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LOCAL CONVERGENCE OF A CLASS OF MARTINGALES
IN MULTIDIMENSIONAL TIME!

By RicHARD F. GUNDY
Rutgers University

A local convergence theorem for a class of martingales with multidimen-
sional time parameter is proved. This is accomplished by an elaboration of
stopping time arguments used in the one-dimensional setting.

The primary purpose of this paper is to prove a local convergence theorem for a
class of martingales indexed by the lattice

Z3 ={(s,t,u):s>0,¢>0,u >0}
Roughly speaking, we require the martingale to be a transform of a sequence of
uniformly bounded martingale differences. We say that a martingale on Z3 is
regular if it satisfies Assumptions 1 and 2 below.

THEOREM. Let f be a regular martingale on Z i The sets
{hm SuP(s, t, u)—»oclf(s, t, u)l < °°}

and

{]im(s, t u)—»oof(;, ¢, u)eXiStS}

are equivalent almost everywhere.

ReMARrks. For martingales with one-dimensional time parameter, this theorem
(with somewhat weaker hypotheses) is found in Burkholder and Gundy (1970),
page 285. It should be noted, however, that the hypothesis of the present theorem
differs slightly from its one-dimensional time version in that “lim sup” replaces
“sup”. It can happen that

P(sup(s, t, u)If(s, t, u)I = °°) =1
yet
P(hm SuP(s, t, u)If(s, t, u)l < °°) =1

For example, let f = {f,,(k), m = 1,2, - - - } be the sequence of partial sums of a
Rademacher series on the interval [0, 1], so that sup,,|f,(x)| = co almost every-
where. Let g = { g,(y); n =1, 2, - - - } be a Rademacher martingale of the form

8.(») = Zi Vi)n(y).
where V=1, Vi(y) = g_1(»), and r(y), the Rademacher functions, so that
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8,(») = 0 for all n > ny(y) for almost every y:0 < y < 1. Finally, let h,(2),p =
1,2,- - - be any Rademacher function martingale such that A,(z) > 0 for every
p=12---.Then

Jonp(%: 75 2) = fu ()8, (¥) P (2)
is a regular martingale in our sense such that
supmlfm, n,p(x’ ) Z)l < supm, n,plfm, n,p(x’ Vs Z)I = o0
if n < ny(y), yet
lim Sup(m, n,p)lf(m, n,p)l =0
almost evefywhere.

A similar theorem for strong differentiation is known as Ward’s theorem. (See
Saks (1937), page 133). However, the strategy for the present theorem owes more to
a theorem of Calderén for biharmonic functions. (See Zygmund (1968) Chap.
XVII, 4.13.).

The key lemma for this theorem is an elaboration of the usual stopping time
argument, splitting the martingale into two martingales, one of which is bounded,
the other supported on a small set (“the Calder6n-Zygmund decomposition”).

The theorem could be stated for martingales on Z’,. However, we refrain from
doing so in order to keep the notation simple. Also, it is possible to state a version
of the theorem for martingales with continuous “paths” (for example, for
f(Z(¥), Z(s)) where f is biharmonic, and Z(f), Z(s) are two independent two
dimensional Brownian motions).

Notation. We consider random variable sequences f, , ,) Where s, 7, and u are
nonnegative integers. Two triples, n = (s, ¢, ¥) and m = (x, y, z), are ordered n <
m if each component is ordered in the usual way: s < x, 7 < y, and u < z. Let
% ,n € Z3 be an increasing sequence of o-fields with respect to the above
ordering.

A martingale with respect to F,, n € Z3, is a sequence f,, measurable %,, such
that

E(fll%m) = fm

for m < n.

AssumpTiON 1. For each (s, ¢, u), the o-fields %, o o) = Vi u=0%, 1,
Foo,1, 0y DA F (o o ), defined similarly, are conditionally independent given
Fs, 1, u)- This means that the conditional expectation of a random variable f relative
to %, ., may be computed by iteration: '

E(fII%, ) = E(f11%,, w0, ool Feo, 1, o0l T, a0, )-

Under this assumption, the maximal inequalities for f* = SUP(, 1, wyl S5, 1, w| hold for
p>1:

17*1l, < GllAll,
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where
”f”p = sup(.v t, u)"f(.v,t u)” .

This assumption on the sequence %, is given by Cairoli and Walsh (1975), and the
maximal inequalities are proved by Calroh (1968).
These inequalities may be used to prove that a martingale f with

”f”p = sup(.\', t, u)”f.;,t,u”p <

converges almost everywhere provided p > 1. For p = 1, the same statement is
false. (See Cairoli (1968).)

