1), then
- Aprrrf  a(f)
1 =
im,,_, 9P (C) ~ 7(C) Sforall m > 0.
(i) If A and p are small measures, and if f and g are small functions, then
: AP"*™f _ w(f)
lim =—"= orall m > 0,
" wPg w(g) i’

provided that the right-hand side is well defined.

Part (ii) of this theorem generalizes the corresponding result for Markov chains
on a countable state space (Orey (1961)): if S is a countable set and {X,} is an
aperiodic irreducible recurrent Markov chain on § with transition probabilities p;;
and invariant measure 7;, and if for some state a € S,

n+1
Paa_ _
n—o0 n >
Paa

lim
then for all i, j, k,/ € S

forall m > 0.

lim
‘n— o0 n
P K]

In our generalization the small functions and measures play the role of individual
points of a countable state space.

For other works on the strong ratio limit property (SRLP) of Markov chains the
reader is referred to Kingman and Orey (1964), Pruitt (1965), Jain (1969), Orey
(1971) and Lin (1976). The bibliographies of Orey’s book and Lin’s paper also
contain a great number of other works on this subject.

Section 1 of the present paper deals with the preliminaries. In particular, we shall
formulate the minorization assumption (M) and a useful decomposition of the
iterates of the transition probability function P. In Section 2 we study the so-called
small functions and measures, give them some characterization results and for-
mulate some lemmas needed in Section 3. Section 3 contains the main results
(Theorems 2, 3 and 4). The preceding Theorem 1 is a direct corollary of Theorems
2 and 3. Theorem 4 deals with the case when the ratio (0.1) converges for all A and
p, and all small f and g. Finally, in Section 4 we shall briefly discuss the
generalization to noncontractive positive operators, and as an application we study
the existence of the I-type quasi-stationary distribution for an R-null recurrent
chain.
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1. Notation and preliminaries. We write N = {0,1,--- }, N, ={1,2,--- }.
For A a probability measure on (S, %) we denote by P, the canonical probability
measure on the product space (S, ¥ ) corresponding to the initial distribution A
of X, and to the transition kernel P. E, denotes the corresponding expectation. We
write P, = P,, where ¢, is the probability measure assigning unit mass to the point
x € S.

We denote by %, (resp. 9, ) the set of nonnegative measurable functions
(o-finite measures) on (S, ¥). For any 4 € ¥ we denote by 1, the indicator of 4
and by I, the kernel defined by

L(x,E)=1,4,5(x), x€S,E€Y.
Letf € ¥, and A € 9N, . We use the notation f ® A for the kernel
F®Xx,4) =f(x)M4), x€ES,4€9.
The transition kernel P induces in the well-known manner two operators, one on
the set % , and the other on 9N, :

S Pf = [P(, &)f(»),
A AP = [A(dx)P(x, ).
Denote
\P = 2:0-12_”55})”:
where ¢ is a probability measure equivalent to ¢. It is well known that the invariant

measure 7 is equivalent to ¢ and that the chain is y-recurrent.
We define

F* = (f € F,; n(f) >0} = {f € F.; w(f) > 0.

For A a set, we write 4 € " to indicate that 1, € F*.

We shall make the following basic assumption, called minorization assumption
M).

(M): There exist k € N,, h € 9+ and a probability measure » such that
(1.1) Ps>hQ®u.
Henceforth k, h and » will be fixed and will exclusively denote those quantities
satisfying (1.1).

REMARK. By Orey’s C-set theorem there is no loss of generality in assuming
(M): we can choose

h=als, v=¢. (cf.(02)).
We §ha11 use the notation
Q=3 oP"-h®r)"

n=0

Let U be any kernel such that 0 < U < P and wU(S) > 0. The same calculations
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as in the case U = PI,(A € ™) lead to the identity

S (P-U)'Ul=1,
and to the following expression for the invariant measure #: if u € M, is such
that u3%_o(P — U)"U = p, then

n=0(P U) =7

Replacing P by P* (note that {X,x; n € N} is a ¢-recurrent Markov chain by
Lemma 2.1 of Nummelin (1978)) and writing U = h ® », we obtain
(1.2) Oh=1,
(1.3) vQ = 7.

