The Annals of Probability
1980, Vol. 8, No. 1, 1-67

SPECIAL INVITED PAPER

OCCUPATION DENSITIES!

By DoNALD GEMAN AND JOoSeEPH HOROWITZ
University of Massachusetts at Amherst

This is a survey article about occupation densities for both random and
nonrandom vector fields X : T— R? where T c R". For N = d = 1 this has
previously been called the “local time” of X, and, in general, it is the Lebesgue
density a(x) of the occupation measure u(I') = Lebesgue measure {¢t € T: X(7)
€ T'}. If we restrict X to a subset 4 of T we get a corresponding density a(x, 4)
and we will be interested in its behavior both in the space variable x and the set
variable 4. The first part of the paper deals entirely with nonrandom, nondif-
ferentiable vector fields, focusing on the connection between the smoothness of
the occupation density and the level sets and local growth of X. The other two
parts are concerned, respectively, with Markov processes (N = 1) and Gaussian
random fields. Here the emphasis is on the interplay between the probabilistic
and real-variable aspects of the subject. Special attention is given to Markov
local times (in the sense of Blumenthal and Getoor) as occupation densities,
and to the role of local nondeterminism in the Gaussian case.
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1. INTRODUCTION

0. Brownian occupation density. Let X(¢), ¢ > 0, be a (nonrandom) real-valued
Borel function. The occupation measure of X up to time t is p(I') = A{s < t : X(s) €
I'}, A being Lebesgue measure and I' a Borel set. Thus, p,(T') is the “amount of time
spent by X in the set I' during [0, ¢].” If X(¢, w) is the trajectory of a random
process, then we have exactly the same definition, but now p,(I') will depend on the
sample point w as well.

For Brownian trajectories X(¢, w), Lévy (1965*, Section 50) showed that, for
almost every trajectory, each p,(I") could be expressed as the “sum of times spent at
each x € I'” in the following sense:

(0.1) Ms <t:X(s) €T} = fra(x)dx
for all Borel sets I' and ¢ > 0, for some function «,(x) for which ay(x) = 0 and

a,(x) is nondecreasing in ¢. Lévy called a,(x) the “mesure du voisinage” and we
regard it as the “amount of time spent by X at x during [0, £]”; it is the progenitor

*The first edition of the book was published in 1948.
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of the local times for general Markov processes introduced by Blumenthal and
Getoor (1964).

Now (0.1) is a purely real-variable statement, and a function X for which it
holds, i.e., each p, is absolutely continuous, is said to satisfy condition (LT). We then
call a,(x) an occupation density to distinguish it from the above-mentioned local
times which are sometimes, but not always, occupation densities. (The connection
is spelled out in § 18.) It follows from (0.1) that for each ¢ > 0,

0.2) a,(x) = limeu,?le-x{s St:x—e<X(s)<x+e} forae x.

(Actually, this limit exists (finite) for a.e. x for any Borel function X(¢); it is a
standard result on the differentiation of measures: o, = dp,/dx.) As suggested by
(0.2), the points of increase of the function ¢ > a,(x) are contained in the level set
M, = {t: X(¢) = x}; all of this will be discussed in detail in § 6.

Having recognized the real-variable nature of occupation densities, one is led to
study them apart from probability theory (see Part 2). We shall see that there are
important connections between the behavior of the function X(#) (such as the size
of its level sets and the rate of its local growth) and the behavior of the function
a,(x).

In particular, the occupation density is ideally suited to the study of nondifferen-
tiable functions (see, for instance, Example 1 below), and consequently provides a
useful tool in the analysis of the sample paths of nondifferentiable random
processes. (Occasionally, in fact, the applications simply amount to taking expecta-
tions in a real-variable equation.) Conversely, probabilistic methods are used to
produce examples of functions with prescribed behavior which cannot be con-
structed directly. This type of interplay between real and random analysis is
exemplified in the case of Fourier analysis by Kahane’s survey paper (1971) and
book (1968) which are very close in spirit to the present work. Here are four
examples which further illustrate the point. (Perhaps the best example within the
paper is Corollary (27.10), an explicit case of which is in (30.7).)

ExampLE 1. Everyone knows that the Brownian trajectory is nowhere differen-
tiable (i.e., with probability 1). Following Berman (1970) we obtain a much
stronger result from Trotter’s (1958) theorem by a simple real variable argument.
Trotter proved that the Brownian trajectory has a jointly continuous occupation
density a,(x).

Let X(¢) be a Borel function. If X had a finite derivative at ¢, there would be a
double cone with vertex at (¢, X(#)) and sufficiently wide aperture so that, for some
8 > 0, the entire graph of X lying over [t — §, ¢ + 8] would fall inside the cone.

Suppose X(¢) has a jointly continuous occupation density, as does the Brownian
trajectory. We will show that, for every cone with vertex at (¢, X(¢)), which we
visualize as a pair of lines of slopes * M going through (z, X(¢)), ¢ is a point of zero
density of the set of times s at which (s, X(s)) is in the cone. Thus X not only fails
to have a finite derivative but also an approximate derivative, so-called. The proof is
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trivial: the density in question is the limit, as 6]0, of

—2—1§A{t—8<s<t+8:|X(s)——X(t)| < Mls — 1)

< gsA{t = 8 <5 <1+ 8:|X(s) — X()| < Mb)

1
= ﬁfﬁgfﬁﬁ (e45(x) — &,_5(x)) dx —0.

We will see later that the trajectory cannot even be contained in a “cone” with
square-root shaped boundaries.

ExampLE 2. Here is a special case of a theorem of Meyer (1975): let the process
Y = (Y,), adapted to the natural o-fields of a Brownian motion W = (W,), have
trajectories of bounded variation; then the trajectories W, + Y, are (LT), i.e., have an
occupation density.

It seems clear that a “tame” function, such as one of bounded variation, cannot
dampen the Brownian oscillations enough to destroy (LT). There is a real variable
“shadow” of this result (see § 12) which says that, if a (nonrandom) function X(t)
has a sufficiently nice occupation density, then X(t) + Z(t) is (LT) for any Z(t) which
is differentiable a.e. Meyer’s theorem is not a special case of this because, although
jointly continuous, the Brownian occupation density is not “sufficiently nice”.
Typically such real variable results require stronger analytical hypotheses than their
probabilistic counterparts.

There is a related result which should be mentioned here: if f(¢) is an arbitrary
(nonrandom) Borel function, then, a.s., W, + f(¢) is (LT). This is a probabilistic and
not a real variable result in that the exceptional null set depends on f(#).

ExaMmpLE 3. It has been recently shown by Kaufman (1975) (see also Kahane
(1976), page 153), by a rather difficult Fourier analytic argument, that if K is a
fixed set in [0, 1] of Hausdorff dimension diim K >3, then the Brownian image X(K)
has nonempty interior a.s. Here is a simple proof, due essentially to Pitt (1978),
based on occupation densities.

Let ¥ be a finite measure carried by K and having a bounded potential with
respect to the kernel |s — 7|7, where ; < b < dim K:

SuP0<s<1f(1)|S — 1|~ R(dr) < .

The existence of such a measure is standard. Now, although we shall not do so in
this paper, the theory of occupation densities can be developed with other measures
than A on the time domain. Applying the results of §§ 25 and 26 relative to ¢
instead of A, we obtain the existence of an occupation density a(x, K), which is
continuous in x, for the restriction of X to K. It follows (see Remark (b) at the end
of § 6) that the set {x : a(x, K) > 0} is open, nonempty and contained in X(K)
a.s.
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ExAaMPLE 4. Let X = (X,) be a real-valued process with stationary, independent
increments; assume that either a Gaussian component is present or that M(R \ {0})
= o0, where M is the Lévy measure. We give an easy proof of the following result
of Getoor and Kesten (1972): the event A = {w : X(w) has a jointly continuous
occupation density} has probability 0 or 1. The same argument will work for the
event {w : X,(w) has an occupation density}.

Consider first a nonrandom function X(¢) and a step function Z(t) = alj, () +
bl (9. If a(x) is an occupation density for X(#), then X(¢) + Z(¢) will have the
occupation density

Bt(x) = Ato(x - a) + a,(x - b) - al/\to(x - b);

conversely, existence of B,(x) implies that of a,(x), and a will be, e.g., jointly
continuous iff B,(x) is likewise. Clearly the same will be true for any finite number
of steps.

Turning to the process X,, Getoor and Kesten, page 300, show easily that
P(4) =1 if the Gaussian component is present; thus, in the remainder of the
proof, we may assume it is absent. Let X;* be the sum of the jumps during time
(0, 7] of magnitude greater than 1/n; this is a step function with a finite number of
steps in [0, 1]. Thus A4 is equivalent to the corresponding event for the process
X, — X", for each n. Since A depends only on arbitrarily small jumps, we must
have P(4) = 0 or 1, according to Theorem 14.30 of Breiman’s book, Probability.

Finally, since much of our work is based on classical material in the theory of
functions of a real variable, the treatise of Saks (1937) (unfortunately now out of
print) has become invaluable to us. For this and other reasons we would like to
dedicate this paper to the memory of Dr. Stanislaw Saks.

1. Agenda. This paper is a summary of occupation densities with emphasis on
the application of real variable results to stochastic processes. The results are
formulated for vector fields, and, by specialization, for functions (and processes) of
one real variable. Except for Section 2, we shall deal exclusively with nondifferen-
tiable functions.

The remainder of Part 1 (§§ 2—5) provides some orientation for the reader. Part 2
(8§88 6-14) takes up the study of occupation densities for nonrandom vector fields;
this material has hitherto not been treated systematically. These results are applied
in Part 3 (§§ 15-30) to random fields in a sometimes parallel development, e.g., §§
10 and 11 and §§ 27 and 28. More specifically, §§ 15-20 deal with Markov
processes (not fields), §§ 21 and 23 with general random fields, and §§ 22 and
24-30 largely with Gaussian random fields. Each general property described in
Part 2 is possessed by a class of processes given in Part 3. The real variable results
are summarized in a table in § 14; a corresponding table for processes is given in §
30, where the results of §§ 27 and 28 are illustrated.

Almost all the results have been reworked and are presented in more or less full
generality. In addition, a large number of new results are included, among the most
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interesting of which are (we feel): (i) the results in §§ 9-11 on lack of (approxi-
mate) Holder-type conditions and, in particular, the spiking behavior described in §
11; (ii) the complete Lebesgue decomposition of the occupation measure of a
standard Markov process (§ 18); (iii) the generalization to Gaussian random fields
of Berman’s (1972) result on the uniform Holder condition satisfied by certain
occupation densities; this is applied in § 30 to obtain some new results for special
classes of processes.

We give proofs only when they are simple and instructive, or in the case of new
results. An exception to this policy is our retelling of the results of Berman (1972)
and Pitt (1978) in §§ 24-26; here we have given rather complete proofs, and have
added some details, either for clarity or because we felt they were insufficiently
treated previously.

Many of the results rest on the classical but somewhat neglected concepts of
metric density and approximate limit; an appendix on these points is placed after §
14. Included there is a proof of an often used theorem on approximate limits which
we have not seen proven (correctly) hitherto; we hope this will be of general
mathematical interest.

We have tried to mention all papers directly related to occupation densities. Any
omissions are inadvertant and we hope no one will feel slighted on that account.

2. Smooth functions. Occupation measures appear rarely in real analysis, e.g.,
as “equi-measurable rearrangements”, and in Saks (1937), page 291; occupation
densities appear only in Duff (1970) and Sarkhel (1971), both concerned with
differentiable functions.

A wide class of functions (including differentiable) for which «,(x) is a pure jump
function in ¢ is treated by us (1976a); Cuzick (1977) treats smooth vector fields by a
direct generalization of the same method. We will just describe the situation and
point out an interesting connection with physics before leaving smooth functions
altogether. The terminology for this discussion is in Federer (1969).

Let X be an (N, d)-field, i.e., X maps T = [0, 1] into R?. The choice of T as
domain is purely for convenience. Suppose that X is Lipschitzian and so differen-
tiable a.e., and let J,(¢) be the d-dimensional Jacobian at ¢ € T; assume N > d.
The occupation measure of X is now defined as pz(T) = Ay(B N X ~!(T)), where
Ay is Lebesgue measure on RY, B ¢ T, T c R? Borel sets. Using the Hausdorff
area and co-area theorems of Federer (1969), 3.2.5, 3.2.12, one finds the following
decomposition of pg:

2.1) ps(T) = fra(x, B) dx + \y(B n X' (T) n {J,=0})
where
(22) a(x, B) = foan{J,,sﬁO}(Jd(t))—IHN—d(dt)'

Here, M, = {¢: X(¢) = x} and H,_, is the (N — d)-dimensional Hausdorff
measure on 7. Obviously the first term on the right is A,-absolutely continuous; in
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order that (2.1) be the Lebesgue decomposition of u, we must impose (if N > d)
higher smoothness on X. The exact statement is based on Sard’s theorem (cf.
Sternberg (1964), page 45ff.):

(2.3) THEOREM. (a) If
then X is (LT).

(b) If N = d, then (2.1) is the Lebesgue decomposition of ug, and X is (LT) iff
(2.4) obtains.

() If N >d and X is of class C®, k > N — d + 1, then the conclusion of (b)
holds.

If N<d, \(X(T)) = 0, so py is singular to A,. In this case it is natural to replace
A; by an appropriate lower-dimensional Hausdorff measure living on X(7). The
theory is qualitatively similar to that above, but we shall not pursue it here.
Observe that, in the (LT) cases of (2.3), a(x, B) plays the role played by a,(x) in §
0. )

When X is real-valued (d = 1), J,(¢) is just the length of the gradient of X. If this
is positive a.e. and X is C®, k > N, we have (LT), Hy_ ,(dt) in (2.2) becomes
surface measure, and

Hy_,(dt)

—————= fora.e. x.
Imne VX0 or a.e. X

(2.5) a(x, B) =
The function a(x) = a(x, T) has appeared in the solid state (lattice dynamics)
physics literature for N = 2, 3, where it is called the “density of states” and
physical significance attaches to the so-called van Hove singularities of a(x) which
appear for N = 2 when x is the image of a saddle point.

The function in (2.5) also arises in statistical mechanics (see Khinchin (1949))
under the name “structure function”. If X is the Hamiltonian of a conservative
dynamical system, then, under appropriate conditions, M, is a surface of constant
energy which is invariant under the natural motion in the phase space of the
system. What is more important, a(x, dt) is a measure on M, which is preserved by
the natural motion, just as Lebesgue measure is preserved by the motion in the
whole phase space (Liouville’s theorem). (Here ¢t =(q), * -, 4, Py Py is
given by the generalized position and momentum coordinates rather than as
“time”.) According to Khinchin (1949) page 37, the function a(x) “completely
determines the most important features of the mechanical structure of the corre-
sponding physical system”.

3. Nondifferentiable functions. Here we turn to the main business of the
paper: occupation densities for nondifferentiable functions and random processes.
These never (to our knowledge) appear in the real analysis literature; indeed, the
analytical properties of nondifferentiable functions are only rarely considered.
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Most information in the past has been in the literature on Markov processes where
the real variable content is either difficult to isolate or is missing altogether.

The subject was first treated somewhat systematically by Berman (1969) who
studied the occupation measure ., (§ 0) using Fourier analysis and then applied the
results to trajectories of Gaussian processes. The theme running through his work is
that “the smoothness of the local time [i.e., occupation density] of a Gaussian
process implies the irregularity of its sample functions” (Berman (1972)). As has
already been suggested by the examples in § 0, and as will be amply demonstrated
in Part 2, this is a real variable principle which applies equally well to nonrandom
functions.

The main application of occupation densities in the probabilistic setting has been
to questions related to Hausdorff measure properties of the level sets (§§ 13 and
29). For our part, we find occupation densities more interesting as a tool for
studying the local oscillations of nondifferentiable functions. They will be used, for
instance, in § 10, to obtain some insight into a classical problem in real analysis,
and in §§ 9-11 the method of Example 1 is extended to give strong results on the
lack of (approximate) Holder conditions. Sections 27 and 28 discuss Gaussian
random fields whose trajectories have the analytical properties described in §§
9-11. Most of these results show implications of properties of the occupation
density for the behavior of the function (see especially Table 1 in § 14). One of the
general open problems in this theory, specific instances of which are pointed out
later, is to find implications in the other direction (i.e., to reverse the arrows in
Table 1).

4. Markov processes. After Lévy and Trotter (§ 0), the structure of the
Brownian occupation density as a stochastic process with “time” parameter x was
determined by Knight, Ray and, later, Williams: for certain stopping times T,
ar{(x) is a Markov process (in x) expressed in terms of Bessel processes. This allows
a detailed analysis of a,(x) which shows that it cannot be a very smooth function of
x. The material in § 14 then suggests that the Brownian trajectory cannot be “too
irregular” (cf. Kahane (1976)). An account of the work of Ray and Knight is given
by Itd and McKean (1965) along with many applications of the Brownian occupa-
tion density; more recent material is summarized by McKean (1975), which we
found to be tough going in some places. Some more recent real variable applica-
tions are indicated in § 16.

Occupation densities for more general Markov processes were obtained by
Boylan (1964) and Griego (1967), the latter showing that the Blumenthal-Getoor
local time (see below) is an occupation density under appropriate conditions. We
remark that the term “local time” is generally used in the Markov literature instead
of “occupation density”. A potential-theoretic definition of the local time L,(x) at a
regular point x for a standard Markov process X was given by Blumenthal and
Getoor (1964): it is the (essentially) unique continuous additive functional whose
points of increase comprise the level set M. As noted by Knight (1971) and
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Williams (1969), L,(x) need not always behave like an occupation density. The best
result on L,(x) as an occupation density is in Getoor and Kesten (1972), where one
also finds results on joint continuity and the lack thereof; see also Getoor and
Millar (1972) and Millar and Tran (1974). Although occupation measures appear in
these papers, few implications are drawn concerning the trajectories of X. In § 18
we adapt the method of Getoor and Kesten to give, for the first time, the full
Lebesgue decomposition of the occupation measure of X. This is applied in § 19 to
a special case of Chung’s problem and to the integral representation of additive
functionals.

A voluminous literature on the application of Markov local times to the level sets
M, now exists and has been admirably summarized by Fristedt (1973) and Taylor
(1973). A particularly remarkable result along these lines is that of Taylor and
Wendel (1966) for stable processes, and Fristedt and Pruitt (1972) for the general
case, which identifies L(x) in terms of a fixed Hausdorff measure living on M,.
For processes with stationary, independent increments, the same measure works for
almost all levels, which is very striking when construed in real variable terms, since
no such behavior can be expected for a general measurable function. .

