The Annals of Probability
1980, Vol. 8, No. 3, 419-430

ON THE LIMITING BEHAVIOUR OF THE MODE AND
MEDIAN OF A SUM OF INDEPENDENT RANDOM VARIABLES

By PeTER HALL
Australian National University

Let X}, X,, - - be independent and identically distributed random vari-
ables, and let M, and m, denote respectively the mode and median of Z}X,.
Assuming that E(X?2) < co we obtain a number of limit theorems which
describe the behaviour of M, and m, as n — 0. When E|X;|> < oo our results
specialize to those of Haldane (1942), but under considerably more general
conditions.

1. Introduction and summary. One of the most curious results in classical
statistical theory is the empirical relationship which exists between the mean, the
mode and the median of many continuous distributions:

(1) mean-mode ~ 3 (mean-median).

For a symmetric unimodal distribution the result is trivial, but it holds quite closely
for many moderately skew distributions. For example, the mean, mode and median
of a gamma (a) distribution are respectively equal to a, @« — 1 and a — % + 0(a™h)
(as a —» o). The relationship (1) was discovered by Pearson (1895) who gave an
empirical explanation in the case of his Type III distributions. By considering a
distribution as a convolution of n independent and identically distributed (i.i.d.)
components, Haldane (1942) was able to provide a more satisfactory explanation.
Let X, X,, - - - be i.i.d. random variables with E(X) = 0, E(X?) = 1 and E(X?3)
= 7 (assumed to exist), and set S, = 21X}, M, = mode (S,) and m, = median (S,),
_assuming that these quantities are uniquely defined. Haldane showed that
M, - — 37 and m, —» — 7 as n — co. In his investigation he makes a number of
stringent assumptions, the most severe being that S, have a density which admits a
convergent Edgeworth expansion. Haldane acknowledged that his formulae might
be inappropriate when these conditions are violated.

Our aim in this paper is to examine the asymptotic behavior of M, and m, under
general moment conditions (assuming only that E(X?2) < o), and without regard
to the convergence of Edgeworth expansions. As a corollary we obtain Haldane’s
results under very weak assumptions, and show that the formula (1) cannot be
expected to hold even approximately if the third moment is infinite. Our proofs are
considerably different from Haldane’s and are based on characteristic function
techniques.

The behaviour of the mode is considered in Section 2, ahd the median in Section
3. We also examine the rate of convergence of M, to —37 and m, to — 1.
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Throughout this paper, X, X, X,, - - -+ denote i.i.d. variables with distribution
function F and characteristic function f, and moments E(X) = 0 and E(X?) = 1.
We set S, = 21X,. We will sometimes suppose that for all sufficiently large n, S, is
absolutely continuous with density function p,. The mode and median of S, are
denoted by M, and m,, respectively, whenever they exist. If they are not uniquely
defined, M, and m, stand for any of the possible values, with the provisor that M,
is a “largest mode” of S,—

Pn(M,) = sup,p,(x).

2. The limit behaviour of the mode. Suppose that p, exists and has an integra-
ble derivative for all sufficiently large n—say n > n,, Then |f(£)|™ = o(|t|~") as
|t| - oo (Lemma 4, page 514, Feller (1971)) and so

JZl (D))" dt < 0

for n > 2n,. Therefore the density of S,/ n? converges uniformly to the standard
normal density (see Feller’s Theorem 2, page 516 and his ensuing remarks), and so
Mn/n%—>0 as n — oo.

Our first result describes the asymptotic behaviour of M, when E|X|*® < oo.

THEOREM 1. Suppose that E|X|*° < oo, and p] exists and is integrable for all
n > n,. Then

M,(1 + o(1)) = — (2ﬂ)_%nf°_°wE[X(l — cos(1x/n)) |e=3" at + o(1)
as n— oo.

The problem of describing the behaviour of M, under more general moment
conditions is complicated by the possibility of symmetry. For example, if X has a
unimodal symmetric distribution then M, = 0 for all n, irrespective of whether or
not moments are finite. The case of a skew distribution is more interesting, and is
considered next.

THEOREM 2. Suppose that p, exists and is integrable for all n > n,. If
2) x3[1 — F(x) + F(—x)] - o as x — 0,
3) lim inf,_,|[1 = F(x)]/[1 = F(x) + F(-=x)] —3| > O and
4 [1-F(x(1+e)+ F(—x(1+¢)]/[1- F(x)+ F(—x)] »1lasx > o

Jor any function € = &(x) -0, then |M,| - oo and

M, ~ - (2'”)_%nf°_°wE[X(l - COS(tX/n%))]e_%’z dt
= — @m) 2 nifR[1 = F(nix) = F(—nix)] dxf=2(1 - cos tx)e ™" dr

as n— oo.
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Condition (2) implies that E|X|* = co. C.dition (3) asks that the tails of X not
be symmetrically balanced, and is a little weaker than the more familiar balancing
condition,

Q) [1-F(x)]/[1 - F(x)+ F(-x)]>p, 0<p<1, p#j.