The following simple algebraic lemma turns out to be useful.

LEMMA 1.1. Let a and b be two elements of a ring. Denote cy = b, c, = ba""'b
for n € N . Then

G a"=(a—-by"+2",_,a" "b(a — b)" ' an

(i) a” = (a - b)" + Z72oZj2i(a — b)e,_ ,-,(a - byl

Proor. Elementary combinatorics or induction. []

Applying Lemma 1.1 with a = P*, b = h ® », denoting
(1.4) u(0) = 1, u(n) = vP" Y% (n€N,),

f(n)=v(P*-h®»)" 'h (nEN,),

and using (1.2) we obtain

COROLLARY 1.2. (i) The sequence {u(n)} is a renewal sequence satisfying the
renewal equation

u(n) = Zi_ f)u(n — i).
(i) Forany A€ M, ,fE€ F,,n EN,
(1.5)
APf = N(P* — h ® »)"f + Z1Z0Z1Zi[MP* — h ® v)'h]

[v(P" - hQ® V)j_lf]u(n —i—j).

ReMARK. For a probabilistic interpretation of the renewal sequence {u(n)} and
of the decomposition (1.5) the reader is referred to Nummelin (1978): the sequence
{u(n)} is the renewal sequence associated with the atom of the “split chain of
{X,},” and (1.5) corresponds to the first-entrance last-exit decomposition of the
split chain w.r.t. the atom.

2. On small functions and measures. The following definition of small func-
tions is the same as in Lin (1976). In an obvious way we also define the concept of

small measures.
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DEFINITION 2.1. A function f € ¥, (resp. a measure A € 9N, ) is called small,
provided that for all 4 € F* there exist 8§ > 0, N € N_ such that

2.1) SNaoP"1, > 8f (resp. ZN_omI, P" > 8)).
Note that a small function f is bounded and #-integrable, and that a small measure

A is finite and absolutely continuous w.r.t. # having a bounded Radon-Nikodym

derivative d\A/ dm.
The following lemmas are formulated only for small functions. There exist, of

course, the corresponding dual results for small measures.

LemMA 2.2. (i) If f is small, then for any m € N, P™f is small.

(ii) For any m € N, f is small, if and only if it is small w.r.t. the m-step chain
{X,m; n € N}.

ProoOF. (i) In order to get the assertion, let P™ operate on both sides of (2.1).

(i) From (2.1) immediately follows the sufficiency. In order to prove the
necessity, assume that f is small and 4 € F* is arbitrary. Let C € F* be a C-set.
Since by assumption {X,} is aperiodic, there exists ¢ € N such that

Y= inf,-_o, e m—1; xecP"'”"'(x, A) > 0.
Let N €N, and § > 0 be defined so that
SN _oP"1 > Of.

Then
SNEGP™™1, > mTIZN_ (ST prmtipamTil
> ym~IE™N P,
> ym™~%f,

which shows that f is small w.r.t. {X,,.;n € N}. []

LemMMA 2.3. (i) Let g € F* be small. Then for any f € F ., f is small, if and only
if there exist N € N and 8 > O such that

(22) SN _oP"g > Of.
(ii) The function h appearing in (M) is small.

COROLLARY 2.4. A function f € %, is small, if and only if there exist N € N,
8 > 0 such that
SN_oP"h > §f.
PROOF OF LEMMA 2.3. Let 4 € ¥+ be arbitrary.
(i) Assume that (2.2) holds for some N, 8 and small g € *. Increase N and
decrease 8§ such that also

SN _oP"1, > 8g.
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Then
SWoP"1, > (N + 1)7TISN_SN_ Pmtrl, > (N +1)7',

which shows that f is small.
The converse is trivial.
(i) By irreducibility we can find for any 4 € §* an integer i such that
»Pi(4) > 0. By (M)
Pi**1, > vPi(A)h,
which gives the assertion. []

REMARK. The dual result of Corollary 2.4 states that a measure A is small, if
and only if there exist N € N, § > 0 such that

N_wP" > §A.