The theory of Markov local times has also been carried far in the direction
concerned with the regenerative property of the level sets and other “Markov
random sets”. Since this has little to do with occupation densities we will just refer
the reader to the literature, e.g., Maisonneuve and Meyer (1974).

5. Gaussian processes. S. Berman initiated the study of Gaussian occupation
densities (under the rubric “local times™) in his papers (1969-1972) using Fourier
analysis for the real variable part of the work. Another early contribution is Orey’s
(1970). Both authors study the Hausdorff dimension properties of the level sets.
More recent variations on the same theme are given by Marcus (1976) and Hawkes
(1977) using methods going back to Kahane (1968) who implicitly used occupation
densities for Gaussian Fourier series. Our papers, Geman (1976, 1977, 1977a) and
Geman and Horowitz (1976), are in the same spirit as Berman’s but use more direct
real variable techniques. A much finer result is that of Davies (1976, 1977) who
gives the Gaussian analogue of the Wendel-Taylor theorem mentioned in § 4; part
of the result is simplified by Kono (1977).

Generalizations to Gaussian (and other) random fields are given by Davydov
(1976, 1977), Cuzick (1977), Pitt (1978), Adler (1977, 1977a, 1977b), and Tran
(1977); those of Cuzick and Pitt are closest in content and spirit to the real variable
approach indicated above.

Section 21 begins with brief descriptions of the various methods used to obtain
occupation densities for general random processes.

The main results on (Gaussian) random fields are then taken up in §§ 22-28.
There is a short discussion in § 22 of when a Gaussian field is (LT) and we give our
own proof of a new result of M. Lifschitz (communicated to us without proof by
Davydov), which settles the question for Gaussian processes with orthogonal
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increments. An interesting consequence of the real variable approach becomes
apparent at this point, namely that (LT) is really a property of the increments of
the trajectories, hence of the two-dimensional joint distributions of the process; this
affords an even greater simplification for Gaussian fields. The main result of §§ 25
and 26 is that certain Gaussian fields have an occupation density which is, in a
precise sense, jointly continuous in space and “time”, and Holder continuous in the
space variable. (The “time” set is T = [0, 1]¥ which now is multidimensional;
“space” refers to R?, the state space of the random field.) An important concept (in
§ 24) is that of Jocal nondeterminism which originated with Berman (1972) and was
generalized in a slightly different form to random fields by Pitt (1978).

2. NONSTOCHASTIC OCCUPATION DENSITIES

6. Preliminaries. In this section we set down the basic properties of occupa-
tion densities for vector fields X : T — R? where, unless otherwise stated, T =
[0, 11V. These are called (N, d)-fields.

We write ®,, A, for the Borel sets and Lebesgue measure in R, | x| for the usual
Euclidean norm of x € R* and B,(x, r) for the open ball {y : |y — x| <r}. When
no confusion is possible we write “a.e.” and “dx” instead of “A.-a.e.”, “A (dx)”. X
is always assumed to be Borel measurable, and % (T) denotes the Borel sets in 7.

The occupation measure of X is

(6.1) w(B)=A(4ANX"YB), A€B(T) BeR,

Interpreting T as a “time set” (as when N = 1), this is the “amount of time spent
by X in B during the time period 4”. When A = T, we write simply u(B). (Observe
that, if X is regarded as a random variable on T, p is just its distribution). If p < A,
we will also have u, < A, for every 4; X is then said to satisfy the condition (LT), or
just to “be (LT)” (LT: local time). The Radon-Nikodym derivative du,/dA,,
denoted a(x, A), is then called the occupation density over A. Again, we write a(x)
for a(x, T). Thus

(6.2) Ayv(t € 4 : X(¢) € B) = [ a(x, A) dx,
A€ R(T), BeEB,

The density a(x, A) carries the interpretation: “the time spent at x during the time
period 4. This is further clarified as follows:

(6.3) THEOREM. Suppose X is (LT); then a version of a(x, A) may be chosen which
is a kernel, i.e.,

(i) a(-, A) is B, -measurable for each fixed A,

(i) a(x, -) is a finite measure on B (T) for each x.

Such a version will be called an occupation kernel and written a(x, dt).
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The proof of (6.3) is standard: it is the same as finding regular conditional
probabilities. The occupation kernel has, however, some more specialized proper-
ties. Define

M,={teT:X(t) = x},
the level set at x.

(6.4) THEOREM. Let a be an occupation kernel; then
(i) for every Borel function f(t, x) > 0 on T X RY,

(65) [ J(t, X(0)) dt = foafp S8, X)alx, d) dx;

(i) a(x, M) =0 a.e.

Equation (6.5) follows easily from (6.2) by standard approximations, and (ii)
from (6.5) upon taking f(z, x) = 1 if X(f) #x, = 0 otherwise. By being more
careful, we can get an even better occupation kernel. Write JC for the family of all

“rational boxes” in T, i.e., sets of the form II}J;, where J; C [0, 1] is an interval with
rational endpoints.

(6.6) THEOREM. If X is (LT), there exists a version of a(x, dt) such that

@ ax,J)=0ifx & X(J),J € I;

(i) a(x, M) = O for every x.

This result is due to Berman (1970) in case N =d =1 and (for (ii)) X is
continuous. Let K, be an increasing sequence of compact sets in T such that
L= UK, is full (ie., Ay(T\ L) = 0) and on each of which X is continuous.
Berman’s argument (with obvious modifications) shows the existence of kernels
a,(x, df) such that a,(x, d¢) is carried by K,,, is an occupation kernel for X |K, and
a,(x,JK,) =0if x & X(JK,), J € IC.

Since a,, ,(x, df) is an occupation kernel for X|K, ., hence also for X|K,, the
measures

a,.(x,dt N K,) and a,(x, dt)
must agree for a.e. x. Define @(x, df) = 0 on the exceptional x-set. We then have
&4 1(%, B) = @, (%, BK, )

> an+l(x’ BKn)

= a,(x, BK,)

= a,(x, B)
for every B € ®(T) and a.e. x, with equality if B C K,,. Now for the remaining
x’s, let

d(x, B) = lim,a,(x, B).

The existence of the limit is obvious as is the fact that & is an occupation kernel.

Finally, the proof of Lemma 1.5 of Berman (1970) shows that a,(x, M) = 0 for
every x, so (ii) holds for &. Similarly (i) is immediate.
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We remark that, in general, @(x, T) can be zero even on a set of positive
measure. On the other hand, for any occupation kernel,

(6.7) a(X(t), By(t,e)) >0  foralle >0, forae.te T

as is seen by taking, in (6.5), f(¢, x) = 0 if a(x, By(t,€)) > O0foralle > 0, and = 1
otherwise.

Here is another rather surprising application of (6.5) which relates the behavior
of the measures a(x, dr) to that of a(X(?), ds).

(6.8) THEOREM.  The measure o(x, drt) will be atomless for a.e. x iff a(X(¥), {¢}) =0
Jor ae. t.

PRrOOF.
Ir a(X(t), {t}) dt = [ga a(X, {t})a(x’ dt) dx

= faeZ er(alx, {1}))" dx.

REMARKS. (a) Occasionally it is useful to define the occupation measure rela-
tive to a finite measure on 7 other than Lebesgue measure; Example 3 (§ 0) is an
instance of this.

(b) In connection with Example 3 we have the following real-variable result:
suppose X is continuous, K is compact in T, and a(x, K) is an occupation density (not
necessarily a kernel) which is continuous in x; then X(K) has nonempty interior
Indeed, {x : a(x, K) > 0} is open and is nonempty by a remark similar to (6.7)
‘Since

Jaxuy a(y, K)dy =0
we find a(y, K) = 0 for a.e. y & X(K), hence for all such y by continuity. This i
especially interesting when a(x, K) is the occupation density relative to a singula;
measure carried by K, as in Example 3.

(c) Let Q, be the “quadrant” in 7 with “upper right corner” at ¢. In Part 3 wi
will choose occupation densities with the property that a(x, Q,) is jointly continu
ous in (7, x), and we wish to point out that we can retain the properties given it
(6.6); specifically, the arguments in Berman (1970) can be easily modified to show
if a(x, Q,) is jointly continuous, then o(x, Q,) can be uniquely extended to ai
occupation kernel for which (6.61) holds; if, in addition, X is continuous, (6.6ii) wil
hold as well.

7. Existence of a. We now give some sufficient conditions for an (N, d)-fiek
X to be (LT). In Part 3 we will use these to give simple probabilistic condition
under which almost every trajectory of a random vector field will be (LT).

1°.  Via harmonic analysis. This is Berman’s approach. Let

A(8) = [ ®u(d), 0eR

be the Fourier-Stieltjes transform (= characteristic function) of u; here 8- x is th
ordinary dot product in R?. Standard results on characteristic functions tell us, e.g
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that X is (LT) with a(-) € L¥(dx) iff
(7.1) Jref 77 €FEO=XO) gs dt df < o,
since the inner integral is just |A()* by (6.5). Similar arguments involving
integrability of |9|%| 4(8)|* will be used later to deduce further regularity properties
of a(x).

2°.  Via differentiation theory. The following is almost classical: if y is a finite
measure on R? , then

tP(Bd(x’ 6))

Ay(By(x, €))

exists y-a.e. (finite or not); and Y < A, iff Y'(x) < oo yY-a.e. Of course Y'(x) exists
(finite) A -a.e. also, but the y-a.e. conclusion is what is important here. This is
applied to p, recalling that u(B) = 0 iff X(¢) € B a.e., with the following result
(Geman and Horowitz (1976) for N = d = 1).

(7.2) THEOREM. (a) The limit

V() = 1ime¢oi;fr Lo, o(1X(s) — X(1)]) ds
d

Y(x) = lim,

exists (< o) for a.e. t (¢, is given by A (B40, €)) = c,e?).
(b) X is (LT) iff V(¢) < o0 for a.e. t.
(¢) X is (LT) with a € L¥(dx) iff
lim infewﬁ_dfoTI(o, o(|X(s) — X(2)]) ds dt < 0.

Moreover, under (LT), ¥(¢) = a(X(¢)) a.e. The proof of (c) rests on
(13) fr @(X(2)) dt = fqu a(x) dx
which comes from (6.5).

Although these results can be successfully applied to random functions and
fields, it is difficult to apply them to particular nonrandom functions. For example
an interesting open problem is fo determine which functions representable as Fourier
series (for instance) are (LT) and to compute o in terms of the Fourier coefficients.

The same question applies to particular classical functions such as the Weierstrass
nowhere differentiable function

X(t) = 3F_ob* cos(ant), teER
(a an odd positive integer, 0 < b < 1, ab > 1).
8. Hilbert transform. Let N = d = 1. Since

Ibl0,0(1X(5) = X (1)) ds < [YX(s) = X()] ", o(|X(5) — X (1)) s,

(7.2) leads us to conclude that
8.1 JolX(s) — X(¢)| 7' ds < 0 ae.
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suffices for (LT). But (8.1) is never true! See the authors (1976) for a more
comprehensive result. On the other hand, removing the absolute value marker, we
have, formally,

1 _ M)
®2) Xe—x0 =" -x®
where p is the occupation measure of X. These still will not converge, but it is
known that

w(dy)

(8.3) h(x) = lim,of S exists (finite) for a.e. x,

(for any finite measure on R): A(x) is the Hilbert (-Stieltjes) transform of p. If X is
(LT), then, for a.e. ¢, X(?) is not in the exceptional set for (8.3), hence:

(84) lim,\of (s . 1x(5)— X(')'”}m exists (finite) a.e.

It is apparently not known whether (8.3) holds p-a.e. as well; if such were the case,
then (8.4) would hold even without (LT). If X is (LT) and a(x) satisfies other
conditions, then (8.3) will hold for every x and so (8.4) for every ¢. A special case of
this is given in It6 and McKean (1965), Exercise 1, page 72: if W(¢) is Brownian
motion,

. ds . .
lim, \of (s . sy >e) W exists (finite) a.s.

9. Holder conditions and y-variation. The (N, d)-field X satisfies an approxi-
mate Holder condition of order v at t, if t,'is a density point (see appendix) for

B={1r:]X(t) — X(t,)] <c|t — 2|}
for some ¢ > 0.

(9.1) THEOREM. Let X be (LT) with a(x) in L*(dx) (resp. a(x) essentially bounded);
then. for every y>2N/d (resp. Yy > N/d), every t, and every ¢ > 0, the density
of B is zero at t,.

This implies no approximate or ordinary Holder condition at #,. The latter was
proven for N = d = 1 by Berman (1969).

ProOF. Take ¢ = 1, g(x) = a(x), ¢(¢) = €7, and ¢ = ¢, in the proof of (10.1)
below. An entirely similar (but easier) calculation to the one there, using the
Schwarz inequality in the L2-case, gives the result.

A closely related subject, when N = d =1, is that of y-variation. Berman
(1969a) gives some Fourier-analytic conditions on a(x, df) which imply infinite
y-variation, but these are too complicated to reproduce, so the reader is referred to
the original paper.

10. Smoothness in the set variable. The theme of this section is the relation
between a(x, B) as a function of B and the approximate local growth of X. To
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illustrate, let X(#), 0 < ¢ < 1, be real-valued (i.e., a (1, 1)-field) and call it a Jarnik
Junction if it satisfies the condition
|X(s) — X(0)] _

(Jl(t)) ap — hms—>t IS — tl

at a.e. ¢. This behavior was described geometrically in Example 1, § 0, where it was
shown that, if a,(x) is jointly continuous, then (J,(¢)) holds at every t. It will appear
as the special case p = 0 of (10.5) below that, if a,(x) is continuous in t for a.e. x,
then X is a Jarnik function (“is (J,)” for short). V. Jarnik (1934) constructed a
continuous Jarnik function and a function of Baire class 2 satisfying (J,(¢)) at every
t. As discussed by Saks (1937), page 297, this was quite surprising because, for an
arbitrary function X,

. X(s) — X(¢
im,., X8 = X0 _

on at most a set of measure zero. Example 1 thus takes on the added significance
that there exist continuous functions, viz. the Brownian trajectories, Wthh satisfy
(J,(?)) at every ¢.

We now give a general result of this type for an (¥, d)-field X having occupation
kernel a(x, B). Assume that ¢(r), Y(r), r > 0, are continuous, increasing, and
vanish at r = 0.

(10.1) THEOREM. Suppose g(x) > 0 is locally integrable and
a(x, B) < g(x)y(A\y(B)) a.e.
whenever B is a ball with rational center and radius. If
lim, e _N/d‘#(e)‘Pl/d(chN) =0 (en = An(By(0, 1)))

then, for a.e. t (and for every t if g is continuous),
|X(s) = X(0)| _

o(ls — 1))

We need to show that for each ¢ > 0,
(10.3)  lim,ge "Ny {s € By(t,€) : | X(s) — X(2)| < qo(]s — #])} =0

for a.e. ¢ (or every ¢). Set ¢ = 1 for simplicity, and let L be the Lebesgue set of g(x).
By (LT), X(¢) € L a.e.; and if g is continuous, L = R? so that X(¢) € L for every ¢.
Let € X ~'(L) and let ¢, 0. Choose a sequence {,} of points in R with rational
coordinates such that |z, — ¢| <&, and choose rational numbers §,|0 such that
2¢, < 8, < 3¢,. Then By(t, ¢,) C BN( > 0,) for each n and

&M {5 € By(t, &) : 1X(5) — X()| < o(ls — 1))}
<e, NAN{S € By(1,, 8,) : |X(s) — X(1)| < ¢(e,)}
V[ .00, 9oy A(% By(2,, 8,)) dx
<e, N‘P(szsn ) L nx(oy, e 8(x) dx.

(10.2) ap-lim__,
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The integral term is O((¢(e,))?) as n— co. Since ¢ is increasing, the entire
expression is bounded by a constant times (8,/3) ™ ™¥(cy8)(¢(8,))?, which con-
verges to zero.

When (10.2) holds a.e. we call X a (J,)-field ((J,) if ¢(r) = r7). Geometrically,
the straight lines bounding the double cone in Example 1, § 0, become curved in
the shape of the curve y = ¢(r), and the rest of the discussion there remains the
same. It should be remarked, too, that (10.2) implies

|X(s) = X()]| _

o(ls — 1)
which prohibits any kind of true “¢-Holder condition”.

The most interesting case of (10.1) is ¢(r) = r¥ and Y(r) = rP: under the
hypothesis of (10.1), if B < 1, then X is (J,) for every y > (1 — B)N/d.

We now formulate a different type of condition on a(x, df), the so-called [AC-p]
condition, 0 < p < N. For p = 0 this means that a(x, dr) is atomless for a.e. x. For
0 < p < N, the meaning is that, for a.e. x, a(x, dt) has a disintegration

(10.4) alx, 4, X Ay_,) = [ o(s, x, Ay, )\, (ds)

for all A, € B((0, 1F), 4y_, € B (0, 11V-?), where a(s, x, A) is a kernel on
[0, 17 X RY X B ([0, 1]¥~7) such that a(s, x, du) is atomless for a.e. (s, x). This
says that, for almost every t* = (t©, - - ., #/P), the (N — p)-field s > X(¢*, 5) has
an occupation kernel which is [AC-0]. The fixing of the first p coordinates here is
arbitrary: any other set of p coordinates could have been chosen. We will leave
aside the obvious formulation.

Another interpretation of [AC-p] is that the “conditional” measure obtained
from a(x, dt) by fixing the last N — p coordinates is absolutely continuous relative
to A,. For p = N this would be impossible since a(x, df) lives on the level set M,
which has Lebesgue measure zero. The following theorem is due to Geman (1977),
page 244.

lim sup, _,, o0

(10.5) THEOREM. Let a(x, df) be [AC-p] for some p, 0 < p < N; then X is (J,) for
y=(N - p)/d

Thus, for example, if N = d =2 and [AC-1] holds, then for a.e. t € [0, 1] X
[0, 1], the proportion of s’s within & units of ¢ for which X(s) is within qe% units of
X(¢) is asymptotically zero (as ¢|0) for every g > 0.

Obviously Jarnik functions, and the (/,) functions generally, are very wild. This
leads naturally to the (open) question of whether Jarnik functions are always (LT).

Let us note, finally, the higher dimensional version of Example 1, § 0.

(10.6) THEOREM. Suppose a(x, dt) is atomless for every x and a(x, B) is continuous
in x for each rational ball B; then (Jy (1)) holds at every t.