ASSUMPTION 2. Let n = (s, ¢, u) € Z3 be given. The index n may be increased
by one in 2> — 1 ways by adding one to each component of a given subsét of the
components. Let n + 1 designate the result of any one of these increases. (For
example, n + 1 may stand for (s + 1, ¢, u) or for (s, ¢t + 1, u + 1).) We assume that
for every choice, the difference

Jorr = S = VD

where V%) is measurable %,, and r{?, are uniformly bounded, orthonormal
martingale differences. That is,

@ Irlle <C, j=1,2,---,N;

®) E(riri)illF,) = 8U, 1);

(C) E(r(,)lllj)_ s Jj=12.--, N
Here the number N is independent of n and the choice of 7 + 1.

ExampLe 1. Let S,i=0,1,---, T,j=0,1,---, and U, k=0,1,- - -
be independent sequences of mutually independent, uniformly bounded mean zero,
variance one random variables. Let

dyj = VS, T, Uy

where V, is measurable on the o-field ¥,_, ,j—1,k—1 generated by S, T, U with
indices less than i, j, and k. If, for example, the S, T, U sequence consists of the
Rademacher functions defined on the unit cube in R?>, the resulting martingale
concepts are close to those of strong differentiation.

EXAMPLE 2. Let p|, p,, and p, be primes and consider the sequence of numbers
P\ P} p¥ where i,j, k are nonnegative integers. Let 9, J be the o-field of sets
whose characteristic functions are periodic in : 0 < 8 < 27 with period p! - P pk.
The fields %, are decreasing, but they do satisfy Assumption 1 with F. Fi0eo TePlaced
by %00 etc The resulting martingales satisfy Assumption 2. If, for example,
n=(,j,k)andn+1=(@G+ 1, + 1,k + 1) then

n
So —hhar = EN 1V;(.4)-1’()

where V.9, (0) is perlodlc with period p{*!-pj*!. . Here the martingale
differences r{’, / = 1,2, - -, N consist of the N = (p, P> p3 — 1) exponentials
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that are periodic with period p{ - pj - pf but are not periodic pj*'pj*'p¥*'. More
details on this example can be found in Gundy and Varopoulos (1976).

PRodF OF THE THEOREM. The following lemma provides the key to the proof.

LEMMA. Let f be a regular martingale and A > 0. Suppose

E= {w: Sup(.v, t, u)If(w)(s, t, u)l > A}

and P(E) <¢ for some ¢ < 1. Then there is a set F with E C F, constants
C,, i =1, 2,3, independent of N, with P(F) < C,&, and a decomposition of f into two
martingales

f=g+b
with

8l < Can
and

[b¢s, 1, (@) < CAF (s, 1, uy(w)

Jor w & F. Here F, , ,(w) is the conditional expectation of the characteristic function
of F with respect to G , .

Before proving this lemma, we indicate how the convergence theorem follows.
First of all, we may replace the probability space £ by a set G measurable % ,
for large (s, t, u) so that on G,

sup(m, n,p)>(s,t, u)lf(m, n,p)l <A
except for a small subset E' C G,
P(E’) < eP(G).

Since this reduction may be carried out for every A > 0, we can replace the
assumption of the theorem (concerning lim sup) by the assumption of the lemma.
Thus, it suffices to show that f converges almost everywhere on the complement of
F. Since f = g + b, we first observe that lim g, , , exists and is finite almost
everywhere, since || g||, = O(A). (The convergence of these martingales follows
from estimates on the maximal function, as in the one-dimensional parameter
case.) Second, observe that

KM, 5, p)Bom, , py(@) = O
for almost every w & F since

K, 5, p) Fm, n, pp(@) = 0

on the complement of F. Therefore, it follows that f converges almost everywhere
on the complement of F. With the above reduction, this is enough to prove the
theorem. .

Proor oF THE LEMMA. Consider the one-dimensional time martingale
hn = f(n,n,n)’ n > 0
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Since A, is regular, its differences
hn+l - hn = zy-]Vr(ti)rr(tiz-l'
Let d, = (S ,[V,P)? and define the stopping time
7, = inf{n: d, > 4\}.
Now observe that on the set {r, = n},
(1) P(lhn+l - hnl > 2}‘”6‘}(n,n,n)) 2C>0.
This follows from the fact that, relative to the conditional expectation E(- | Funmy)»
the L? and L* norms of |h,,, — h,| are comparable, since the sequence 9, j=
1,2,. -, N is orthonormal and bounded. (See Zygmund (1968), Chapter 5, 8.26).
As a first step toward the construction of the exceptional set F, we include the
set {1; < o}. The above inequality (1) shows that
P(Tl < °°) < CP(supnIhn+l - hnl > 2}\)
< CP(Sup(m’ "’p)lf(m, 'l,p)l > A).
Next, let
T, = inf(n: |h,| > A)
and note that
P(1, < 00) < P(SUP(ym, 1, py fim, m, py) > A).
Finally, let 73 = 7, A 7,, the minimum of the two stopping times.
Now let 2™ be the martingale A, stopped at 7,. We claim that 1A™)|, < CA; in
fact, on the set where
T3=T =k <1y,
“the random variable |4, | < A by definition of 7,. On the set where