’ n=0

3. Strong ratio limit theorems. In this section we shall study the convergence
of the ratio (0.1) for an aperiodic, ¢-recurrent Markov chain {X,} on (S, %)
satisfying the minorization assumption (M). Of course our results are interesting
only in the case when the chain is null recurrent; that is, when #(S) is infinite. If
the chain is positive recurrent, then Orey’s convergence theorem tells us that, for all
probability measures A, the sequence AP" converges in total variation norm to the
invariant probability measure 7.

We shall henceforth assume that for the embedded renewal sequence, defined by
(1.4), the limit of the ratio u(n + 1)/u(n) (n — ) exists. By ¢-recurrence then
necessarily

: . u(n + 1)
3.1 li ——— = =1
(3.0 )
The reader is referred to Chapter 3 of Orey’s book for a thorough discussion on the
strong ratio limit property of renewal sequences. Let in the following A, p € O,
f, 8 € ¥, be arbitrary and fixed. The following proposition is in some ways similar
to Lemma 1.2 of Orey (1971), page 73 (cf. also Jain (1969)).

ProposiTION 3.1. We have
nk
iming, AP 5 M)
vP™h w(h)
Proor. It suffices to prove the assertion in the case when k = 1, since the

general case then easily follows by considering the k-step chain {X,,)}.
We shall use the decomposition of Corollary 1.2 (ii) and write the r.h.s. of (1.5)

into ‘two parts (cf. Orey (1971), page 74):
}\P'.lf= Sn,N(ALf) + rn,N(A’f)’

where
5000 S) = ZoZ NP — h ® wYR][W(P — h® #) " fu(n — i - )),
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and r, y(A, f) > 0. Hence, similarly as in Orey (1971), we can conclude that for all
N

AP"f AP"f

A
= lim inf, > lim,_,_, Sv )

© un + 1) >0 + 1)

3.2) lim inf, PR

_ SN §N _ i — 77171 lim un—i—J)
=SSV [MP = R ® »)h][»(P — R ® vy~ f]|lim,_,, u(n + 1)

=3I NP -h® v)ithy__O'v(P - h ® »)f.

Letting N — o0 and recalling (1.2) and (1.3) we get the assertion. []
The following three theorems are the main results of this paper.

THEOREM 2. (i) If

AP™h
33 lim su —— < A(S),
(33) o oy < MS)
and if f is small, then
. AP N(S)7(f)
3.4) lim, , PR a(h) forall m € N.

(i) If A is small and

. vP™f _ w(f)
(3.5) lim sup,_, .. —vP y < (h)’

then we have (3.4).

ProoF. We prove only (i), since the proof of (ii) is similar. Assume first that
k = 1in (M). Writing f = P'h in (3.2) we get

. . s, (A, P'R) a(P'h)
1 1 RLCT AN Sl A =A f i,
im,_, lim, u(n + 1) A(S) (h) (S) orany i
Since by assumptions lim sup, ., AP"**h/vP"h < A(S), we have
A Ph
lim, __tim =8 & P _ g

m>o " un + 1)

Since f is small, there exist y, I < oo such that P™f < y=/_,P'h. Hence
a v P7f)

. 1. . 0
lim,_, lim sup,_, u(n + 1)
and
, APREmE . 5, NA, P7f) — M(S)7(f)
1 —_—— = 2 = .
lmn—mo VPnh th—»oohmn—mo u(n + 1) ‘ﬂ'(h)

Now allow k in (M) to be arbitrary. By Lemma 2.2, for any ¢ € N, the function
P4 is small w.r.t. the k-step chain {X,,}. From the proof of the case kK = 1 it now
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follows that for all g € N
o APS A(S)n(PY)
n—>00 v P"kh 7’_( h)
_ M8)7(f)
w(h)
Since A = » clearly satisfies (3.3), and A is small, we have also (3.6) with A = »,
f = h. This and (3.6) then give us (3.4). []

(3.6)

THEOREM 3. If A, p, f and g all are small, then
AP _ A(S)m(f)

"o wP  u(S)m(g)

(provided that the t.h.s. is well defined).