11. Smoothness in the space variable. This time we study the influence of
a(x, B) as a function of x on the behavior of X(?), first at a fixed #, € B, then
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globally. We write £ = X(#,) and assume (for now) B is open and a(¢, B) = 0. The
last requirement will be explained below.

(11.1) THEOREM. Suppose a(x, B) satisfies a Holder condition of order B at &; then,
for every y > N /(d + PB), the condition (J.(ty)) obtains.

The requirement that a(£, B) = 0 is easiest to visualize when d = 1. Suppose that
a(x, B) is continuous in x, X is continuous, and that X takes on the extreme value
£ = X(ty) at, e.g., an interior point #, of B. If { is, say, a maximum, we shall have
a(x, B) = 0 for x > ¢, hence for x = £ Similarly, if a(x, B) is of class C®(R?), all
partial derivatives of order < k will vanish at £ and Taylor’s theorem yields a
Holder condition of order & at &; thus we obtain (11.1) for y > N/(d + k).

Obviously it would be preferable to work with closed sets B in this context. If
N =1, it is shown by Freedman (1971), page 36 that, if X is a.e. nondifferentiable on
[a, b] then X has an interior extremum.

Referring to Example 1, § 0, and the discussion in § 10, we find that, at an
interior extremum, one nappe of the cone is lost and X is (mostly) confined to a
spike with curvilinear boundaries which points up or down according as £ is a
maximum or minimum. Finally, if X is (LT) and a satisfies [AC-0], then X is a.e.
nondifferentiable and so X has a dense set of spikes whose sharpness is governed by o
via (11.1). We will derive (11.1) as a special case of the following result, in which
¢(r), r > 0, is a nonnegative, increasing function with inverse <f>(u) such that
#(0) = 0 and ¢(«) > O for u > 0. Finally, put

Y(u) = ess. SUp,e By u)la(x’ B) — a(§ B)|.
(11.2) THEOREM. Assume
(11.3) Sou(u)($(u)) " udV du < oo
and

lim inf, oé(q ~'u)/é(u) > O for each g > 0;

then (10.2) holds at t = t,, i.e., condition (J ,(ty)).
We must again prove (10.3), with ¢ = #,. We have

e MAv{s € By(tp, &) : | X(s) — X(25)| < qo(]s — tol) }

X(s) — X(1o)
o5 = 7o) )""

< JBytoey IS — ’ol_NI(o,q>(

< Saytroe ($(a71X () = X(10)])) ™" ds.

This will tend to zero as €|0 if

(11.4) f5 ($(a™1X(s) — &))" ds < .
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But this is just
Jre ($(g7 1% = &) "a(x, B) dx

< o o((a™"x — &))" "lIx — &) dx + (3(a78)) " [ iaue 0 a(x, B) dx,

for 8 > 0. The second integral is at most A, (B), hence finite, and a change to polar
coordinates shows that the first integral is finite in view of (11.3). The theorem is
proven.

We remark that the theorem remains true if B is merely Borel and ¢, is a point of
dispersion for B€.

Berman (1969) found that the higher smoothness of a could be used to obtain a
probabilistic solution of a problem of Carathéodory, viz. fo construct a Borel
function X such that A\(D) > 0 implies \(X ~'(D) N B) > 0 for every interval B. We
call such an X a Carathéodory function.

(11.5) THEOREM. Let N = d = 1; suppose X is (LT) and that a(x, B) is real-
analytic on R for each rational interval B; then X is a Carathéodory function.

Indeed, if A(X “(D) N B) = 0, then a(x, B) = 0 a.e. on D hence a(x, B) =0
by analyticity; but this is impossible, e.g., by (6.2). Almost every trajectory of
certain Gaussian processes satisfies the hypothesis of (11.5), hence the solution of
Carathéodory’s problem—see § 28.

We remark that a Carathéodory function cannot be continuous, but that there
exist continuous functions X such that a(x, B) is C* for each rational interval B,
again given by Gaussian trajectories. A 'natural question is this: does every
Carathéodory function have an (analytic) occupation density?

12. Perturbations. Let X, Z be (N, d)-fields. The perturbation problem is this:
if X has a nice occupation kernel a(x,dt) and Z(t) is sufficiently smooth, is
X(®) + Z(t) (LT)? In view of §§ 9-11, X should exhibit very wild behavior and
gentle perturbation by Z should not be enough to dampen it. We discuss only
N = d = 1. Proofs and generalizations will appear elsewhere.

Here are the main results. We write a,(x) for a(x, [0, ¢]) and &/(x) for da,(x)/0x.

(12.1) THEOREM. Assume o,(x) is jointly continuous, o) is absolutely continuous
for a.e. t, and a)(x) is integrable on [0, 1] X R; then X(¢) + Z(¢) is (LT) whenever Z
is differentiable a.e.

As mentioned in Example 2, the Brownian local time does not satisfy the
hypotheses of (12.1), failing the absolute continuity requirement and we do not
know if mere joint continuity of a,(x) suffices in (12.1).

Now suppose Z is of bounded variation and write Z(ds) for the corresponding
signed measure. We now perform a little illegitimate calculation using the “8-func-
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tion”: let y,(x) be the occupation density of X + Z. We have
d
Yt(x) = 'jx'fz)l(—oo,x](x(s) + Z(S)) ds

d
= fo—ooof:)—J;I[y+Z(s), oo)(x)a(ya dg) dy

= [ J08(x —y — Z(s))a(y, ds) dy
= fodsa(x — Z(s)) + [oay(x — Z(s)) Z(ds)
= a(x — Z(2)) + [oas(x — Z(s)) Z(ds).

Despite its origins, the last line is correct for any continuous Z of bounded variation,
if aj(x) exists and is (jointly) continuous for all (¢, x), and then v, (x) will itself be
jointly continuous. Under the hypotheses of (12.1) alone, however, the formula for vy is
not known.

An interesting special case is obtained when X is continuous and Z(¢) =
max o<, X(5); Z is continuous, increasing. Let A = {5 : X(s) = Z(s)} be the set of
“progressive maxima”. The measure Z(ds) is carried by A as is (0, ds), where
v(x, ds) is the occupation kernel of Z — X; (instead of X + Z as in (12.1)—obvi-
ously no problem in this). Since Z — X > 0, y(x, ds) = 0 for x < 0, hence also for
x = 0 by joint continuity. This reflects the fact that A becomes smaller as X
becomes more erratic.

It is interesting to contrast the above example with the trajectories of Brownian
motion. Let M, = max,,,W(s). Then M — W is a copy of the reflecting
Brownian motion | W,| and as such has a nonzero local time at the boundary x = 0,
viz. 28,(0), where B is Brownian local time (see It6 and McKean (1965), Ch. 2).
Since the occupation density of M — W must be zero for x < 0, it must have a
discontinuity at 0.

13. Level sets. Much of the literature on occupation densities is actually
concerned with the size of the level sets M, = {¢ : X(¢) = x}, for a random vector
field X, as measured by cardinality, capacity, or (Hausdorff) dimension. The basic
idea here is that, for each x, a(x, df) is a measure carried by M,, and this has a
direct bearing on each of the three types of “size”. We restrict our attention to
N = d =1 here, though some of the results generalize to higher dimensions, and
we assume X is (LT). Recall a(x) = a(x, T) and a,(x) = a(x, [0, #]).

Cardinality. A very simple result is

(13.1) THEOREM. Suppose a(x, dt) is [AC-0] (§ 10); then, for a.e. t,
Lt = MX(I) = {S . X(S) = X(t)}
is uncountable.

This is because the support of a(x, d) is either empty (a(x) = 0) or uncountable
(a(x) > 0) for a.e. x, and is contained in M,, and hence, for a.e. s, the support of
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a(X(s), dt) is uncountable, and contained in L, whenever a(X(s)) > 0. But (§ 6),
a(X(?) > 0 ae.
The following is due to Berman (1970), page 1265, when X is continuous:

(13.2) THEOREM. If ax) is jointly continuous, then {x : M, is countable} is
nowhere dense in the range of X.

This follows immediately from

(13.3) LemMA.  If a(x) is (lower semi-) continuous, then {x : a(x) = 0} is nowhere
dense in the range of X.

Berman (1969) proved (13.3) for X continuous and his proof, in conjunction with
Lusin’s theorem gives the general result.

Dimension. We refer to Kahane (1968) for the definition of Hausdorff dimen-
sion.

(13.4) THEOREM. (Berman (1972), pages 76, 78).  Suppose a,(x) is jointly continu-
ous and )

(13.5) SUP, e R; o<r<1[ Xan(X) — a(x)] < D|h|, h < hy,

for some B, D, hy > 0; then
() {x:dim M, <B} C {x:a(x)=0};
(ii) X does not satisfy a Holder condition of order v > 1 — B at any t.

In fact, from § 10 we see that X is (J,(?)) at every ¢, which is much stronger than
(ii). This leads to

(13.6) THEOREM. Let 0 <y < 1 and a,(x) be as in (13.4) for each B < vy; assume
that X satisfies a Lipschitz condition of each order less than 1 — y at each t. Then

(13.7) dimL =y  forae.t.

For any ¢ > 0, dim M, <y + ¢ for a.e. x follows from Kahane (1968), page 142,
and hence dim M, < vy for a.e. x, and then dim L, < y because X is (LT). On the
other hand, if B <y, (13.4) tells us that dim L, > B for a.e. ¢, since a(X(#)) > 0
a.e.; this proves the theorem.

We note that almost every Brownian trajectory satisfies the hypotheses of (13.6)
with y = %

Capacity. Results on capacity are, of course, intimately bound up with those on
dimension. Here we present some theorems, due to Geman (1977a) which are
rather different. These show the influence of certain energy integrals, such as arise
in capacity theory, on the local behavior of X, which is now assumed to be a
continuous (N, d)-field with occupation kernel a(x, df).

Let

w(e) = supj,_y<.|X(s) — X(2)]

be the modulus of continuity of X, and let ¢(r), r > 0, be a positive decreasing
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function, ¢(0 + ) = o, and such that ¢(|¢|), ¢ € RY, is integrable and has the
representation ¢(|¢|) = sup,¢,(f), where 0 < ¢ < ¢, € L'(dr), each ¢, being the
Fourier transform of a positive, integrable function. These functions ¢(|z]) will
serve as the potential kernels in our energy integrals; among them one finds all the
usual things, such as the Riesz potentials |¢| 7%, 0 < 8 < N.

We now define

L(e) =[ fop(r)r™~! dr]l/d,
finite since ¢(|¢|) is in L'(d?), and y(r) = (r“¢(r))'/~. The energy integral corre-
sponding to the level x is

L(9) = [r/r ¢(ls = t)a(x, ds)a(x, dr),
and, finally, let a = Ay{# € T : Iy,(¢) < 0}

(13.8) THEOREM. Suppose a(x) is in L*.
(@) If a > 0, then

(13.9) limeZ—Eg = o0.
(b) If Y(r) is increasing, and a = 1 then
. X(s) — X
(13.10) ap — lim sups_,,l—izl)T_—tl()t—)l = o0 a.e.

Thus, for instance, if ¢(|¢|) = |¢|~#, then, in part (b), X cannot be Lipschitz of
order (d + B)/ N, whereas, in (a), X cannot be Lipschitz of order (N — B)/d.

As (13.8) shows, the finiteness of I (¢), which implies positive ¢-capacity of M,
for sufficiently many levels imposes a “lower bound” on the local (approximate)
growth of X (note, however, that (13.10) is weaker than (J,)). One may then ask
whether the conclusion of (13.8) remains valid if we replace Iy, (¢) < oo by
Cap, My, > 0 in the statement of the theorem.

14. Summary. To get an overview of the real-variable part of the subject, we
summarize in the following table the results of Part 2, restricting to the case
N = d =1 for simplicity, and as concerns the results of §§ 10 and 11 considering
only Hoélder conditions rather than the general “¢-conditions” appearing in the
text. Reading down the table, we find progressively better behavior of a,(x) =
a(x, [0, t]) accompanied by correspondingly worse behavior of X (7). Except for
brief comments in Part 1, the entries concerning pure jump behavior of a,(x) are
not explained in this paper; see our (1976) article. The entry marked (*) shows the
position of the Brownian motion trajectory with regard to the behavior induced by
its occupation density. The Brownian trajectory is often held up as a badly behaved
function from the point of view of classical analysis but appears tame by compari-
son with functions with smooth occupation densities. Indeed, a notable French
mathematician, upon learning of such functions, is reported to have remarked “Je
me détourne avec effroi et horreur de cette plaie lamentable de telles fonctions.”
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All the other entries carry a reference within the present paper. The table is largely
self-explanatory; note that, in a phrase such as “Hélder condition 8 < 17, 8 is the
order of the stated Holder condition. Also, the implications in the fifth row of the
table require some explanation: the conclusion that J, (#) holds at every ¢ follows
from (10.1) by taking g(x) = constant; in fact, the hypothesis “uniform Holder
condition B8 < 1” could be replaced by “uniform on finite x-intervals” since the
version of (10.1) for g continuous remains valid for g bounded on finite intervals.
The conclusion that dim L, > B for a.e. ¢ follows from the proof of (13.6) together
with the observation that (13.4) (i) is true for almost every x without assuming that
a,(x) is jointly continuous (see the proof of Lemma 6.2 of Berman (1972)).

TABLE 1
a(x) a(*) %))
pure jump ess. unbdd. < CO, Xx'(#) = 0 for some ¢
pure jump < M, countable for a.e. x
ess. bdd. = No local Holder conditions of
ordery > 1. (§ 9)
continuous - D (§ 10), My, uncountable
for a.e. ¢ (§ 13)
(for a.e. x)
. J, () for every t,y > 1 — B (§
uniform Holder = 10); dim L, > B for ae. ¢t (§
13)
condition 8 < 1
jointly continuous = J,(¢) for every ¢ (§ 10)
(*) uniform Holder uniform Holder * <« Brownian motion
condition 8 <} condition 8 < }
continuous abs. continuous for = X + Zis (LT), Z diff. a.e. (§ 12)
ae.t
c® = J/x(?) at extreme points (§ 11)
analytic (for
all rational ¢) = Carathéodory
APPENDIX

Metric density and approximate limits. The upper (lower) density of A € B, at
x € R* is the limit superior (resp. inferior) of

g(e) = M (Bi(x, €) N A)/ ¢, e*

where ¢, = A (B,(0, 1)). A point of density (resp. dispersion) of A is one at which
lim,g(¢) exists and equals 1 (resp. 0). Almost every x € A4 is a point of density for
A and a point of dispersion for 4°. These hold as stated for Lebesgue measurable
sets, and, with modifications, for arbitrary sets; see Saks (1937) for this and the
following definition.
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Let f be a real-valued Borel function on £ € B, and let ¢ be a density point of
E. The approximate limit superior (or upper limit), denoted

ap — lim sup, , f(s)

is the infimum of those numbers a such that ¢ is a point of dispersion for
{s € E : f(s5) > a}. Similarly,

ap — lim inf,_, f(s)
is the supremum of those a for which ¢ is a point of dispersion for {s € E : f(s) <
a}. (Obvious conventions apply when no such a’s exist.) When these two quantities

are equal, say, to L, we say that f has an approximate limit at t, denoted
ap — lim,_,, f(s), the value of which is the common value L. We note that

— oo < lim inf_, f(s) < ap — lim inf,_, f(s)
< ap - lim Sups—»tf(s) < hm sups—»tf(s) < oo,

so that, e.g., the existence of a true limit implies that of an approximate limit, but
not conversely. It is easy to see that ap — lim_,, f(s) = L iff, for each ¢ > 0, t is a
density point for {s € E : |f(s) — L| < €}; here L is assumed to be finite.

The following result, which makes clearer the intuitive meaning of approximate
limit, is part of the folklore. It is alluded to by Saks (1937), and Hobson (1927),
page 312, has a proof, for k = 1, which appears to us to be incorrect; we could not
find a proof anywhere else.

THEOREM. For ap — lim,_, f(s) = L it is necessary and sufficient that there exist a
Borel set G C E of which t is a density point such that

(1) lims——ﬂ;se (s) = L.

The sufficiency is trivial. For simplicity, we take # = 0 and L finite in proving
necessity. Define

A,={s€E:L—-1/n<f(s) <L+ 1/n}, n> 1

Then 4, € B, and 0 is a point of density of 4,. Let a,t¢c, and §,|0 (n — ),
choose ¢,|0 so that

A (B (0,6) N 4,) > a,e* forall e <e,

and let
G = U:°= lAn N (Bk(O’ €n) \ Bk(07 en+l))'

That (f) holds is trivial; we need only prove that 0 is a density point of G. Let
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g, <€ <g,_y; then
e *M(BL(0,€) N G) = e *N(B(0,8,) N G) + e *N[(B,(0,€) \ B,(0,¢,)) N G]

> e—k[}\k(Bk(O’ 8,,) N An) - }‘k(Bk(O’ 8n+1) N An)
+A(Bi(0,€) N 4,_;) — M(Bi(0,¢,) N 4,_))]

> e Mo, — cpefy + o, 1% — k]
> e_k[a,,e,f‘ - 8,65 + a,_ g% — cke,f‘]

=a,_ 1~ (en/s)k(ck + ckansn - an)

>a, ;— (g + a,(c8, — 1) —>¢ (n— o0).

3. STOCHASTIC OCCUPATION DENSITIES

15. Markov local time L. Let X = (X)), t € T =0, ), be a standard
Markov process as in Blumenthal and Getoor (1968) whose terminology we use
freely. The o-fields %, on the sample space £ are the usual completions of
o{X,:s <t} and ¥ = v ,9%,. The state space is (E, &) with & separable and
{x} € & for each x € E. For each w € Q, the tragjectory t— X,(w) is a Borel
function and so has an occupation measure pgs(I) =A{s €EB: X, €T}, B €
B(T), T € &, where we have suppressed the symbol w from our writing but not
from our thoughts. We say that X is (LT) relative to m, a o-finite measure on &, if
p = pp < 7 as., i.e., almost every trajectory is (LT). Recall that “a.s.” here means
on a set which is of P*-probability 1 for every x. In the (LT) case, the occupation
kernel a(x, B) can be chosen jointly (x, w)-measurable under minimal hypotheses
on & and 9. Since this is rather standard, we will accept the conclusion and not
dwell on the point any longer. When B = [0, ¢] we write u(I') and a,(x) instead of
pg(@), a(x, B). It is not difficult to show that, for every I', u(T) is an additive
functional, and it will emerge below that the same is true of a,(x). In the course of
this work, we will also fully explain the connection between «,(x) and the
Blumenthal-Getoor local time L,(x) which we now define.