Condition (4) asserts that the tails of X are ultimately smooth, and is satisfied by
many distributions such as those with regularly varying tails, which we consider
next.

COROLLARY 1. Suppose that p, exists and is integrable for all n > ny, and (5)
holds with p # 0, and that we can write 1 — F(x) = x ~°L(x) where L is slowly
varying at o and 2 < a < 3. If 2 < a < 3 then

M,~C/(p'- 2)n%[1 - F(n%)] where

1

C, = (277)"%f°_°°°t e~ 2" dr[2x (1 — cos tx) dx
= — @**1/)* sin(lam)T(1 — )I(1 +La) > 0,
for a # 2, and C, = Q). If « = 3 and E|XP = oo then
M, ~3(p™" = 252371 - F(x)] dx.

PrOOF. When 2 < a < 3 the conditions of Theorem 2 are satisfied, and by
Theorems 2.6 and 2.7 of Seneta (1976),

f3°[1 - F(n%x) - F(_”%x)] dx [2,t%(1 — cos tx)e'%’2 dt
~ (2= p™)(1 = F(n7))f&x ™" dx [2,1%(1 = cos tx)e 3" dt,

completing the proof. The case a = 3 is handled using Theorem 1, as follows. For
sequences {a,} and {b,} we have

nf= o E[ X(1 = cos(tx/n?)) e~ ar

m3[fy+ [P][1 = F(nix) = F(=nix)] dx (2,1 = cos tx)e ™37 dt

nfE[1 = FGx) = F(=x)] dxs2 (1 = cos(tx/nd))e ™+ dt + a,

1
=382 x[1 = F(x) — F(—x)] dx [®t'e™2" di + a, + b,
Here

(277)_%|a,,| < n%f‘,”[l - F(n%x) +'F(—n%x)] dx ~n%[l - F(nfl)]p'lff°x'3 dx

= o(fﬁéxz[l - F(x)] dx),
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using Seneta’s Theorems 2.6 and 2.7, and Theorem 1, page 281, of Feller (1971),
and for a finite constant C,

|B,| < (1/24n)fﬁ%x“[l — F(x) + F(—x)] dx[® 1% 2" dt
< Cn"fg_;x“[l — F(x)] dx ~;Cn%[1 - F(,,%)],
Since E|X|* = oo then
(3121 = F(x) — F(—x)] dx ~ (2 - p~)fi2x2[ 1 = F(x)] d,

and the result now follows from Theorem 1.
From Theorem 1 we easily obtain Haldane’s result under considerably weaker
conditions.

COROLLARY 2. Suppose that E|X|* < oo, E(X®) = 7 and p] exists and is integra-
ble for all n > n,. Then M,, — — 37 as n — oo.

PrOOF. Since 1 — cos x =3x% + r(x) where |r(x)| < min(x? x*), then

EIX[I - cos(tX/n%) — %(tX/n%)z] _ Eer(tX/n%)l

< n_zt4E[|X|SI(|X| < n%)] + n_ltzE[|X|3I(|X| > n%)].
Therefore, for a constant C,
IM,(1 + o(1)) + 17 + 0(1)] < c{n-%E|X|3 + E[|xPI(1x] > n%)}} = o(1),

completing the proof.
As our final result in this section we obtain some information on the rate of
convergence of M,.

THEOREM 3. Suppose that E|X|**® < o for some 0 < 8 < 2, E(X*) = 7, and p,,
exists and is integrable for n > n,. Then M,, = — 37 + o(n~%/?). If E|X|* < oo then

(6) M, = —%T +%(%K5'—%'m4 +%1’3) + o(nh),
where k, and ks are respectively the 4th and S5th cumulants of X.
The remainder of this section is devoted to the proofs of Theorems 1, 2 and 3.
ProoOF OF THEOREM 1. By the Fourier inversion theorem,
Pa(x) = @m) ™' [2 e~ f(0)" dt

for n > 2n,. If n > 3n, it is permissible to differentiate under the integral sign, so
that

pu(x) = —iQ2w) "' f® te " f(1)" dt.
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Write f(¢/ n%)" = A,(f) + iB,(f) where 4, and B, are real valued functions, Setting
p,(x) = 0 and taking real parts we deduce that
) [ ot sin(tM, /n2)A,(1) dt = [t cos(1M,/n?)B,(2) at,
and so
(8) (My/ ) [ uAy(1) dit + a(M,/n3) (= o0 4,(0) di