3.7 lim forallm € N

Proor. The inequality (3.3) is trivially satisfied with A = ». Hence, by Theorem

2@
lim, ., 2 = (1),

and so (3.5) holds. By Theorem 2 (ii) we get (3.4). A similar result holds for p and
g, from which the assertion easily follows. []

The following corollary shows us that in this context small measures and
functions (for general chains) correspond to individual points of a countable state
space.

COROLLARY 3.2. (Orey (1961)). Let. S be a countable set, and assume that {X,}
is an aperiodic irreducible recurrent Markov chain on S. If for some state, say a € S,

) P"*Y(a, a)
(3.8) lm, e = |

(we omit the brackets in the notation of singletons), then for any states x,y, z, u € S,
any m € N

L Py w()
"= P™(z, u) a(u)

Proor. This result is easy to deduce from our general result of Theorem 3,
since in the case of countable S, the minorization assumption (M) is automatically
satisfied with k € N, such that a = P*(a,a) > 0, h = al (ap ? = & and clearly
for any b € S, the indicator 1,,).is a small function as well as g, is a small
probability measure. []

Finally we shall briefly discuss the case when the limit in (3.7) exists for all
probability measures A and p, and for all small functions f and g. The proof follows
closely that of Orey (1971), Theorem 1.3 on page 78. Lin’s (1976) Corollary 2.3 is
also close to ours dealing with the case f = g.
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THEOREM 4. The following two conditions are equivalent:
)
nk
(ii) (3.7) holds for some (or, equivalently, for all) m, for all probability measures A
and p, and for all small functions f and g.

lim sup, ., || lloo < 003

Proor. ()= (ii): Let N € N, y < oo be such that
nk
vP"*h
For any probability measure A, any fixed m € N, we have (cf. Orey (1971), page

79):

Y = sup,, vl lo < 00.

AP™h — yP™h

vP™h |

lim sup,,_, ., |

PO=mkp y(n —m + 1)
pyP—mkp  y(n + 1)

= lim sup,_,,, [(AP™ — vP"™*)

< Y[AP™* — »P™|.
Letting m — oo, we immediately get (3.3). Theorem 2 (i) now gives (3.7).
(i) = (i): The proof is completely similar to that of Orey (1971), Theorem 1.3,
page 79. []

4. R-null recurrent chains and quasi-stationary distributions. In fact the preced-
- ing results could as well have been formulated for a larger class of positive
operators. Let us now drop the assumptions that P is stochastic and ¢-recurrent. We
only need to assume:

() #(4) >0=37_P(x, A) = oo;

(ii) there exists 0 < e < o0, e Z 0(y-a.e.) such that Pe < e(y-a.e.).

In Tweedie’s (1974a) terminology (cf. Theorems 1, 3 and 8 of Tweedie) this
means that the operator P is 1-recurrent. Condition (i) implies in particular that P
is ¢-irreducible, and hence by Orey’s C-set theorem the minorization assumption
(M) is satisfied for some k, h and ». Similarly as in the case when P is ¢-recurrent,
we can prove that the measure = = »Q is o-finite, equivalent to ¢ and invariant,
and that the function Qh is finite (y-a.e.), invariant (that is: Qh(x) = PQh(x) for
all x € ) and equal to e (y-a.e. and up to scalar multiplication).

As an illustration we formulate Theorem 3 in this wider context:

THEOREM 3. Assume the conditions (i) and (ii) above, and that the limit
lim,,_, u(n + 1)/ u(n) exists (the value of this limit is necessarily equal to 1). Then
Jor any small \, p, fand g

, AP Me)m(f)
lim, = orall m € N.