Let T, be the hitting time of {x}, x € E, and let E, C E be the set of regular
points: P*(T,, = 0) = 1. (By Blumenthal’s 0-1 law, P*(T,, = 0) = O for x irregular.)
Following Getoor and Kesten (1972) we assume once and for all that

(15.1) Y!(x,y) = E*(e~ %) is & ® & -measurable.

This implies that E, = {x : ¢'(x, x) = 1} isin &.

Citations such as [V, (3.8)] will refer to Blumenthal and Getoor (1968); for
simplicity, we always take the multiplicative functional there to be p, = 1;,¢),
where { is the lifetime of the process.
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For y € E,, the local time at y is the unique, continuous additive functional
L(y) = (L(y)) such that

(15.2) Yi(x,y) = B e~ dL(y), x € E.

The existence and uniqueness of L(x) are guaranteed by probabilistic potential
theory. One of the basic results on local times, from which the name derives and
which connects L(x) with the behavior of X, is this [V, (3.8)]: for every x € E,,

(15.3) JYrCc M, CJ, as,

where J, = {t: L,, (x) — L,_,(x) >0 for all ¢ >0} and J.* = {r: L, (x)—
L(x) > 0 for all ¢ > 0}. Thus the local time may be construed as a continuous
measure L(x, df) carried by M, ; indeed, the closed support of L(x, dt) is J,, which
differs from J.* (hence from M,) by a countable set. We then have, for x € E,,

(15.4) L(x, M?) = 0.

This condition essentially determines L(x) up to a multiplicative constant.

Other constructions of L(x), depending more or less on the “regenerative
property” of the set M,, were given by Horowitz (1968, 1972), Maisonneuve and
Morando (1970), and Maisonneuve (1971).

Still another approach is due to Kingman (1973). As we shall see in §§ 17 and 18,
under very general conditions, L,(x) can be realized as an occupation density, and
so as a limit of ratios involving p,(T") for sets I'| {x}. In this sense, the definition of
L,(x) requires knowledge of the behavior of the process in a neighborhood of x, as
well as ar x; Kingman refers to this as an extrinsic specification of the local time.
Similarly, the definition at (15.2) is extrinsic. On the other hand, Kingman’s
construction of L(x) depends on M, alone.

Finally, various attempts have been made to define “local time on I'"”” for a set
I' c E; for example, see Sato and Tanaka (1962) who discuss the so-called
“diffusion process on the boundary”. A discussion of some of the difficulties which
arise is given by Blumenthal and Getoor (1968); see also Maisonneuve (1972).

16. Applications of L. The best-known applications of Markov local time are
generalizations of those in Itd and McKean (1965) for Brownian local time B,(x).
We remark that B coincides with L in this case and is an occupation density
relative to Lebesgue measure. A full, recent account of B is found in the survey
paper of McKean (1975) where one finds Levy’s results concerning the component
intervals of [0, ] \ M,, Tanaka’s representation of 8 as a stochastic integral and the
proof of its joint continuity, and the results of Ray, Knight and Williams on the
Markovian nature of the process 8,(x), 0 < x < 1, for certain stopping times 7.
The results of Pittenger and Shih (1972) and Meyer, Smythe and Walsh (1971)
suggest that the Markov property of 8,(x) may persist in more general cases. We
would like to remark that this limits the smoothness of x - B,(x), and, in turn, the
irregularity of the trajectories, in contrast to what is possible, e.g., for Gaussian
processes.
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Further results on [0, /]\ M, (for general Markov processes) are given by
Blumenthal and Getoor (1964) and Getoor and Millar (1972). The Hausdorff
dimension of M, (x fixed) was found by Taylor (1955) in the Brownian case;
generalizations and related material are given by Blumenthal and Getoor (1962),
(1968), and Stone (1963).

These results culminate in a result of Fristedt and Pruitt (1971), which, for our
purposes, can be stated as follows: for each x € E,,

(16.1) L(x)=H([0,t]n M,) forall ¢>Oas.

where H, is the Hausdorff measure generated by a certain nonrandom function h.(t).
(Of course, A, is then the “exact measure function” of M,.) This was first done for
stable processes by Taylor and Wendel (1966): if the index is a > 1, then hy(¢) =
tA(log log 1/1)'~#, where B = 1 — (1/a). Obviously, the same » works for every
level x in the case of stationary, independent increments. For a full account, see
Fristedt (1973) and Taylor (1973). For other analytical properties of L(x) as a
function of ¢ (x € E, fixed), see, e.g., Hawkes (1974) and Millar (1972).

A recent application of Brownian local time concerns the set of points A(w) C
[0, o) at which the law of the iterated logarithm fails, i.e.,
(16.2) lim sup, . (@) = W@l

(2h log log 1/ h)?

Knight (1974) showed that 4(w) N My(w) # & a.s. and Kahane (1976) improved
this by replacing A(w) with the set where the “lim sup” in (16.2) is zero. A related
result is given by Bruneau (1974): let H, be as in (16.1) (for Brownian motion);
then, a.s., Hy(A(w) N My(w)) = 0.

In the same paper, Knight described the spiking of the Brownian path as
follows: “the path exhibits a dense set of spine-like projections of sharpness
exceeding |h| (log(1/]h))~*2 for every & > 0”; i.e., with P -probability 1, there is
a dense, random set D C R, such that, for each t € D and each ¢ > 0,

1 (1+¢)
(16.3) W, — W) > C(ls - 1)? [log| tl]

Jor some constant C and all sufficiently small |s — t| (depending on ¢). The real-vari-
able aspect of this result is revealed by passing to an “approximate double-spike”
(a “spike” at extrema), in which case the factor (log(1/|A[)) ~*2 can be improved
somewhat and the result becomes valid for every 7. Indeed, according to Itd6 and
McKean (1965, page 71)

:Bt+8(lx) - IBx(x) <8, Po-a.s.,
d2log 1/6
from which it follows from (10.1) that, with P%probability 1: for every C > 0, every

lim sup; oSup, c gSUp, ¢
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t is a point of dispersion for the set

(11w, = wit < Cls =t =g ]pts = ).

logls

for any p(h) = 0 as h|0.

Let us mention, in passing, a few other applications of the Blumenthal-Getoor
local time. Cinlar (1975) studies the “dry periods” in a model for a storage process
or dam by constructing the local time at 0 for the process X, which represents the
content at time ¢. Greenwood (1975) uses the local time as a continuous time
analogue of “ladder epochs” in random walk theory. Similar applications are given
by Bingham (1975) for processes with stationary, independent increments and for
various models of queues and dams.

17. L as occupation density. In view of (15.4), the question naturally arises
whether L/(x) is itself an occupation density, assuming all points regular. As
indicated in § 4, various sufficient conditions have been given in which = is a
reference measure and there is a potential “kernel” u'(x, y) satisfying suitable
continuity hypotheses. The best result involving only the existence of an occupa-
tion density is due to Getoor and Kesten (1972):

(17.1) THEOREM. Assume E = E, and (15.1) holds; let = be a reference measure for
X; then a version of (L(x)) can be chosen such that
(@) (s, x, w)> L(x, w)is a B0, t]) ® & ® F,-measurable mapping (s < t);
(b) t> L(x, w) is left continuous and nondecreasmg for each (x, w);
(¢) L(x) is a continuous additive functional for each x;
(d) there is a finite, positive, & -measurable function g(x) such that a(x) =
g(x)L(x) is an occupation density.

It should be emphasized that, whereas (17.1) implies a.s.

w(T)

* 1 a.C. A,
™ o, (x) = limp (o —7== (D) 7-a.e. X
it is not true that this relation holds a.s. at every x. Knight (1971) shows that, for
some constant C,

for the “reflected” (in a suitable sense) symmetric stable process of index 1 < a <
2; these processes have all points regular with A as a reference measure, so that (*)
holds and the property at x = 0 appears exceptional. Williams (1969) exhibits a
Markov process with state space {0, 1, - - -+ } with 0 as the unique instantaneous
state and such that no formula of the type

L,(0) = limgou,(B(8))/h(8)

is valid, where B(8) is the ball (in a suitable metric) of radius § > 0, center 0; (*)
holds in a trivial way for all x # 0 in this case. Of course, from the point of view of
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occupation densities, such aberrant behavior at a single state is irrelevant, and the
examples only serve to show that there is no a priori connection between the
Blumenthal-Getoor local time and the occupation density. As mentioned in § 4,
Griego (1965) gives conditions under which (*) holds for each x a.s.

18. Lebesgue decomposition. We are going to extend (17.1) by giving the
complete Lebesgue decomposition of the occupation measure p,, and, conse-
quently, a necessary and sufficient condition for a Markov process to be (LT). Let
E, ={y: Y!(x,y) = 0 for all x € E} (the “polar” points), E; = E\(E, U E)
(irregular but not polar), and E = E, U E; (nonpolar); all these are in &. The
definition of L(x) is now extended to all x € E as follows: if x € E,, L(x) is
already defined as in § 15; if x € E,, L(x) = 0; ifx € E,

(18.1) L(x)=#{0<s<t:X,=x},

where # denotes the cardinality of the indicated set. Clearly, L(x) is again an
additive functional, though not continuous (or even natural) in general, and (15.4)
still holds. According to [V, (3.40)], L,(x) < oo for all ¢ a.s. for x € E:

It can be shown that, for each ¢, the mapping (s, x, w) = L(x, w) on [0, f] X E
X Q is (B0, 1) ® & ® F,)*-measurable, the * denoting universal completion.
This is accomplished by looking separately at E,, E, and E;: on E, the situation is
trivial, on E, the method of Getoor and Kesten (1972) applies, and on E; one uses
the approach in our paper (1976a). We omit the details.

Let us denote (temporarily) by v,(x) the density of the absolutely continuous part
of the occupation measure:

(182) w(T) = fr v,(x)m(dx) + B(D), ELlmTES.
A priori, v,(x) cannot be very different from L,(x): one can show that y(x) can be
chosen as an additive functional carried by M,, and this already determines y(x)

up to a constant.
Let R(w) denote the range of X,(w), s > 0. For any x € E

Ex('”(R("") N Ep)) = IExpr sup,>01(y)(X,)qr(dy) =0.
Hence: ,
(18.3) 7(R(w) N E,) = 0as.

Thus the polar points cannot contribute to the absolutely continuous component of
V. As we shall see, E, carries all of the singular component if 7 is a reference
measure.

Let us recall a bit of notation. The 1-potential operator of an additive functional
A is defined by

UAlf(x) = Exf(?e_tf(Xr) dA,;
when f = 1 we write simply u}(x). When 4, = ¢, U}f becomes the 1-potential U''f
(or resolvent) of the process, and, finally, taking f = I we retrieve the 1-potential
kernel U'(x, I).
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We now show that, under minimal assumptions, if X is (LT) relative to «, then 7
must be a reference measure. Indeed, if X is (LT), then (18.2) holds for all z > 0
with g, = 0 and then

U'(x,T) = Jr u;(y)(x)w(dy).
A routine calculation shows wu),(x) = ¥'(x, »)uy,(»). Thus a 7-null set always
has potential zero, and the converse holds if uyl(y)(x) > O for every pair x,y € E.

We assume, from now on, that = is a reference measure and, with no harm done, is
finite.

(18.4) THEOREM. The Lebesgue decomposition of p, relative to m is
w(I) = p(T 0 E) + p(T N E,);

the term u(I' N E,) is singular (by (18.3)) whereas

(18.5) w(T N E) = fr g L(y)7(dy)

for a positive, & -measurable function g.

For later use we note that, if #({y}) > 0, then y € E, : m({ y}) > 0 implies
U'(x, {¥}) > 0 for some x, and the strong Markov property at T, shows that M,
has positive Lebesgue measure P”-a.s., which means y € E,.

We now write down the 1-potential operators of the additive functionals L(y),
writing U, instead of U} ,,:

Uf(x) = ¢'(x,»)y) if y€E,
- T%f(y) i yeE
These are given in Chapter V.3 of Blumenthal-Getoor (1968). Define a function
o(y)=1 if yEEUE,
=(1-v'(»») if y€E,
and an additive functional

4, = [g o(¥)L(y)7(d).
We have

ui(x) = [z (»)u)(x)m(dy) < 7(E) <

so that 4 has a bounded i-potential.

We now observe that 4 is a continuous additive functional: it suffices to prove
continuity at T(w) < oo, where T is a stopping time. Let £ = Xp(w). If #({£}) > 0
we have £ € E,, so L(§) is continuous, and so cannot contribute to a discontinuity
of 4. If y # §, then, fory € E, U E,, L(y) is continuous, and if y € E,, then L(y)
is continuous at 7(w), since it jumps only at times ¢ when X,(w) = y.
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Let f be nonnegative and & -measurable; then
Uif(x) = [g $(»)f(y)u, (x)m(dy)
= [e SO (x, y)7(d).
B, = [olz(X,) ds.

This is obviously a continuous additive functional with a bounded 1-potential; the
1-potential operator is

Let

Upf(x) = E*[5e ™ T5(X (X)) dt.
Suppose 0 < f < 1 and U}f = 0; then, for each x,

fOW'\(x,y) =0  for w-ae.y,
and, by Fubini, for 7-a.e. y, f(»)¥'(x,y) =0 for m-a.e. x. Now, for y € E -
Y! (x, »y) = 0 for all x. Suppose #({f > 0} N E) > 0; then, for some y € {(f> 0}
N E, FOW!(x, y) = 0 for a.e. x. Since x — ¢!(x, y) is 1-excessive, it would follow
that ¢'(x,y) = 0 which is impossible because y is not polar. It-follows that
7({f > 0} N E) =0, and thus

Uaf(x) < U(x, En {f >0}) =0,
since 7 is a reference measure. Motoo’s theorem [V, (2.8)] now gives a function
h(x) > 0 such that

folz(X,) ds = [4h(X,) dA, forall ¢ > Oas.

From the definition of 4 we derive easily

= [sr o(V)h(y)L(y)m(dy),
which is (18.5) with g = ¢ - h, and (18.4) is proven.

(18.6) COROLLARY. Suppose m(R(w)) = 0 a.s., then w-a.e. point is polar.

Since m(R(w)) = O a.s., p, has only a smgular component and so p.,(E ) = 0; but
then E is of potential zero, hence 7(E) =

(18.7) COROLLARY. Suppose u, is purely singular as.; then m(R(w)) =0 a.s. and
w-a.e. point is polar.

We have already seen that 7(R(w) N E,) = 0 a.s. (18.3); since By is singular, we
have p,(E) = 0 a.s. by (18.4) and thus E has potential 0. Thus 7r(E) 0 and the
result follows.

Summarizing, we have: if 7 is a reference measure, then the following are
equivalent:

(i) m(R(w)) = 0 a.s.

(i) m(E) =0

(iii) p, purely singular a.s.
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We should point out that a similar decomposition for the occupation measure of
an inhomogeneous Markov process is apparently not valid: there are strictly
increasing, continuous functions F(f) such that Xg, is a.s. not (LT), where X
denotes Brownian motion (see § 22). Such processes have no polar points (under
any reasonable definition of “polar”) and yet p, is purely singular.

19. Applications. We will give two applications of the results in § 18, viz. to
the “Chung problem” and to the representation of continuous additive functionals
as “local time integrals”.

(a) Suppose X is a subordinator having exponent g(@A) = aA + [(1 —
e ™)u(dy) where v is its Lévy measure (terminology: Blumenthal and Getoor
(1968), Fristedt (1973)). Consider the case where a = 0 and »((0, 1)) = oo. It is well
known (e.g. Itd and McKean (1965) pages 31-33) that the trajectories are almost
all monotone increasing saltus functions. Let F(x) be a continuous distribution
function. If F(X,) has derivative 0 a.e. (a.s.), then it follows from Geman and
Horowitz (1976a) that a.s. X is not (LT) relative to the measure = having
distribution function F; in fact, y, is purely #-singular. Clearly F(x) = x has this
property and we conclude if A is a reference measure for X, then A-a.e. point is polar,
and so every point is polar. This is a partial solution to a famous problem posed by
Chung and solved by him in the case that the measure U(T) = E°fQI (X)) dt is
< A, viz. is every point polar for subordinators of the given description? Complete
solutions (in the affirmative) were given later by Kesten (1969) (see also Bretag-
nolle (1971) and L. Carleson (unpublished)), though these are fairly difficult.

(b) Various authors (Blumenthal and Getoor (1968, page 294), Griego (1967),
Geman and Horowitz (1973)) have given conditions for the validity of the follow-
ing statement: let A = (A,) be a continuous additive functional of X; then there exists
a (unique) measure v on & such that

(19.1) A, = [g L(x)v(dx) forall t> 0, as.

‘Obviously L(x) must be defined at every x € E for (19.1) to make sense, and
hitherto this has meant E = E,.

Let 7 be a o-finite, excessive reference measure, and suppose the duality hypothe-
sis of [V, (1.2)] holds. Following Revuz (1970), we say that an additive functional A4
is o-integrable if

(19.2) v, (T) = lim, _, AfUM.(x)7(dx)

exists (finite) for a sequence I',1E. In this case, the limit in (19.2) exists for all
I' € & and defines a measure. Moreover, », charges no polar (resp. semipolar) set
if 4 is o-integrable (resp. continuous). For us the main result of Revuz is this: if 4
is o-integrable, natural, and has u), < oo 7-a.e., then

(19.3) ug(x) = [ u'(x,y)v,(d).
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An equivalent formulation of (19.3) is

(19.4) UM(x) = [z u'(x, Y)(¥)vy(dy),  f > 0,6-measurable.

Consider now the decomposition E = E + E,; we obtain corresponding decom-
positions A = A + A, vy =v; + v, where 4, = 4 — 4 and
A4, = [4I5(X,) dA,.
If A satisfies the hypothesis for (19.3) the same will be true of A, and (19.4) will be

valid with E, 4 replaced by E, A. We now identify u'(x, y) in terms of the local
times L,(x):

U'f(x) = E*[Fe™f(X)) at
= B[z g0)f(»)fge™" dL(y)n(dy) + E*[Fe” f(X) g (X,) dt
= [ 8w} (x)n(dy) + [g f(y)u'(x,y)m(dy),
where g() is given in (18.4), and u)(x) = u],,(x). This suggests
(19.5) u'(x,») = g(»)u)(x), ~ y€E

Clearly the uniqueness theorem for additive functionals tells us that:

(19.6) THEOREM. If (19.5) holds, then

(19.7) A, = [58(V)L(»)va(dy) + A, (1) as.
We prove that a version of (19.7) holds under the supplementary hypothesis
(19.8) u(y,y) >0 for y € E.