= [©,1B,(?) dt + b,(M, /n3) 12 LB (1) at,

where |a,| and |b,| < 1. We can write f(£) = exp[—3#2(1 + v(¢))] where y(#) -0 as
t—0, and

©) v =-2t"[log (1) +3] = 207 f1) - 1 +322] + 0()

as t — 0. The Riemann-Lebesgue lemma implies that | ()" — 0 as |¢| — o0, and so
we may choose a sequence ¢, such that

(10) c, 10, c,,n%—> o0 and supys,, | A" = O(n~9).
Letd, = c,,né. Now,
[ a4 dt < syt At/ n2)l" dt
< (5UPy1g | D))" ™03 [ 14 (1)|"0 dt = O(n~?), and
4, 144,(0)| dt < f“:dnt“|exp[ -17(1+ y(t/n%))]l dt
- [Pt =3 gt

" From these and similar results we deduce that the integrals in (8) are bounded
uniformly in n > 6n,, and that (8) implies

(11) (M, /n3)(1 + o(1))2m)? = f*,1B,(1) dt + O(n"?).

Since |e* — 1 — z| < |z|%"! then

Im exp[ —12(1+ y(t/n%))]

= — 127" tm y(t/n7) + a, () 1y(1/n3)P CXP[ -32(1 - |Y(t/"%)|)]

B,(1)

where |a,(?)| < 1 for all n and ¢. If E|X[**> < oo then y(f) = o(|t|%) ast -0, and so
f4 1P (1/n2)P exp[j%tz(l - |y(z/n%)|)] dt = o(n"?).

T’hé expansion (9) implies that

(12) Im y(t/n%) = —2nt‘2E[sin(tX/n%‘)] + 20(n~ ")
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uniformly in |#| < d,, and substituting the results above into (11),
(M,/n3)(1 + o(1))(2m)F = n J% o tE] sin(eX /n7) =37 dt + o(n~7)
= nffth[sin(tX/n%) - (tX/n%)]e'%‘2 dt + o(n'%).
Theorem 1 follows on integrating by parts.

ProoF OF THEOREM 2. In the notation above let y(r) = a(¢) + iB(¢) where a
and B are real valued functions. Then

B,(t) =Im exp[ —12(1 + a(t/n7) + iB(t/n%))]
= —exp[—%tz(l + a(t/n%))] sin[%t’ﬂ(t/n%)]
=[ —128(t/n7) + a,,(t)t“ﬂ(t/n%)s] exp[ —1(1+ a(t/n%))]
where |a,(2)| < 1 for all  and . Now from (1) we see that
(M,/n2)(1 + o(D)@m)7 = — 1%, £B(t/n3) exp| —32(1 + a1/ n2)) ] a
+A,,f“_~d"|t7ﬂ(t/n%)|exp[ —%t’(l + a(t/n%))] dt + 0(n~2),
where A, —> 0. Furthermore,
E[sin(1x/n?)] = E[sin(eX/n3) — (1X/n3)]
- f3°[sin(tx/n|5) - (:x/n%)] d[1 - F(x) — F(~=x)]

= —¢t[&(1 — cos tx)[l - F(n%x) - F(—n%x)] dx.
Combining these results and the expansion (12),
(13)
M,(1+ o(l))(2vr)% = —n%f3°[1 - F(n%x) - F(—n%x)] dx
X [% (1 — cos tx) exp[ —%tz(l + a(t/n%))] dt
+e,,n%f3°|l - F(n%x) - F(—n%x)| dx [% ,1%(1 — cos tx)
xexp| ~33(1 + a(t/n2)) ] di + 0(n"2)

=I+J,+ O(n‘%),

say, where g, — 0. At this point we use condition (3), and note that in view of (4)
we may suppose for definiteness that

liminf, ,[1 — F(x)]/[1— F(x) + F(-x)] =5+
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where 8 > 0. Then there exists an x,, such that for all x > x,,
[1- F(x)]/[1- F(x) + F(—x)] >3(1+9).
Therefore for large n,
Lndf[1 = F(nix) = F(=n¥x)] dxf, 741 = cos 1x)

Xexp[—%tz(l + a(t/n%))] dt < n%8(1 + 8)"];:2/"%[1 - F(n%)] dx

X [%,1%(1 — cos tx) exp[ — 3 7(1 + a,)] dt +5nf[1 = F(x) — F(—x)] dx
xfﬁ,‘.tz(l - cos(tx/n%)) exp[—%tz(l + a(t/n%))] dt

> n28(1 + 8)7'[1- F(n%)]fl% dx [%,1%(1 — cos tx) exp[ —2(1 + a,) ] dt

— 5o dx [ 1 exp[ —12(1 + B,)] dt > Cn3[ 1 - F(n?)],

where the constants a, and 8, >0, and C > 0. Condition (2) now implies that
I, — oo. Using a similar argument we deduce that for a, — 0.