* wPg  p(e)m(g) )
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PrROOF. Similar to that of Theorem 3. []

If, for some R > O, the kernel RP satisfies the conditions (i) and (ii), then P is
called R-recurrent (see Tweedie (1974a)). Theorem 3’ automatically gives us a
strong ratio limit theorem for R-recurrent chains.

Assume from now on that the Markov chain {X,} is R-recurrent and that
lim, , u(n + 1)/u(n) = R % exists. We shall denote by = (resp. €) the unique
invariant measure (resp. function) of the operator RP. Recall from Tweedie (1974a)
the definitions of R-positive and R-null recurrence: the chain is R-positive (resp.
R-null), if =(e) is finite (resp. infinite).

Fix a set E € " and ask the following general question: given that at time n X,
belongs to E, what is the limiting conditional distribution of X, on (E, E N %) as
n— oo?

If E is chosen to be equal to the whole state space S, then the condition X, € §
means that the chain has not absorbed outside the state space up to time n (note
that the transition kernel P is now allowed to be substochastic). In this case the
preceding limit distribution (if it exists) is called the I-type quasi-stationary distribu-
tion of {X,}. The reader is referred to Seneta and Vere-Jones (1966) (countable
state space) and to Tweedie (1974b) (general state space) for a thorough discussion
of the quasi-stationary distributions of Markov chains. However, in all papers
dealing with the quasi-stationarity a basic assumption is that the chain is R-positive
recurrent. We shall state results which hold true also in the R-null (7(e) = o0) case.
As is easily seen, the analysis of this case requires the existence of some kind of
strong ratio limit theorem. Here we shall apply our Theorem 3 and we immediately
get the following corollaries.

COROLLARY 4.1. Let E € F* be a small set (which means that 15 is a small
function), and let \ be a small probability measure. Then 0 < w(E) < oo and for any
measurable set A C E
m(A)

m(E)
In particular, if the whole state space S is small (which is, by Corollary 2.4, equivalent
to the condition

lim,_  P,{X, € A|X, €EE} =

inf cgSV_oP"h(x) >0  for some N),

n=0
then m(S) < oo, and given that we start with a small probability measure A, the I-type
quasi-stationary distribution exists:
m(A)
m(S) "

Since the preceding corollary yields a new result even in the case when S is
countable we also formulate it in that case.

4.1 lim, . P\{X, € 4|X, € §} =
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COROLLARY 4.2.  Assume that S is countable, { X} is irreducible R-recurrent, and
that for some state a € S

P"+l(a, d)
n— o0 Pn(a, a)

Then for any small set E C S,i € S,ACE

lim =R~

m(A4)
m(E)
In particular, if S is small, that is, for somej € S, N € N
inf, e sZ5-0P"(i, /) > 0,
then the I-type quasi-stationary distribution exists: for alli € S, 4 C S

(42) lim__P,(X, € 4|X, € §} = T4
7(S)

ExampLE. If {X,} is l-recurrent and the state space S is small, then it is easily
seen that the chain is necessarily 1-positive. One might suspect that this would hold
also for R > 1, in which case our quasi-stationarity results (4.1) and (4.2) would
contribute nothing to the earlier theory. However, we can construct an example
which shows that this conjecture is false.

Let S =N, and define for all i, j € N the transition probabilities P(i,j) as

follows:

n—mo

P(i,0) = _32“a
(4.3) . _ @+
P@i,i + 1) _Z(i T2y s

P(i,j) =0  otherwise.

The condition (4.3) immediately implies that the whole state space N is small. It is
also easily seen that the chain is 2-null recurrent. Define u(n) = P"(0, 0) and

Jo=Po{X,#0forl <i<n,X, =0}

=Py{X;,=iforl <i<n,X,=0}

6
22n 2

Hence lim, _,, f,,,/f, =3, from which we can easily conclude by using Theorem
4.1 of Orey (1971), page 96, that lim,_, u(n + 1)/u(n) =1. By Corollary 4.2, for

this particular chain the /-type quasi-stationary distribution (4.2) exists and is equal
to the left invariant vector of the matrix 2P:

7(i) _ 6
7(N) 722G + 1)*

ieN.
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