This is relatively harmless, even though it fails for some common processes; the
result is probably true without (19.8) if more care is used.
Let A € &; then [VI, (1.16)]

(199) BTl (Xy,0)] = Bl (x 2y)]

where T ,, fA are the hitting times of 4 by the processes X, X which are assumed to
be in duality. Setting x = y and 4 = {y}, we obtain, with a self-explanatory
notation,

V()3 9) = $'(0 U (3, ),
whence ¢!(y,y) = 11;‘( y,ify E by (19.8) (and automatically if y € E).
Next, take 4 = {y} in (19.9) to get

(19.10) Y'(x, 2)u'(, ) = $'(r, ¥)u'(x, »)
for every x, y € E, in view of the preceding sentence.

Ifye E, there is an Xy € E such that y'(x,, ) > 0; (19.10) then shows that
Y!(y,») > 0, that u'(x, y) and y'(x, y) are positive or vanish simultaneously, and
that the ratio u'(x, y)/¢'(x, y) is independent of x, at least when the denominator
is positive. Define g(y) = u'(y, y)/ uyl(-y), y € E. Using the material in § 18, simple
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calculations show that g(y) = g(») m-a.e. on E and that (19.5) holds for all x € E,
y € E, if g is replaced by g, and so also (19.7) with g instead of g. We note that the
use of g does not hurt the conclusion of (18.4).

20. Joint continuity of L. The definitive result on joint continuity is due to
Getoor and Kesten (1972). Here, E = E, = R.

(20.1) THEOREM. Assume that
(20.2) Jou'p(u) du < o0

where p(u) = sup, _, <, (1 = ¥'(x, »¥'(y, x)):. Then a version of L(x) may be
chosen such that a.s. the mapping (t, x) = L/(x) is continuous.

Condition (20.2) is equivalent to 2 p(2~") < oo which improves the condition
Snp(2™") < o in Boylan’s original (1964) generalization of Trotter’s theorem. An
explicit Hélder-type condition (in x) is given by Getoor and Kesten, and obviously
all of these results can be used in conjunction with the material of Part 2 to
describe the behavior of the trajectories. We give only one simple example: suppose
A is a reference measure; then, under the conditions of (20.1), a.s. the trajectories are
nowhere approximately differentiable.

Getoor and Kesten also describe conditions under which L(x) a.s. fails to be
jointly continuous. Their result was soon improved by Millar and Tran (1974) who
proved

(20.3) sup,cpL,(x) = 0 foreacht >0, as.,

where D denotes the dyadic rationals, under a variety of conditions on the
functions y'(x, y) and (a, x) > E*[Pe~* dL(x).

A somewhat different approach to joint continuity for the occupation densities
of certain diffusions has recently been given by Yor (1978) and Jeulin and Yor
(1977). These diffusions are solutions of a class of stochastic differential equations
and fall under Meyer’s (1975) theory of occupation densities for semimartingales.
Meyer gives a generalization of Tanaka’s formula for the Brownian occupation
density (for which see McKean (1975)) which gives an explicit representation for
L,(x) in terms of stochastic integrals, where L(x) is an occupation density for the
semimartingale X relative to the measure d{X°¢, X°)  on the time domain; here X°¢
is the continuous (local) martingale part of X. For the diffusion processes in
question, the random measure d{X°, X¢)  becomes just ds, and the explicitness of
the formula for L(x) allows Jeulin and Yor to prove joint continuity by a
Kolmogorov argument, thus retrieving Trotter’s (1958) theorem in the Brownian
case (see Example 1, § 0), as well as the Ray-Knight theorem mentioned in § 4. Of
course, the semimartingale occupation density reduces to the Blumenthal-Getoor
local time in the Markovian case.

For the sake of completeness we give a quick derivation of the Meyer-Tanaka
formula in the case of a continuous semimartingale, which simplifies matters a bit,
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denoting by 4, the increasing process (X, X »,. The formula states

(204) fz)f(Xs) dAs = f(foof(x)Lt(x) dx’
for every measurable function f > 0, where
(20.5) sL(x) = (X, = )" = (Xo = %)™ = [l 1, o)(X,) dX,.

Let g be a C* function such that g” has compact support and g'(x) =
I* « 8" (u) du. According to Itd’s formula (Meyer (1975), IV.21)

fhg"(X,) dA, = 2(g(X,) — g(X,)) — 2/58'(X,) dX,.

A simple integration by parts shows that the first term equals

212, 8" ()((X, — x)* = (Xo — x)") dx,
and an easily justified Fubini-type argument gives

08/ (X)) dX; = [2 8" (%) [odix, )(X,) dX, dx.
We conclude that (20.4) holds for f = g”, which suffices to give the full result.

21. General processes: existence results. Let X = (X)), t € T, be a stochastic
process with (measurable) state space (E, & ). The terminology is the same as that
introduced in § 15 except that now T will usually be [0, 1}V, and we must assume
that the mapping (¢, w) - X,(w) is measurable relative to B (7T) ® ¥ and &, where
(2, 9, P) is now the underlying probability space. Each trajectory ¢ X,(w) is a
Borel function and we have the occupation measure ug(I) = Ay{s € B : X; € T'},
B € B(T), T € &, defined for each trajectory. As in § 15, we say X is (LT)
relative to w if p = pp < 7 as. (i.e., P-a.s.), and we make the same assumption on
the measurability of the occupation kernel a(x, B). Finally, if E = R? and 7 = A,
we omit the phrase “relative to 7.

Results on the existence of occupation densities have been obtained by four
methods which we now summarize: 1° martingales on the state space; 2°
martingales on 2; 3° harmonic analysis; and 4° differentiation of measures.

1°. This is the approach of Orey (1970), Davydov (1976, 1977), and Pitt (1978).
We assume & separable and replace = by an equivalent probability measure, again
denoted 7. Let G, = {4, - - - 4, } be a sequence of measurable partitions of E,
linearly ordered by refinement, and such that U, G, generates &. Now, for a fixed
trajectory, it is well known that

@L1) p.(x) = sk )

I , € E,
i=1 W(Am') A,,,(x) X

defines a nonnegative supermartingale (a martingale if #(4,;) > 0 for each n, i)
relative to (E, #) and o(G,), n > 1. Thus, p,(x) converges 7-a.e. to a limit p (x)
which is a version of the Radon-Nikodym derivative (du/dm)(x). Moreover p < =
if and only if (p,) is w-uniformly integrable. (It is also known that p < 7 iff
w{p, = oo} = 0; this is the martingale analogue of (7.2).)
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A sufficient condition for uniform integrability is

(212) sup,,f g Pa(x)m(dx) < co.
Hence, a sufficient condition for (LT) is
(21.3) sup, [z Ep2(x, w)m(dx) < oo,

and this integral is often easily expressed in terms of the two-dimensional distribu-
tions of X. For example, for T = [0, 1], £ = R, and X Gaussian (with means 0),
(21.3) is equivalent to
1

(21.4) SSNEX2EXE — (EX,X,)") * ds dt < oo;
this is Orey’s (1970) result. The conclusions of Davydov and Pitt about Gaussian
processes are retrieved by different methods in § 22 (see § 30 for specific examples).
Method 4° below is almost the same as this one, but is closer in spirit to the paper,
so we will follow it in the sequel.

2°. This is a direct generalization of the methods used for Markov processes.
Here T = [0, o) and there is an increasing family of o-fields (%,) with respect to
which X, is progressively measurable. For details of the following material, see our
paper (1973).

The basic assumption is that for each # > 0, there is a function Z,(x, w), x € E,
w € , such that

(21.5) E(fPe*Io(X,) ds|F) = [r Z,(x)m(dx), T €6, as.

One then shows that, for 7-a.e. x, (Z),5, is a (nonnegative) supermartingale
relative to (%,) with lim, , EZ,(x) = 0.

(21.6) TuEOREM. X is (LT) if and only if (Z(x)),5 is of class (D) for m-a.e. x.

1—0

(“Class (D)” means that {Z;(x)} is a uniformly integrable family of random
variables as T ranges over all finite stopping times.)

A sufficient condition for (21.5) is that for each 0 <7 <s < o0, P(X, €
dx|%,)(w) is a.s. m-absolutely continuous, in which case, for 7-a.e. x,
(21.7) Z,(x, w) = [P (s, x, w) ds, t>0,

where P(X, € dx|%,) = (s, x)m(dx) a.s. (The equality in (21.7) is for the right-
continuous versions of the two sides.) For example, let (X)), ¢t € R, be a real, mean
0, nondeterministic Gaussian process with X, = E(X,|%,), V2 = E(X, — X,)*|F,),
and ¥, = o{X,; —oo <s < t}. Then
1
(21.8) U(s, x) = @m) "7V, lexp| — (x — X,)*/2V2), s>
(In particular, for standard Brownian motion, one gets
Z(x) = 2‘%e_’e‘\/5|"_w'|.)

Unfortunately, however, the Z,(x)’s have not been amenable to calculation outside
the Markov case.
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3°. Suppose here and in 4° that for each w, X.(w) is an (N, d)-field as described
in § 6. Taking the expected value of the expression in (7.1) and interchanging
integrals yields:

(21.9) THEOREM. X is (LT) with a = a(x) € L*(A; X P) if and only if
(21.10) [aef )7 Ee® %=X dsdtdd < oo.

In particular, if the characteristic function of X, — X, is nonnegative and integrable
(dB) for a.e. (s, t) € T X T, then for such (s, t), X, — X, has a (continuous) density
P, (x) with P, (x) < P, (0) for all x, and (21.10) becomes

(21.11) Jr/r P, (0) ds dt < 0.
The criteria (21.10) and (21.11) are due to Berman (1969).

4°. Taking the expected value of the expression in (7.2) (a), and using Fatou’s
lemma, gives:

(21.12) THEOREM. If
(21.13)  Liminf, e /7 P{|X, — X,| <e} ds < oo  for aer€T,
then X is (LT).

Actually, the following “local” condition suffices for (LT): for each n =
L,2,---
(21.14) lim infewe‘danP{le -X|<e&X, €T, X,€T,} ds < o0,

ae.t €T,

where T,\T ae. and T,1R? ae. (T,1T a.e. means that T, C T, C - -- and

T\u,T,is null)
The analogue of (21.9), via differentiation methods, is

(21.15) THEOREM. A necessary and sufficient condition for (LT) with a € L*(\;XP)
is
(21.16) lim infews“’foT P{|X, — X,| <&} dsdr < o0.

The “sufficiency” part is immediate from (7.2) (c); the “necessity” part hinges on
the Hardy-Littlewood maximal theorem, and here, briefly, is the idea. Assuming
a € L’(\; X P), it follows, for almost every w € £ that a(x, w) is in L2(R?), that
the “maximal function”

&(x’ w) = supe>0£_df8d(x, e)a(y’ w) dy

is in L%(R), and that there is a constant C, depending only on the dimension d, such
that

[@4(x) dx < Cfa*(x) dx.
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Thus,
lim inf, ¢ %[, [ P{|X, — X,| < ¢} dsdt
< Efy sup,soe Yz Jio, (| X, — X,]) ds dt
= Ef;&(X,) dtf = Efgs a(x)a(x) dx (by (6.5))
< C%Efaz(x) dx < oo.

Finally, to state the results of L. Pitt (1978) on the existence and higher moments
of a, we introduce his condition (A4,) (on H): fix an H € %, with A\,(H) < o0 and

suppose for each (¢, - - - , ) € T* with distinct #’s, the vector (X, -+, X,) has
a density p,(¢;, - - -, &3 X, -+ * * , X) such that
et st X x) < gH(ty, - - -, ) forae. (x, - - -, x,) € H*

for some g such that
fT"ng(tl’ R tk) dtl e dtk < 0.

(21.17) THEOREM. Suppose (A,) holds on H for some k > 2. Then X is (LT) on
(X € H} and a(x, {X € H}) € L*(dx).

Pitt obtained this by martingale methods; here is a proof based upon a k-dimen-
sional version of (21.14). Fix an w. Arguing exactly as in § 7, the limit

. -1
Vu(t) = hmeJ,O(edcd) Jr Lo o(|X; — X ) 14(X,) ds
exists (< oo) for a.e. f such that X, € Hand X is (LT) on {X € H} iff V(1) < o
aeon{X€H) LetC=c;* Dandm=k - 1.

Efr Vi (0)I(X,) dt
< Clim infewe"""kalEH',-';,I(o,e)(|Xsi = X, ) 1(X,)14(X,) ds, - - - ds,, dt
< Clim infewe_me"fHkH'LlI(o, e)(lxi P 4)) A G S R Xos V)
X7 dx]IIT ds; dy dt
< const. X [7x gf(sy, -+ ¢, 5,5 1) dsy - - - ds,, dt < 0.
This shows that a exists on {X € H} as. and the rest follows because, using (6.5),
Jue (x, {X € H}) dx = [ VF()I,(X,) dt.
22. The Gaussian case. Throughout this section, X = (X)) = (X, - - -, X@),
t € T =10, 1]V, will denote an (N, d)-Gaussian field, with EX®) =0, each X®
continuous in probability, and such that the determinant A(s, ¢) of the covariance

matrix of X, — X, is positive for a.e. (s, ) € T X T.
Evaluating the expressions in (21.9) (or (21.14)) and (21.11) yields:

(22.1) THEOREM. X is (LT) if
(22.2) I r(A(s, t))_% ds < oo  for ae.t€T;
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X is (LT) with a € L*(\ X P) if and only if

(22.3) ol (A(s, )77 ds dt < oo.
Until the end of this section, we take N = 4 = 1 in which case
(22.4) A(s, 1) = E(X, — X,)* = R(s, s) + R(t, 1) — 2R(s, t),

R being the covariance function of X. (The condition (21.4) implies (22.2), but not
conversely.) In general, (22.2) is not necessary for (LT) because it is never satisfied
when X has differentiable trajectories. Moreover, there exist examples of nondif-
ferentiable Gaussian processes which are not (LT). Two such examples were given by
the authors (1976). Let W = (W,) be a standard Brownian motion. If F(¢),
0 <t <1, is a strictly increasing, continuous distribution function, then Y,(w) =
Wew(w) is Gaussian with orthogonal increments, and all such processes arise in
essentially this manner. For 0 <p <1, let F,(¢) be the distribution on [0, 1]
corresponding in the usual way (Billingsley (1965), page 35) to an infinite sequence
of independent tosses of a coin having probability p of “heads”, then F, satisfies
the above conditions, and so has an inverse function F, which also satlsfles the
conditions. Let Y7 = We@ Y = Wiy then

() Y?isnot (LT) if pg <3¢ (=1~ p);

(i) Y” is not (LT) if pzf’qz" > 1.

The authors have learned from Yu. Davydov that the orthogonal increments case
has been completely resolved by M. Lifschitz:

(22.5) THEOREM. The condition (22.2) is necessary and sufficient in order that
Y, = Wgy be (LT).

Here (22.2) becomes
(22.6) J)F(s) = F()| 2 ds < oo for ae.t€[0,1].

We have not seen Lifschitz’ proof; however, here is a proof based on a recent
result of Hawkes (1977). We need only show that (LT) implies (22.6). Define

$() = JIF(s) — r|=2 ds = fis — r|"% d(),
where £ is the inverse function of F. Since Jo8(r) dr < oo, the set L = {{ = oo}
has A(L) = 0. It also has l-capacity zero: if not, there would be a probability
measure » concentrated on L such that [}|s — rl'iv(ds) < k for all r €0, 1], for
some k < oo. Integration against dF(r) gives the contradiction. Now Hawkes
(1977) tells us that, with positive probability the image W(L) of L by a Brownian

trajectory W, has measure zero. Fix w € @ such that A\(W(L)) = 0 and Y(w) is (LT);
then

0=A{r:Y, € W(L)} > A{t: F(¢) € L}.

Thus {(F(t)) < oo a.e., and the proof is concluded.
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It is an open question whether (22.2) is necessary for other Gaussian processes to
be (LT), e.g., for X stationary with infinite second spectral moment, i.e., —r”(0) =
oo, where r(|s — t|) = R(s, ?). Here (22.2) becomes

(22.7) [3[r(0) = r(s)] 77 ds < oo.

There are other unresolved issues when (22.7) fails and —r”(0) = oco; for instance,
is M infinite with positive probability for every x? Klein proved this is so if (22.7)
holds (see § 29).

Finally, the general effect of imposing conditions such as (22.3) is to cause the
trajectories to oscillate wildly. This will be illustrated in later sections, but, as a
simple example, notice that (22.3) implies that, a.s., a(x) € L%(dx), and hence (by
(9.1)) the trajectories cannot satisfy at any point a Hélder condition of any order
> 2N/d. For N = d = 1, Berman (1969a) proves the following more interesting
result by a real variable argument using Fourier analysis:

(22.8) THEOREM. Let m > 0 be an integer, 0 <e < 1, and put p =2m + .
Suppose

(22.9) JoS8 (A, )~ CTVD s dt < oo;

then a.s.,

(a) the y-variation of the trajectory is infinite for y = p + 1;

(b) the trajectory does not satisfy a Holder condition of order 2/(p + 1) at any
point t.

Of course, (22.9) (even with p = 0) already implies the existence of a; when
p = 1, it follows from (b) that the trajectories are nowhere differentiable.

23. The [AC-p] conditions. These conditions are discussed in § 10, in particu-
lar the consequences for the local growth of X. Here is a sufficient condition for a
(general) (N, d)-field X to satisfy [AC-0]:

(23.1) THEOREM. Suppose T, 1R? a.e. and for each n,
(23.2) [rsup,noe ‘P{|X, - X,| <& X, €T, X,€T,}ds <0 for ae.t.
Then X is (LT) and, for a.e. x € R?, a(x, dt) has no point masses.

The existence of a follows from (21.4) with T, = T (the T,’s could, of course, be
incorporated into (23.2)). The discussion in § 7 shows that for B € % (T):

_ . 1
a(Xn BnX l(rn)) = hmew';?fa Ir,,(Xs)I(o, ollX; — X,|) ds
d

for a.e. t € T, with probability 1. Fatou’s lemma yields, for a.e. t € T,
(233) E[«(X,B N X"T,); X, €T,]

1
<—Js sup,-o¢ ‘P{|X, — X,| <e, X, €T,, X, €T,} ds.
d
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It follows that, for a.e. ¢, (23.3) holds simultaneously for all N-dimensional boxes B
with rational corners. Fixing one of these #’s, choosing B|{¢}, we find

E[«(X,, {1}); X, €T,] = 0.