73=72=k<'r]

we have
| = hpey| = |2;Y_IV/£’2|"§!)|
1
. 25
< NC(EV_ (V)Y
< NCA
so that

lh] < (NC + DA

on the set 73 = 7, = k. This proves the claim on the set where 73 < 0. When
T3 = 00, the claim is automatically fulfilled.

Now define a three-dimensional parameter martingale g as follows: Given
(s, t, u) choose an integer n so that (s, ¢, u) < (n, n, n) in the specified sense. Let

8(s, t,u) = E(h,:’"g(,, t, u))'
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It may be verified that g is well-defined; that is, g , ,, does not depend on the
particular value of n chosen, and that g is, in fact, a martingale with respect to
%5, 1, - Furthermore, g is uniformly bounded as claimed in the statement of the
lemma.

The martingale b = f — g; we must show that

[b¢s, «, u)("-’)l < GF, u)(‘*’)
for w & F. The set F is defined as
F=EU{1;< 0},
so that
P(F) < CP(E)
by the argument of the preceding paragraph. If w & F, then for any (s, ¢, u) we
have

|bes, 1, uy(@)] < A
by definition. The goal is to improve this estimate. Consider a fixed triple (s, ¢, u)
and suppose, for example, that s < ¢ < . In this case, we may write b, , , as the
conditional expectation of a random variable d,
b(s, 1, u)(w) = E(f(u, wu) ~ 8(u,u, u)”(gs, t, u)
= E(d“” 6‘?3, t, u)’

where d, is measurable ¥, ,,. Now consider the following one dimensional
parameter martingale

b, = E(du”%-s+k,l+k,u)’
fork=0,1,--:,u—t, and
bk = E(du”(gs+k, u, u)

for k=u—t+1,---, u—s. (Notice that this definition makes sense only
when there is at least one strict inequality in the chain s < ¢ < w. If s = ¢ = u, then

bu, u, u(w) = 0
since 73(w) = oo for w & F, which satisfies our requirement.)
The martingale b, k = 0, 1, - - - is regular in the sense that
b1 — b = j’v-lVl?)rl(:)+l

so that we may proceed as in the first part of the argument. Let
v, = min, o, (k; || > CA),

1
Y2 = mink(u—s(k: [2;\’_](11’?))2]2 > 4C4}\)’

and y; = y; Ay,. The constant C, will be chosen below. The stopped martingale
b “converges” to a random variable 4 and

by, u(w) = E(d||%,,,,.)-
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We now estimate b, , , by examining the random variable 4. We observe that
E(d”(z};, t,u) = E(d(‘YEl > u)"("};, t,u) + E(d(73 < u)"g.—s,t, u)

where (y; > u) indicates that set on which the passage across CA is never achieved.
Thus, the random variable d(y; > u) is measurable %, , ,, and bounded:

|[d(v; > u)] < 2CN(73 < u).

Thus,
IE(d(Yii > u)“g;, t,u)l < 2C>\E(T3 < u”gs, r,u)
< 2CNF;, 4 4
Consider the variable d(y; < u). By the regularity of the martingale b, k =
0, 1,- - - and the definition of y;, we know that
|d| < CA(vs < u);

this follows by the argument given in the construction of g, using 75. To finish the
proof, we show that

E(vs <ul%,,.) <CF, .
The set (y; < u) consists of two parts, (v, <v, /A u) and (y, <7v, A u). By
choosing C, sufficiently large, we insure that a passage across C,A by the

martingale b,, k = 0, 1, - - - can take place only on the set E, where sup|f , ,)| >
A. With such a choice of C, the set (y, < u) is contained in E, and

Evi <2 Aull%,.) < Fy
On the set
2=k<viNAu
we have
P(|besy — b > 2CAIl, =k <y Au) >C >0

by the argument following (1), so that
P(|besr| > CAlly, =k < T1A\u)>C>0.

Note that since B, , ;41 — b,ox =0,k =0,1,- - -, we must have y, <u, and the
above inequality implies

Py, =y, + 1|lv,<v,Au)>C >0.
This, in turn, implies .

E(YZ < "1 /\ u“g';,t,u) < CE(Y] < ullg;,t,u) < CEs,t,u‘

Summing up, we have shown that -

lb(s, t, u)(“’)l = 'E(d”g:v, t, u)l < Cm, tu
to finish the proof.
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