Now let T,,tR? to obtain a(X,, {t}) = 0 a.s. a.e. and then use (6.8) to finish the
proof.

We can derive the conclusions of (23.1) under a slightly different hypothesis, viz.
that X has an absolutely continuous distribution for each s € T, and there is an open
strip K containing the diagonal in R? X R? on which each pair (X,, X,) s #t, has a
continuous density PX(s, t; x, y) with

(23.4) Jr Jrsup, ,exPX(s, t; x,y) ds dt < oo.

Indeed, these hypotheses imply those of (23.1) as long as the I',’s are bounded, and
this avoids the Fourier-analytic proof of Geman (1976) that (23.4) implies [AC-0].
Of course, Pitt’s (4,) condition is essentially (23.4), as are the hypotheses in Marcus
(1976).

In the Gaussian case, (23.2) reduces to (22.2); whereas, in the (1, 1)-case, (23.4)
reduces to (21.4).

In his (1977) paper, the first author gave a stochastic condition for the a.s.
validity of the condition [AC-p] with 0 < p < N.

(23.5) THEOREM. Suppose 0 < p < N and
(236) f[o’ ny-r supe>os_dP{|X(tl, cey, tp’ Sttt SN_p)
- X(t, -, ty) | < e}}\N_p(ds) <

for Ay-a.e. t € T. Then X is (LT) and « satisfies [AC-p] as. (In (23.6), s =
(sl’ e ’SN—p)')

When p = 0, we are back in the situation of (23.1), without the T',’s; we omit the
“local version” of (23.5).

To prove (23.5), let us write temporarily * = (¢, - - -, t,); this is construed as a
function of t € T as well as a point in [0, 1}’. We begin observing that, for A-ae.
t* € [0, 1}, the (N — p, d)-field s = X(*, 5) has an occupation density a(t*; x, A)
(4 € B ([0, 11V ?)) which satisfies [AC-0]; this is proven in much the same way as
is (23.1).

Now let B = B, X By_, be the product of Borel sets in the indicated unit cubes.
Using a self-evident notation, we have

JeI(X(£)Ay(dt) = fBPfBN_pII‘(X(t*’ S))}\N—p(ds)Ap(dt*)
= frpr a(t*; x, BN—p)}‘p(dt*) dx,
which shows that X is (LT) and that the occupation kernel a(x, dr) has the
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disintegration
a(x, B, X By_,) = pra(t*; x, By_,)A,(dt*),

i.e. satisfies condition [AC-p].

In the Gaussian case, the largest p < N for which (23.6) holds can usually
be computed. For example, if X has iid. components and E|X® — X =
|s — 7%, 0<B <1, 1 <i<d, then it is the largest integer <N — df. This
example is discussed in § 30.

24. Local nondeterminism. The concept of local nondeterminism (LND for
short) was introduced by Berman (1973) to unify and extend his earlier work on
Gaussian occupation densities (N = d = 1). Essentially, a process is LND if it is
“locally unpredictable”, in that there is an unremovable element of “noise” in the
local evolution of the process. In his main result (1973, Theorem 8.1), Berman
proves that LND, together with lower bounds on the growth of A(s, #), implies that
X has a jointly continuous occupation density which satisfies a uniform Hoélder
condition in ¢, uniformly in x. Pitt (1978) extended the definition of LND to
Gaussian (N, d)-fields and obtained Holder conditions in the space variable.
(Actually, Holder conditions in x are implicit in Berman’s first paper (1969).) We
will reproduce Pitt’s results and also give a complete extension of Berman’s results
to Gaussian fields. Further material on LND for Gaussian processes (N = d = 1)
* can be found in Cuzick (1978). We wish to thank L. Pitt for a letter which explains
why his formulation is equivalent to Berman’s.

In what follows we write V(£) for the variance of a random variable £ and <{u, v)
for the usual inner product of two vectors u, v € Ré.

From this point on, X denotes a Gaussian (N, d)-field as described in § 22. We
will assume that X, = 0; this simplifies the notation below and is no real restriction
—cf. § 30. The covariance matrix of X, — X, is denoted 6%(t, 5), and o(¢, 5) is now
the nonsingular matrix with o(z, s)a’(¢, 5) = o%(t, 5), t # s, where the prime denotes
transpose. (Hence A(s, t) = det 6%(1, 5).)

X is locally nondeterministic (or “is (LND)”) if, for each k > 2 and each
(uy, - -+ , ) € R% \ {0}, there exist constants ¢ > 0 and § > 0 such that

(24.1) V(ZfaiCun o7 '(X, - X, )) >

whenever (distinct) points ¢, - - - , # all lie in a cube of edge length at most § and
satisfy

(24.2) 641 — 4] < |t01 — & forall 1<i<j<k.

Here t, = 0 and ¢ o(tj, _ ). The inequalities (24.2) are automatically satisifed
when N =1 and t, < -+ <t. In general, for t,-- -, in T, there is a
permutation 7 of (1, - -, k) such that £, - - -, #, satisfies (24.2): choose

7(k) = 1, then r(k — 1) to satlsfy [ty = bl < |tony — 1| for all j # 7(k), etc.
The point of (24.2) is that, in examples (e.g., Pitt (1978)), one need only verify
(24.1) subject to (24.2).
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(24.3)) THEOREM. If X is (LND), then for each k > 2 there exists a ¢ > 0 such that
(24.4) V(Zfo w7 (X, = X, D) > c

Jor every choice of distinct t, - - - , t, € T subject to (24.2) and of u, - ,u €R?
subject to Z|uf* = 1.

ProOOF. For brevity, we write 7= (t;,---,4) € T &= (u,-- -, ) €
(R, T for the set of 7 which satisfy (24.2) and S for the unit sphere in (R¥)~.
Were the theorem false, there would be a k > 2 and sequences #™ € § and
{™ € J such that

(24.5) V(Sko <uf™, o= 1(1", 2) (X = Xym)>) < 1/n.
Extracting a subsequence, if necessary, we may assume #™ — iz € S and 7™ —
1. Write Y, for ¢ ~'(£™, t("),)(X,m Xyn) and Y® for (Y, - -, Y™). Each

Y(”) is normal mean 0 and has covariance matrix the 1dent1ty Therefore the
sequence {Y(")} is tight and extracting another subsequence we may assume Y™
converges in distribution to a normal vector Y. An easy argument involving the
parameters of the normal distribution now shows

(24.6) 2_];=1<uj(‘n), ),j(n)> d ==l< i j>
and
(24.7) i u, YO > 3k Ku, YD,

in distribution. By (24.5), the limit 2{u;, Y;> has variance zero, but then (24.7)
shows that (24.1) cannot hold as 7 runs through 7,

25. Basic estimates. Let 7 = (11, ., 1) € T* and D,(f) be the determinant
of the covariance matrix of (X, , - - - , X, ) Since, for distinct #, p, (¢, X) is continu-
ous in X, and p,(f, X) < (277)“”‘/ 2D_i(t), the condition (4,) on H = R? (§21)
becomes

@51 [ D(f) di < .

Now fix an even integer k > 2 and assume (25.1) holds (this remains in force until
(25.12)). By (21.17) a exists and is in L*(dx) a.s.

We wish to estimate E[a(x, B) — a(y, B)]* for fixed B € % (T), but first we
must specify a more carefully. In §§15 and 21 we mentioned that a(x, B) could be
chosen as a kernel on R? X € X B (T), but this “abstractly” given kernel need not
have any nice analytical properties as a function of x or B or both. Viewing a as a
process with parameter set R? X B (T), we now choose a version with nicer
properties. Let

.. 1
(25.2) ao(x, B) = llm lnf""w—;—_df‘? I(O, 1/,,)(|Xs - xl) dg,
d

which, for each fixed B, actually exists as a finite limit for a.e. x, a.s.; a is jointly
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(x, w)-measurable for each B, and, if {B,} is a disjoint sequence in % (T'),
(25.3) ao(*, 2,B,) = Z,a0(-, B,) A, X P-ae.

(In fact, (25.3) holds simultaneously for all finite disjoint sequences { B,} of boxes
with rational corners.)
Define

(25.4) o(X) = [up(f; ) di, T=(x," ", %) € (R

Then v is uniformly continuous on (R?)* because, for each 7 € T, p,(f; X) is
continuous in x and — 0 as |X| — o0, and hence v is also continuous and vanishes
as |X| — oo by dominated convergence, using (25.1).

Let a,(x, B) be the expression after the “lim inf” in (25.2) and let a,(x) =
a,(x, T). The uniform continuity of v implies that a,(x) is Cauchy in L*(P),
uniformly in x. (The proof is an elaboration of arguments such as those in
Proposition 3.1 of Pitt (1977).) Let (n,) be a sequence of integers such that

supxIE[a (x) — « (x)]k <277, p> 1
It follows that « (x) converges uniformly in L¥(P) and converges a.s. for each x
fixed. Hence, at least through (n,), the /imit exists at (25.2) both uniformly in L*(P)
and a.s. for each x, and there is no problem in then arguing as if (n,) were the full
sequence of integers. Clearly, a similar result obtains for a,(x, B) for each B €
B (T).

Now for any x;,: - -, x € R? and B € B (T), since a,(x;, B) converges to
ag(x,, B) in LX(P), 1 <i < k, we have IIfa,(x;, B) converging to ITfay(x;, B) in
L'(P). Hence, an easy computation yields:

(25.5) E[ ag(x1, B) - - + ag(x B)) = fpp(f; X)di  forall X,

which leads to
(25~6) IE[0‘0("’ B) - ao(y, B)]k = fB"Ef-o(_ 1)j2§i)1pk(t_; Z_ij) dt

where, as i runs from 1 to (f), z; runs through all possible points (x - - -y« + )

in (RY)* having an x in exactly j coordinates and y in the remaining k — j
coordinates.

REMARK. Due to the central role that (25.6) plays in obtaining smooth versions of
a, it should be pointed out that (25.6) is valid for an arbitrary stochastic (N, d)-field
such that (i) (4,) holds on R? and (ii) v(X) is uniformly continuous.

We now begin to estimate the right member of (25.6). The characteristic function
of the vector (X,, - - -, X,), construed as (X", X@, - - -, XD), is

P(E; &) = [gey €@ (£; X) dx = exp[ -3 V(Ef,,l(uj, X9>)]
and Fourier inversion gives

p(t-’ f) = (277)_kdf(nd)" e—mx (t u) du.
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Substituting this into (25.6), and changing y to x + w, the right member there is
- R ) =z -
(2'”)_kdf3kf(ad)"ﬁ(t; l—i)e_'"'xszO( - l)lzgl_)le_m.gv dﬁ dt,

where X = (x, -+ +, x) and fy has zero and w wherever z; has x and y respectively.
The double sum can be written

25?=0(— l)jz(ih e, ,I)H’;:jle_’<“ﬂp w)

where the inner sum is over all samples (i), - -, i) from the integers
{1,2,---,k},and (i}, - - -, i_;) are the “remaining” integers in {1, - - - , k}. By
induction, the above expression is H}‘,,(l — e~ % ") and hence

(25.7) E[ay(x, B) — ag(x + w, B) ]
= (27) " pefrayc (F; W)e " FFIE_ (1 — ™% ™) dif di.

Since p is positive, and since |1 — e®| < |§|" for all 8, for any 0 <y < 1, we find
that E[ag(x, B) — ag(x + w, B)]¥ is at most a constant times

(25.8) WK [ gt f ey exp[ — 3 V(Z5_<u, X)) ]ij_ wlY di di.

The finiteness of this integral would allow us to use a Kolmogorov type argument
to obtain continuity of ay(x, B) in x.

Let m(f) denote the inner integral in (25.8); then my((£)) = m((4,;)) for any
permutation ¢ of {1,2,- - -, k}. Since every point 7 in T can be permuted into 7,
the integral in (25.8) is dominated by a constant times the integral over (B* N 9)
x (RY)*. We will keep writing B* X (R?)*, assuming when necessary that 7 satisfies
(24.2). The rest of the argument is just as in Pitt. Make a change of variables:

U =10 — v, (J <k — 1), 4 = . Putting v, = 0, the integrand becomes

exp[ —%V(E'va, X, — Xg_‘>)]Hf=,|tJj» — v, still over B¥ x (R9)".

Since |a — b|" < |a|” + |b|", the product term is majorized by a finite sum of terms
(the number of which depends only on k) each of the form ITf_,|v;[" where 8, = 0,

1, or 2.
If X is (LND), then the integral in (25.8) can be dominated by

(25.9) S 5+f ey exp(— 2 ek |oro P)ITEL |o|" db di,

for some c as given in (24.3). The further change of variables w, = o/v; converts this
to

(25.10) It et €3I [(0) ™ w0 4772 o

where A; = A(#, ¢,_,). Since each component X @ is continuous in probability, each
X ® has a continuous covariance function and hence, likewise, the subdeterminants
of o’(s, 7). There is, then, a constant B with (o))~ 'w| < BAJ.‘%|w| for all j and all
w € R?. Moreover, A7 /2 < CA; where C = max(l, (sup, A(s, 2)»). Thus,
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(25.10) is dominated by a constant multiple of
g Hf=| Aj—(1+2y)/2 di-f (RY)* e‘(‘/2)|‘7|2]'[j?_, W, "5 dw.
Since the second factor is clearly finite, the issue is whether or not
(25.11) foe A G*7) df < oo,
The utility of these estimates and the concept of (LND) resides in the following:

(25.12) PROPOSITION. Suppose X is (LND).
(a) If (25.11) holds for some k > 2 with y = 0 and B = T, then (25.1) holds for
that k.
(b) If (25.11) holds with B = T for some k > 2 and y > 0, then

ds dt
f —_—
TG, )7
(c) Suppose, for some y > 0,

(25.13) sup, [ p—2"

@G, )7 =
Then (25.11) holds for every k > 2, and every B € % (T).

Beside (LND), (25.13) is the basic assumption in Pitt (1978). Part (a) then
justifies Pitt’s tacit assumption that his condition 4, holds for all k > 2.

PRroOOF OF (25.12). The proof of (a) is implicit in the arguments above; for any x
and7 € J:
P8 %) < 2m)Myp(s; @) da
= (2m) Mfem TV % %) 4
< (2m) e~ 1lonf gp
= @n) "M kA7 T - fem 19 g,
Since this estimate is “permutation invariant” as above, and D,(f) = sup,p,(f; X),

(25.1) follows from (25.11) with y = 0.
For (b), let M = sup, ,7A(s, #). Then

“(Ls,
Jre fTH’f(A(tj’ tj—l)) G )dtl‘ cedy
dt,_, dt,
(A%, tk—l))l/2+y .

Finally, using iterated integrals as in (b), and doing the d, integral first, it
follows that the integral in (25.11) is dominated by

> (MG,

dt k=1 dt

SuP,eTfT(A(s',_t))l'/_HY fT'—_—_(A(O, t))l/z""’ <
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26. Joint continuity (Gaussian case). Let JC be the family of rational boxes
B = II}J; (i.e., each J, a rational interval in [0, 1]) and let O, be the “quadrant” in T
with upper right corner at : O, = {s € T : 5, < 1, 1 <i < N}. Also, define

Vir(B) = fps Wi (G0 .

The following result is due to Berman (1970, 1973) for N =d = 1 and to Pitt
(1978) in general. We have made a few improvements (e.g., the “kernel” part) and
tried to clarify some points in Pitt’s proof (e.g., the “joint continuity” part).

(26.1) THEOREM. Let X be (LND) and suppose Vi, (T) < oo for some 0 <y <1
and even integer k > d/vy. Then X has an occupation kernel a(x, df) which is a.s.
Jointly continuous in the sense that (t, x)+> a(x, Q,) is continuous on T X R®.
Moreover, for each B <y — (d/k), B € I, and compact U c R

Ia(x’ B) — a(y’ B)l

|x—Y|B < o0 a.s.

(26.2) SUp, ,eu

Finally, if (25.13) holds, then we can choose any B < vy in (26.2)

PROOF. According to (25.12) (c), the last statement of the theorem will follow
from the rest of it. From the material in §25, we know that X is (LT) and for every
B € B (T):

(26.3) Elag(x, B) = ao(y, B)* < Clx = [V, (B) < oo,

where C is a constant independent of B.

For each B € J(, we choose a measurable, separable version of the process
ay(x, B), x € R?, call it a,(x, B); as shown by Cohn (1972), this works in the same
way as in the one-dimensional case. For § > 0, define

k
ao(x» B) B aO(y’ B)
Ix = »l°

K(B, U; k, 8) = [yfy dx dy.

Then
(26.4) EK(B, U; k, 8) < CV, o(T)fyfylx — y[F0=® ax ay,

which is finite as long as § — y < d/k. According to Garsia’s (1971) lemma, for
each B € 4,

(26.5)  |ay(x, B) — ay(», B)| < Cy(K(B, U; k, 8))"*|x — y[p~@d/0

for all x,y € U as., where C; = C,(w) is independent of B. Since this works for
any 2d/k <8 <y + (d/k), we see that a,(-, B) satisfies a Lipschitz condition on
U of any order <y — (d/k), the Lipschitz constant depending on B. In particular,
since U is arbitrary, and I is countable, a,(+, B) is continuous on R’ for every
B € I, a.s. We still need to find an occupation kernel on R? X % (T) with these
properties and which is jointly continuous.
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Let a(x, df) be any version of the occupation kernel. Then for each B € I(,
a,(x, B) = ay(x, B) = a(x, B) A\, X P — ae,
and it follows that we can choose an x, € R? such that, with probability one,
a,(xg, B) = a(xy, B) for all B € JC: thus, a(x,, df) is the extension of a;(x,, *) to
a measure on B (T).

(26.6) LEMMA. The measure a(x,, dt) has no mass on any hyperplane in T of
dimension less than N which is parallel to the “coordinate hyperplanes”, a.s.

This is similar to, but weaker than, the [AC-p] condition for p = N — 1. The
proof is easy to describe when N = 2: divide the unit square into vertical strips /,;
of width 27" and let &, = max{a(xp, 1)) : 1 < j < 2"}. Now the argument given
by Pitt (1978), in the proof of Proposition 3.2, shows that Ea*— 0 as n— oo,
which implies that there are no vertical line masses. The same type of argument
gives the general result. We note, for use below, that s> a(xg, {f: 4 <s}) is
uniformly continuous on [0, 1] for each j, a.s.

Fix a (large) closed set U C R? containing x, and define, for rational s € [0, 1],

a(s, x) = ay(x, T N {z: ¢ <s}).
From the discussion in §25 we know that ay(x, T N {# : ¢, < 5}) is increasing (as a
function of rational s) a.s. for a.e. x, and hence a;(s, x) has the same property since
a(x, B) = ay(x, B) for all B € X as., for ae. x. It then follows from the
continuity in x of a;(s, x) (for each rational s) that a;(-, x) is 1 for every x € R4,
a.s. Moreover, with probability 1,
a,(x, B, U B,) = a,(x, B;) + a,(x, B,) for every x,
whenever B,, B, (disjoint) and B, U B, are in JC. This is due again to the fact that
ay(x, +) is finitely additive on I, for a.e. x, a.s.
Let [, ={s:(i — 1)/n <s; <i/n}. Then

i i—1

a.(—; , x) - aj(T , x) = a,(x, ;) for all x, a.s.,

J
for any (appropriate) i and n. Writing || f|| for sup, | f(x)| and using (26.5) with
8§ = v, we find that a.s.
loa( Il < &lxoy L) + (K (L, UDY* forall i,

the constant ¢ being independent of n and i. Raising both sides to the kth power
and using the inequality (a + b)* < 2%a* + 2*b*, we have
(26.7)

n i i — 1 n n
2ol aj(;, ) - “j( n ) ¥ < 2¥27_ (a(xo, Im‘))k + 2% k37 K(1,, U).

The first term on the right is dominated by

2k(maxl <i<na(x0’ Im))k_ la(xo, T),
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which — 0 as n — oo in view of the uniform continuity of s > a(xg, {¢ : £, < s}). In

addition, the expected value of the second term — 0 as n — oo; for example, with
1

k =2,j =1 and letting (A,4,)"@*? = {(¢,, t,) = {(r, 5; u, v), we have

lEz'i’-lI<(Ini’ U) < CfoT(ffDng(r’ S5 u, U) dr du) dg dv,

where D, = UJ((i — 1)/n,i/n) X ((i — 1)/n, i/n), which tends to zero by
dominated convergence. Thus, with probability one, the left term in (26.7) con-
verges to zero through some subsequence (7,).

It is now easy to see that, a.s., (-, x) is uniformly continuous on the rationals,
uniformly in x € U, and so has a jointly continuous extension to 7' X U. A simple
argument then shows that, a.s., a;(x, Q,) is a uniformly continuous function of 2
fort = (¢}, - -, ty) rational, uniformly for x € U and for ¢, rational (i # ), and a
slight elaboration proves that a,(x, Q,) is a uniformly continuous function of
rational ¢ € T, uniformly in x € U. This extends to a function ¢(x, f) on U X T,
which is continuous in x for each ¢, and a continuous (multivariate) ~distribution
function in ¢ for each x, and (hence) also jointly continuous. Replacing U with R?
is now easy, and the occupation kernel described in (26.1) is just the measure on
% (T) which corresponds to ¢(x, -).

27. Holder continuity in the set variable. We now extend the principal result of
Berman (1973) to (N, d)-fields. Let %), = {T'}, and for each n > 1, let D, be the
family of 2"V “dyadic cubes” in T, each of measure 2~"V, obtained by successive
subdivision of 7. Also, put % = U,9D,.

(27.1) THEOREM. Let X be (LND) and suppose that, for some 0 <y < 1 and even
k >d/y, there is a ¢ = &k, v) > 1 for which

(27.2) Vi, (B) < C\A\(B))*  forevery B € 9D, n > ng,

for some constants C, and n,. Then, for each compact U C R? and each
$ < (¢ — 1)/k, there is a constant C, and a random variable ¢ = ¢(w) such that, a.s.,

(27.3) a(x, B) < C,(Ay(B))  forall x€ U

for any cube B C T of edge length smaller than e.

Note. The hypotheses of (27.1) imply those of (the first part) of (26.1), and the
a in (27.3) is the good version guaranteed by (26.1). In certain cases (see §30),
(27.2) is valid for every k (or every large k) for some v, C,, and n,, in which case
(27.3) is true for any

&k, v)
k b

¢ < lim sup,_,

which can be computed explicitly.
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PrOOF. We begin by noting that all the computations made in the proof of
(26.1) are valid. Recall that

(274) Elag(x, B) — ao(y, B)I* < C|x — y[*V, ,(B)

for all x,y € R? and B € B (T). Here and below, C is a constant, which may
change from line to line, but does not depend on B. Let K(B) = K(B; U, k, v).
Since a(x, B) = ay(x, B) a.e. a.s. for all B, we have by (26.4) (with § = v):

(27.5) EK(B) < CV, ,(B) forall B € B(7T).
From (25.5),
Ea®(0, B) = EaX(0, B) = [z« pi(£; 0) di,
and the estimates in the proof of (25.12) (a) then give
(27.6) Ea*(0, B) < CVyo(B) < C'V,,(B), B € B(T).

Let B, B,,- - - be the sets in %, where B, =T, D, is comprised of
B,, - -+, Byv,, etc. Also, let & < ¢ — 1. By (27.2) and (27.5), for sufficiently large
m,

32, P{K(B,) > M(B,))'} < CZ3((B,) ™ < .

Hence, according to the Borel-Cantelli lemma, there is a random variable »,(w)
such that, with probability 1,

(27.7) K(B) < \y(B))¥ forall B €D, n>,.
Similarly, for large m,

22P(a(0, 8,) > Ow(B)*) < 350 CB)

(>\N ( B, n))s,
and, consequently,

(27.8) a(0, B) < A\y(B))’*  forall B € 9D, n>w,

for some random variable v,(w).
Next, since @ c I and a(x, dt) is just the extension of a(x, +) to a measure,
(26.5) yields

(27.9) Ia(x, B) — a(y’ B)l < C(K(B))l/klx __yly—(2d/k)
< COW(B)) | = y[r =0

forall x,y € Uand B € 9,, n > »\(w).
Let us now take U = [0, 1]¢ for simplicity and assume that the random point  is
in all the a.s. sets mentioned above. If x € U, we may write

x= SRR E0, o E0) g =0orl,
and, since a(x, B) is continuous in x for every B € I(,
o(x, B) = a(0, B) + Z3_,[ (27", - - - . §7), B)
— oz, L ), B) .
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If B € 9, where n > » = max(»,, »,), then (27.8) and (27.9) yield
a(x, B) < (A\y(B))¥* + (}\N(B))f/kczn_l(dilz_,,)y—(zd/k)

< C(Ay(B))*/%.

This shows that the theorem holds for dyadic cubes.
Now let B C T be any cube of edge length b < ¢ = 27”. Using the material in
Billingsley (1965), page 140, it is not hard to show that B can be covered by at most
= 16" dyadic cubes Cy, - - -, C,, of edge length < b; thus each C; € U?9D,
and Ay(C)) < Ay(B). Thus

a(x, B) < Zha(x, G) < cSh ()
< 16Vc(Ay(B))¥7%,

which finishes the proof.
Another way of stating (27.1) is that, a.s.,

a(x, B) < g(x)(Ay(B))’

for some continuous function g(x) (depending on ), and all balls B of radius
< r(x, w), where, for each w, 7(x, w) is bounded away from zero on compact sets in
R?. This suffices for the proof of (10.1) to work, yielding

(27.10) COROLLARY. With probability 1, for any r >d~IN(1 — k= \(& — 1)),

X -
(27.11) ap — ]hns"'|_|ss——t|’t—l =00  forevery 1.

There are two other consequences of (27.1) that should be mentioned. The first is
that, using (27.7), the conclusion of (26.2) can be strengthened to read: for each
¢ <y - (d/k) and each U C R*
la(x, B) — a(y, B)|

lx = yf¢
and this can no doubt be jacked up to “sup”p 4, although we will not pursue this
point.

The other consequence is that estimates of the form (27.3) will imply that a(x, B)

is dominated for every set B C T, by an appropriate Hausdorff measure. Specifi-
cally, if A(u) is increasing on u > 0, A(0) = 0, and if

a(x, B) < ch(Ay(B))  for all small cubes,

(27.12) SUPp c@SUP, , e < w0 as.,

then it is easy to show that
(27.13) a(x, B) <cA(B) forall B € %(T),

where A is the Hausdorff measure based on the function u - h((u/ N 2)1/ M,u > 0.
The problem is that, in general, the estimates on a(x, -) are not sharp enough to
give A(M,) < oo, without which (27.13) is meaningless.
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We conclude this section with some recent results of Davies (1976, 1977) and
Kono (1977) which go well beyond (27.1) in the case of certain real, stationary
Gaussian processes on ¢ € [0, 1]. To state Davies’ results, suppose X has a spectral
density

= g2 F(B+1/2) , a2 (B+1)
™ = rimarp @ T

where 0 < B <3, a > 0. This guarantees the existence and joint continuity of
a(x, dr) (details aside) and Davies’ (1976) result is

(27.14) THEOREM. There exist constants 0 < C; < C, < oo such that for each t,
a(X, [t, 1+ h])
S a.s.
n1=(log(log 1/h))*

C, < lim sup,,

It is an open problem to find a single constant C equal to the above “lim sup”.
For the bearing of (27.14) on the Hausdorff measure of M, see §29.

Davies’ paper is very difficult; the proof of the upper bound was simplified and
extended by Koéno (1977). Let X be a real, mean 0, Gaussian processon 0 < ¢ <1
with stationary increments: A(s, £) = E(X, — X,)> = 0%(|s — ¢[). Under a variety of
conditions involving the growth of o(s) and ¢’(s) near s = 0, Kono proves that the
following upper limits are finite a.s.:

X, [nr+h]) L o (x) = ()
wm Prosiosose < g =sl)

lim sup,,

where (k) = h/a(h/log log 1/ h), y,(h) = h/a(h/log 1/h). In particular, Kéno’s
hypotheses are satisfied whenever 6%(s), s > 0, is differentiable, concave, and
“nearly” regularly varying with index 0 < 8 < % Berman’s results (1970) imply the
existence of a jointly continuous a,(x) under these assumptions. The question of the
lower bound remains open for these processes.

28. Differentiability in the space variable. As a function of the “space” vari-
able x, the (one-dimensional) Brownian occupation density satisfies a Holder
condition of any order B <3, but not of order 8 =3. This precludes it from being
differentiable, a condition we believe to be typical of standard Markov occupation
densities.

The situation is quite different for Gaussian processes, and we give several
results concerning the higher smoothness of a(x, B) as a function of x, which
originate in Berman’s work. The results in part 1° amount to standard Fourier
analysis put in a convenient form for present purposes; for N = d = 1, these
concern conditions for a,(x) to be smooth in x a.s. for each fixed ¢, whereas in part
2° we require that a,(x) be smooth in x for all ¢, a.s. We then conclude with a new
result of Berman’s about the quadratic mean analyticity of a(x) which we include
with his permission.
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1°.  Via Fourier analysis. Let fig(8), § € R? be the Fourier transform of the

occupation measure p, of X:
A5(0) = fpe e®pg(dy) = [ €% dt.
Of course, if « exists, then [iz(6) is the Fourier transform &(6, B) of a(-, B). We
now extend Lemma 5.1 of Berman (1969a) to (N, d)-fields.
(28.1) THEOREM. Suppose
ds dt

(282) ITITFVz—(s,[—) < o0
Jor some p > 0. Then, for each B € B(T), the function x > a(x, B) has (mixed)
partial derivatives of all orders up to [p], all of which are in L*(dx), a.s.

The proof is a trivial application of well-known results in Fourier analysis, once
we have shown that, for each 1 < i < d,

) ds dt
(283) Efadlgilzpl I”'B(o)lz ag = Cp[BfB AP'H/Z(S, t)

Jor some constant C,. The expected value in (28.3) is easily seen to be
[8) 5l el 0P~ 207 09 4g gs gy,

Now fix s, 1 € B (s # 1) and let A = (a;) be the inverse matrix of o(s, #). Writing
0%’ as (8o) - (fo)’ and making the change of variables A = o converts the inner
integral above to

(2m)*?

A™ 3 [pdlS9_ a N [Pe= 1P g\ = T E[S{a, Y
2
where Y, - - -, Y, are independent standard normal. It now follows that

Efael0,P?| i (8)F d8 = (2m)“~ D22 3T (p + 1) p(S4a2)’ A4 ds d.

Finally, recall that a; = 6;/ A%(s, 1) where 6 is the (j, i)-cofactor of o(s, ). Since
the numbers (s, 7) are uniformly bounded, we obtain (28.3)

For N = d =1, the following result, also due to Berman (1969), is a kind of
limiting case of (28.1).

(28.4) THEOREM. Suppose, for some b > 0,
S814e¥/7 0 ds dt < co.
Then x — a,(x) is (real) analytic for a.e. t, a.s.
The proof of this is of the same Fourier analytic genre as that of (28.1). As a
consequence, in this case, the trajectories are Carathéodory functions, and, in

particular, cannot be continuous or even right continuous (contrast the Markov
case!). Now it is possible, on the other hand, to construct an X with continuous
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trajectories such that a,(-) is C*® for a.e. ¢, and this leads us to wonder whether the
discontinuous Gaussian processes are exactly those with analytic occupation densities?

2°.  Smoothness in x, for all t. The results below are more subtle than those in
1° and were developed in order to produce examples of functions which satisfy the
hypotheses of the “perturbation” results discussed in §12.

(28.5) THEOREM. Suppose o(s, t) ~ |s — | as |s — t| > 0. Then:

(@ ifo<y< %, X is (LT), a,(x) is jointly continuous, and x — a,(x) is absolutely
continuous for every t and is in L*(dx), all with probability one;

(b) if 0<y <§, then, in addition, aj(x) (= (3/9x)a,(x)) can be chosen jointly
continuous.

By making y successively smaller, we get the existence of higher derivatives

0"a,(x) .
T = afr(x)

from (28.1), and the form of o2 (viz. |s — ¢|*) allows us to obtain the existence for
every t, as well as the joint continuity of a{(x). Using noninteger values of p in
(28.3) one can slightly improve the numbers 3, ; in (28.5) and obtain Holder
conditions in x for a,(x). The details will appear elsewhere.

Let X be an (N, 1)-field which is (LT), and write Q, for the quadrant in T with
upper right corner at ¢. The following is an interesting (real-variable) complement
to (28.5).

(28.6) THEOREM. Suppose a(-, Q,) is continuous and in L*(dx) for a given t € T
and that, for some p > %,

J2101%1a(6, Q) db < oo;
then

(28.7) a(x, Q) = % e " fpedsdd  forall x.

If, as in (28.5b), a/(x) exists and is in L%(dx) for every t, we may take p = 1 and
so have the Fourier representation (28.7) for all ¢t and x (a.s.). Obviously the
finiteness of the right member of (28.3) suffices for (28.6) if ¢ is fixed, but other
examples can be constructed (for N > 1) in which the conclusion holds for all ¢.
Equation (28.7) has been used by Tran (1976) and Adler (1977b) in the case of
Brownian sheets, i.e., N-parameter Wiener process, but the interpretation there is
as a quadratic mean limit. We have not been able to decide whether (28.7) holds
literally in this case.

To prove (28.6) it suffices to show

(28.8) [2 . |@(8, Q)| 4 < oo.
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Let f(§) = 1for |6 < 1, = |@|? for § > 1. By Schwarz’ inequality, the integral is
dominated by the square root of

(28.9) 1= fO)FIa(6, Q)P dby>,,—22

Z1A0)P
which is easily checked to be finite. We note, finally that, in (28.7), we cannot

replace Q, by an arbitrary set B € B (T): take B = M,. This is of measure zero
for each x, but, in general, a(x, M,) > 0 for at least one x.

3°.  Quadratic mean analyticity (N = d = 1). A process &(x, w), x € R, is g.m.
analytic if it is the sum (limits in q.m. relative to P) of a random power series in x.
Let R(¢, ) = 1 and assume that (25.1) holds, i.e.,

(28.10) A1 = R¥(s, 1)) "2 ds dt < oo
Also, let ay(x) = ag(x, T) be as in §25:

ag(x) = lim inf,_ nfolo, 1 /x| X, — x|) ds.
Then (25.5) gives, after some manipulations,

amnEmwmn=wmmu—mmmﬁ4liﬁﬁﬂﬂww<@
(1 - R%(s,1))?

where ¢ is the standard normal density.

(28.12) THEOREM. The process ay(x) is q.m. analytic if and only if

(28.13) f(l)f(l)exp(lTIEb—z(Tt)) dsdt < oo  forsome b>0.

Since 0”(s, ©) = 2(1 — R(s, ?)), (28.13) implies the hypothesis in (28.4), and the
two are equivalent if R(s,7) # — 1 for all 0 <s,¢ < 1, in which case a (or a
version thereof) is real analytic iff it is q.m. analytic. We also note that (28.13)
remains unchanged if the factor (1 — R*(s, t))_% is added to the integrand.

First, Eay(x) = ¢(x), and thus, from the criterion in Loéve (1963), section 34.2,
we find that « is q.m. analytic iff the function in (28.11) is analytic on the diagonal.
If this is so, then, in particular, (28.11) will be finite for y = 0 and x = i(2b)% for
b > 0, small, whence (28.13) will hold.

Now assume (28.13) holds and split the right member of (28.11) into two
integrals, viz. over the sets

{(5,8) 1 R(s, 1) <1 — ¢} and {(s,?): R(s, ) > 1 — ¢}
where ¢ > 0. Clearly only the second piece is at all questionable. But this will be
analytic as long as |x — y| < (b/Z)% and |y| < (b/2)%/s, hence for all |x| <
2(b/2)7 /e, and then for all x since ¢ is arbitrary.

29. Level sets. Most of the applications of occupation densities hitherto have
been to such things as the Hausdorff dimension or “exact Hausdorff measure” of
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the level sets M, = {¢t : M, = x} or “progressive level sets” L, = {s: X, = X,}.
The literature on Markov processes is replete with this type of information; see §16
and Fristedt (1973).

Lately, there has been considerable activity in finding the dimension of M, for
various (N, d) Gaussian fields, as well as the dimension of the graph and image (or
range) of X, defined, respectively, as

GrX={(t,X):teT}, ImX={X :teT).

We will focus on results which use local time methods whether explicitly or in
disguise, as in Marcus (1976) and Kahane (1968).

Cardinality. Perhaps the earliest contribution here is Rice’s formula: let X be a
real, stationary Gaussian process on the line with covariance function r(¢); then

_NB) (=r @720

E#(MxﬂB)—T(—T@—)e / ©® < 0.
It remains an open question (e.g., Dudley (1973)) whether M, is infinite for a.e. x
in Im X when —r”(0) = co. Using some classical real variable results from Saks,
Klein (1976) provides a partial answer: if X is (LT), then for every x, M, is infinite
with positive probability. The best known sufficient condition for (LT) is (22.7), but
there are processes for which (22.7) fails and yet —r”(0) = co. Indeed, once we
assume (22.7), we know that M, is actually uncountable with positive probability
for all x in a set of positive Lebesgue measure: combining (13.1) and (23.1) shows
that for any real Gaussian process on the line, L, is uncountable for a.e. t, a.s.
whenever

(29.1) fio(s, 1)) 'ds < o0 for ae.t.

In the stationary case, (29.1) and (22.7) are equivalent. Other results on cardinality
are in Berman (1969, 1969a, 1970), Brillinger (1972), Marcus (1977), and in §13.

Hitting points. (a) Let X be an Gaussian (N, d)-field. As Cuzick (1977) points
out, if dim(Im X) = d a.s., then it is of interest to know whether A ,(Im X) > 0 and
whether X hits fixed points. Of course, (LT) implies the former. Cuzick shows that,
if the components of X have stationary increments, and satisfy (29.7) below and
25.11) for k =2,y = 0,and B = T, then each y € R is hit with positive probability
(probability 1 if X is ergodic and T = RY).

(b) Let Wy, , be the N-parameter Wiener process in R? : W), , has ii.d. compo-
nents, each being Gaussian, mean 0, with covariance II}_,(s; A¢#), s =
(Sppe v " s Syt =(t, -, ty) First, ifd > 2N, then A,(Im X) = 0 a.s. (Orey and
Pruitt (1973)). Tran (1977) then showed that Im X actually has Hausdorff dimen-
sion 2N.

On the other hand, if d < 2N, Orey and Pruitt (1973) raise the question of
whether Im X = R? a.s. (here T = RY) having shown that A, (R? \ Im X) = 0 a.s.
Tran (1976) had apparently established that Im X = R? a.s. by showing that Wy a
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has a jointly continuous occupation density (which is the crux of the matter) and
that the occupation density a(x, B) is eventually positive as BTRY. However,
Pruitt (Math. Reviews, 56, 207 (1978)) spotted an error in the proof of the central
estimate (see (30.8)) used by Tran to get the joint continuity of a. As far as we
know (via private communication) the validity of this estimate, which is very
plausible in view of what is known for fields similar to W), ,, is still in doubt.

In the special case d = 1, the joint continuity of a was done for N = 2 by Cairoli
and Walsh (1975, Theorem 6.4) and recently for general N by Davydov (1978).

Hausdorff dimension. Upper bounds on dim M, are generally found by appeal-
ing to the regularity of X; for example, if X(7) is a (nonrandom) (N, d)-field which
satisfies a (uniform) Lipschitz condition of order B, and if N — dB > 0, then
dim M, < N — dp for a.e. x € R? (Kahane (1968) for N = 1, and Adler (1977) in
general). Lower bounds are more difficult to come by and the method is usually
this: fix an x and construct a measure »,(dt) # 0 concentrated on M, (either a.s. or
with positive probability) for which

Ef7f7ls — o] Pr(ds)v,(df) < oo,

for some B > 0. It is then standard fare that dim M, > B a.s. on {», ¥ 0}. In
every case we know of (at least in the Gaussian literature), v (df) turns out to be
a(x, df) (up to a constant multiple). For instance, Marcus (1976) considers the
measure v, which corresponds to the increasing function of ¢ (here N =d =1)
given by

. 1

hmp-—»ooizn:fz)l[o, e,,p)(le - Xl) dg’
where ¢, = 27" and (n,) is a fixed subsequence; the hypothesis here is essentially
the one at (23.4), and the fact that » (df) = a(x, dt) is then obvious. Kahane (1968)
and Adler (1977), working in the (N, d) case, define the measure

vi(dt) = (2—7)d/2exp - (M) dt

€ 2¢

and let ¢|0. This amounts to simply replacing the “approximate identity” ¢ (y) =
e I, o(y) that we have used throughout with the Gaussian kernel ¢,(y) =
e~ /2, everything important remains the same.

As concerns the dimension of Im X and Gr X, the natural measures to use are
the distributions of ¢ - X, and ¢ > (¢, X)) respectively, i.e., the occupation measure
w(dy) and Ay {t € T : (¢, X,) € dy}. This leads one to investigate the finiteness of
integrals of the form

SololX, = X|Pdsdr  and [pfr|(s — O’ + (X, — X)*| P ds .

From here on, we will focus on results concerning dim M,, as these are the ones
involving occupation densities. For results on dim Im X and dim Gr X, see Orey



OCCUPATION DENSITIES 57

(1970), Cuzick (1977), Hawkes (1977), Tran (1977), Yoder (1975), and Adler (1977,
1977a).

dim M, : N=d = 1. The situation for Gaussian Fourier series is fully re-
counted in Kahane (1968) and we will not repeat those results here. However,
many of the results below, as well as the methods of proof, are generalizations or
adaptations of Kahane’s work.

The earliest general results are due to Orey (1970) for the so-called “index 8~
processes. These processes have stationary increments, and

(29.2) sup{y : o(?) = o(¢7), ¢]0} = inf{y : ¥ = 0(a(2)), |0},

where o? is the incremental variance and 8 is the common value in (29.3). Thus,
roughly speaking,

(29.3) o(t)~tF as t]0 0<B<l,
meaning that lim,wo(t)t_ﬁ exists, finite. Essentially, what Orey found was that the
right dimension number for M, was 1 — B, as one might expect. Orey’s result was

improved or elaborated by Berman (1970, 1972), Marcus (1976), and Hawkes
(1977) as follows:

(29.4) THEOREM. (a) (Berman). Under (29.3), for a.e. t,dim L, =1 — B as.
(b) (Berman). Suppose X is stationary and ergodic, o(t) < B|t|P near t = 0, and
[A|"*A72F'(\) > C for all large |\|, where F is the spectral distribution; then a.s.,

dmM, =1-8  foral x.

Also, this is valid for Brownian motion with B = 3.

(¢) (Marcus). Let X be stationary, (29.3) hold, and assume r(t) -0 as t — oo.
Then, for each fixed x € R, dim M, =1 — B as.

(d) (Hawkes). Assume o is monotone; then for a.e. x,

ess sup, dim M, =1 — B,
where [3 here is the “inf” in (29.2).

Perhaps the most delicate result along these lines is that of Davies (1977) giving
the exact Hausdorff measure function for the class of stationary processes de-
scribed in §27, just prior to (24.14).

(29.5) THEOREM. Let ¥ be the Hausdorff measure based on the function
h'~Blog(log 1/ h))”. Then
0< ¥{s:X,=0anda, 0) <t} <ooforalt>0as.

dim M, : N, d arbitrary. First, as concerns Wy ,, Adler (1977) shows that if
N —(d/2) >0, then dim My = N — (d/2) with positive probability. However,
when d = 1, a much stronger result is possible (Adler (1977a)): dim M, = N —
for every x in the interior of Im W)y |, a.s.
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For more general fields, Adler (1977) proves:
(29.6) THEOREM. Let X be stationary with ii.d. components, each of index B. If
N — Bd > 0, then for a.e. x € R,
dim M, = N — Bd
with positive probability.
Cuzick (1977) notes that Adler’s proofs can be adapted to cover certain processes

with dependent components of varying indices: let each X;, 1 <i<d, have
stationary increments, let o; be of index B;, and suppose that

Dy(t,0
(29.7) N—z(—)- >e>0 forall t€T.
7= 10:(2)
(Recall Dy(s, t) = det Cov(X,, X,)). Then, for a.e. x € R?,
dimM, =0 if dimGrX <d

=N-3{B if dmGrXx >d

with positive probability.
Finally Cuzick computes dim Gr X via standard arguments, the result being that
if By < B, <+ < B, then as.

N+ 2‘:( Bd - :Bi)
By

(Information of this nature for smooth véctor fields is also provided in Cuzick’s
paper.)

dim Gr X = min( , N+ 341 - .3,-))~

30. Index B processes and Brownian sheets. We now apply the results in §§27
and 28 to a specific class of Gaussian fields. Afterwards, we will collect our
findings for N = d = 1 in Table 2. This provides examples of functions having the
properties listed in Table 1, direct construction of which might be very difficult.
The situation is similar to that in Fourier analysis where, for example, one proves
the existence of sets of nonspectral synthesis rather easily by a probabilistic
argument, as in Kahane (1968).

Aside from the examples in §29 and those here, other sources are the (1972) and
(1973) papers of Berman, Davydov’s papers, and Pitt’s paper, especially for
examples of Gaussian fields which are (LND).

Let X = (X®, - - -, X®) have independent and identically distributed compo-
nents, each having zero mean, stationary increments and incremental variance

(30.1) o¥(1) = (XD, — XD), 1<i<d,
where, for some “index” 0 < 8 < 1,
(30.2) |t|~Pa(t) - ¢ as -0,

for some constant 0 < ¢ < oo. Here are two specific examples.
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(1) Let each X have the covariance function
R(s, 1) = EXOXP = Z (|2 + |5 — |¢ — s}.

(When B =3, this is Lévy’s multiparameter (isotropic) Brownian motion.) Here
o¥(t) = c|t|2‘9 and X®is (LND) on the set {t € RY : ¢ < |7| <&~ '} for any e > 0;
see Pitt (1978). The condition that |z| > e can be circumvented by slightly adjusting
(see Pitt) the definition of (LND); the results in §§26—28 go through as before, and,
of course, with no changes at all for the index set T = [e, 1.

(2) Let each X® be the stationary process on R with spectral density function
|y|'=28(1 + y»~'; then o*(#) = K|t[* where

K= [Zle™ — 1P\~ ""aA.

(See Berman (1972).)
To simplify matters we will also assume

(30.3) - ElX)P = dE(X(‘)) >8>0 forall te€T.

This is no loss of generality because it is true (even if X, = 0) for the process
X + Y, where Y = (Y, - -, Y,) has independent, standard normal components
and is independent of X, and because the occupation density of X + Y has the
same local properties as that of X. Thus, we can ignore the A, term in bounding
Vi, (B).

(30.4) THEOREM. Let X be as above and suppose X is (LND) and that N — d} >
0. Then X has a jointly continuous occupation kernel a(x, dt) such that for any
compact U c R*:

(@) If & < min(l, N/2dB — 3), then

a(x, B a(y, B
(30.5) SUpp  ssupy Lo B) = a(y. B))

s <ooas
|x — | -

®) If¢ <1—(dB/N), then
a(x, B) _

30.6 P
( ) SUp, e ySUPE~—— ¢ My (B))g

where the inner supremum is over all cubes B C T of sufficiently small edge length.
Finally, for any r > B3,

X, —
(30.7) ap — lim | X

T

= o0 for every t € T,as.

REMARK. The assumption that X is (LND) is superfluous in (1) and (2), and
whenever o(f) = c|t|® and N = 1; for the latter, see Berman (1973).
ProorF. First '

A(s, 1) = det Cov(X, — X,) = (o*(s, 1))* ~ |t — s[*%.
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Hence, for any u > 0,
sup:ETfT(A(S’ t))_u dt < csup,erfrls — t|—2dﬁu dt
< ¢ SUP 1S (s ninls — 8|72 dt
< efy 2N gy

which is finite if 2dBu < N. Hence, (25.13) holds whenever dB(1 + 2y) < N and
0 <y < 1, i.e, whenever

< mi I_N..__l_
v <min{1, 575 —3)-

To obtain the uniformity in B, and to prove (b), we need to examine V; (B) for

balls B c T. Consider the integral
(30.8) | I dt, - - - ay,
. By B@D g — by - =

Since

dt dt N—
IBya, ST < [y, M 5F c2r)V ¥,

the integral in (30.8) is dominated by a constant (independent of By(a, r)) times
(2r)¥=k_Using (30.2) and (30.3) then yields
Ve, o(B) < c(n(B) Y
for all balls B C T, where u = 2df(3 + r). It follows that (27.1) is in force for each
0<y < 1andk >d/y, with
d
t(ho 1) = K[ 1= 1+ 27),
provided this is positive, ie., (dB/N)(1 + 2y) < 1; this is certainly true for all
small y > 0if N — dB > 0. Hence for each small v, (27.3) works for each

k’
{ < supk:k>d/yé(k—y) =[1 - d—i(l + 27)].

Letting /0 now gives (b), and (a) follows from (27.12).
Finally, if 0 <y < 1 and k£ > y/d, (27.10) implies that (30.6) works for any

r> (1= k(e ) - 1)

= %(f’]g(l +2y) + %) > B(1 + 2v).

Letting v|0 again completes the proof.

Notes. (1) If r = B, then (30.8) is false; indeed, the first author and J. Zinn
(1978) have shown that for a class of (N, d)-fields including those here,

. |Xs - tl |X — |
ap lim inf_,————— =0  and ap limsup, ,—>~——- = o for a.e. t, a.s.
P s o(s, 1) P Psot o(s, t) %10 as
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(2) In (a), we will have N /248 — % < 1 iff N < 3 dB, which is consistent with
the fact (see (28.5)) that if N =d =1and 8 < %, then «,(x) is absolutely continu-
ous in x, for every ¢.

(3) We saw in §23 that X satisfies the condition [AC-p] for p = [N — dB], the
largest integer less than N — d3. However, the best result of the form (30.6) that
can be obtained via (10.5) is that » can be chosen larger than d (N — [N — dB]),
which is > B and again consistent with (30.4).

(4) If we allow the components of X to have different indices, say
By By - - -, By, then everything in (30.4) goes through with 8 replaced by d ~( B,
+ -+ Bd)

N-parameter Wiener process in R®. This process, denoted Wi 4> 1s described in
§29, and is (LT) provided N — (d/2) > 0. Since Wy, 4 may not be (LND), the
estimates in §25 following (25.8) do not apply. The estimate that Tran attempted to
prove (see §29: hitting points) is the following: let ¢ > 0 and let a(x, df) be the
occupation kernel of the process (¢, - -, ty) > Wy J(t; + & - - -, ty + €). Then
for any B = II¥[t, 6, + b, 0 <y < 1, and x, u € R*%

(30.9) E|a(x + u, B) — a(x, B)|*

< C|u|k7(fg” SR (] E A +SN]_"(%”) ds, - - - ds‘N)k.
Assuming (30.9), the far right term would then play the role of our Vi, ,(B) and the
analogue of (30.9), for example, would obtain as follows. We need only consider
the case h;, = h, 1 <i < N. Then

noshe )G g L g Nz_d(%”)ds-"ds
Jo fo(21si) 1 v < [ fBN(O,N'/zh)(EISi) 1 N

which is less than a constant times AV ~4G+" by a change to polar coordinates.
Here we take y small enough that ¥ — d(% + y) > 0. Since Ay(B) = ¥, we can
choose -

_i(_”l)

&k, y) = k(l ~

in (27.1), and hence

lim, olim sup, g(k]; Y 1 - %
Indeed, it is now apparent that if (30.9) holds, then all the conclusions of (30.4) for
B =3 would be valid for Wy, ,.
The idea of using Tran’s estimates to obtain a result of the form (30.6) for Wy,
is due to Adler (1978). There is a small mistake there which is corrected in Adler
(1978b); however, the problem about the validity of (30.9) remains.

N = d = 1: summary. Berman provides conditions for the index B processes to
be (LND), in which case they all have jointly continuous occupation densities with
the additional features listed in Table 2 below. The last entry does not apply to the
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TABLE 2
o(?) o (7) a(x)
B = Discontinuous Pure Jump
i1<B<l1 Holder continuous Holder continuous
1
BM:B=! 254 1-8
B <3 Absolutely continuous
(for all ¥)
B <3 CO(R)
(for all ¢)
c®
oX(t) ~ Real Holder Continuous
(log 1/0)~! analytic any order < 1.

index B processes; it derives from (28.4) and arguments similar to those above and
is included to display the full range of possible behavior.

31. Postscript: additional work. To make our survey as complete as possible,
we mention here some of the most recent work on occupation densities which came
to our attention too late to be included in the main body of the paper; indeed, we
have not yet had a chance to fully assimilate, most of these new results.

(a) Davydov and Rozin (1978) consider occupation densities of smooth random
fields, and also establish smoothness in the space variable for the occupation
densities of the Brownian sheet and the Lévy multiparameter Brownian motion.
The results on smooth fields should be compared with Cuzick (1977); the others are
related to the material in §28. The same authors (1978a) consider conditions on a
family of measures under which it is the occupation measure of a function.

Davydov (1978) deals with (N, 1)-fields from a general point of view and proves
the joint continuity of the occupation density of the Brownian sheet W), | (see §29).

Finally, Y. Davydov has informed us that, in addition to the result of (22.5), M.
Lifschitz has produced a stationary Gaussian process which is not (LT) and for
which (22.7) of course fails. Lifschitz’ results will appear in Zap. Naucn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov 73 1978 and Teor. Verojatnost. i Primenen
1979.

(b) A recent issue of Astérisque 52-53 (1978), which is not accessible to us, is
devoted to the subject of local times for semimartingales and related processes.
Much of this work stems from Meyer’s generalization of Tanaka’s formula men-
tioned in §20. Among the papers in this issue that we have seen are Yor (1978,
1978a, b), Jeulin and Yor (1978), Azéma and Yor (1978), and Yeourp (1978). The
approach in these works is largely through the “théorie générale des processus.”
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There are also four papers of Walsh (1978, 1978a, b, ¢) on Brownian local times,
diffusion local times, Brownian sheets, and the Ray-Knight theory.

(c) Adler (1978a, c) gives further information on asymptotic distributions of
occupation measures for the Brownian sheet and the Lévy Brownian motion, and
compares the local behavior of the trajectories of these two processes.

(d) Wolpert (1978) uses an argument similar to one in Marcus (1976) to
construct the occupation density at x = 0 of the Gaussian vector field

(ty, -t ) > (W) — WL, - -, Wi () — Wi(8)),
~where Wy, - - ., W, are independent, planar Wiener processes. The idea is to
measure the “amount of time” these k Wiener processes spend intersecting each

other. This is applied in Wolpert (1978a) to the (¢*), model in Euclidean quantum
field theory.
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