- n'%In =1+ o(l))f;“’)/n%[l - F(n%x) - F(—n%x)] dx [%,1*(1 — cos tx)
Xexp[ —%t’(l + a(t/n%))] dt
<(1+ o(l))f;‘f")/,,%[l - F(n%x) - F(—n%x)] dx [® t}(1 — cos tx)e'il‘z("“") dt
= (1 + o) 20— ayta-3[1 = F(m3(1 = a)iy) = F(=ni(1 - &)%) ] &
X [* u*(1 — cos w)e 1" du
=(1+ o(l))f3°[1 - F(n%y) - F(—n%y)] dy [* u*(1 — cos uy)e‘%“z, du
using (4). The reverse inequality can be established similarly, and so
I~ —n%f3°[l — F(nix) — F(—n%x)] dxf® 1%(1 — cos tx)e™ 2" dt.
To handle the term J, in (13) we note that for any ¢ > 0, sup,t“e‘%"2 > 16e~2 Let
€= e,,%, and B, = supj . |a(®)| + e,,% — 0. Then
J, < 16e3n2 2|1 — F(nix) — F(—n%x)l dx [2 (1 — cos tx)e~ 10 =A) dy
= &30(1L,)).
Theorem 2 now follows from (13).

PROOF OF THEOREM 3. The proof is conducted using the techniques above, and
expansions of f(¢). For example, if E|X|° < co then

f(r) = exp[ —17 —Lir + Rugt* + Jyinst® + o(|¢) ]
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as t - 0, and so
A,(1) = e‘%"[l + 7 (ggrgt® = 5740 + nT 1+ 19, (e 270
and

B,(f) = e-%t’[ —lm=ip 4 n‘%($x5t5 — et + gm0 |
T3+ [19)B,(r)e” 370

where the functions «, and 8, — 0 uniformly in |¢| < d,, and the constants &, — 0.
Substituting into (7) we see that

M2 (1 = 3en ™' 2)[1 + n™Y(gxut* - ,—‘za-zt‘)]e-%t’ dt
= 121 = ) o g — e+ )]
xe~ 3% dt + o(n™Y).
Therefore
1= 1= )] = 4 (i~ +3) + ot
and from this follows (6).

3. The limit behaviour of the median. The results and some of the proofs of
this section are similar to those of Section 2, and we will keep our discussion brief.
It is clear from the central limit theorem that m, / ni—>0as n — oo. Our first result
generalizes Haldane’s in the case of a finite third moment. We will have occasion
to use Cramér’s continuity condition,

© lim supy,_ f(1)] < 1.

THEOREM 4. If X is nonlattice with E|X|* < oo and E(X)* = 1, then m, —
— 2. If condition (C) is satisfied and E|X|>*® < 0,0 < & < 2, then m,=—1r+

o(n"%s), and if E|X|® < oo then
(14) my = —i1 + n (g5 — Sr, + 2%) + o(n71).

Proor. If X is nonlattlce then from a result of Stone (1965) we see that
sup, P(S, = x) = o(n~ 2), and a theorem of Esseen (see Gnedenko and
Kolmogorov (1954), Theorem 2, page 210) implies that

P(S, <m,) — ( /n;) 2wn)~ 21 i1+ o(n 2)

where @ is the standard normal distribution function. It follows that m, — — $7.
The case E|X[’*® < oo is handled using a more extensive expansion such as that
in Theorem 2, page 168, of Petrov (1975). For example, if E|X|* < oo then writing
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r,=m,/ n? we deduce that
P(S, <m,) — ®(r,) + (27m)_%e_%'3[%'rH2(rn) + %n_%x4H3(r,,)
+en " wsHy(r,) + %n'%'rsz(r") + 5 n "' H(r,)
+72';;n_11'3H8(r")] = o(n_% ,
where H,, k > 0, are the Hermite polynomials. Now
(15) sup, P(S, = x) < I, P(S, = x)
= limz, 3 T~ T | A" at
< (lim supl,l_,w|f(t)|2”) =0(e™®)
for some & > 0. Therefore P(S, < m,) =1 + 0(e ). Since
O(x) =1+ 27)73(x — 1x* + 0(x%)

as x — 0, then

1
21,

1.2} _ 1 2\[1, 7,2 1. -1 1, -1 5
m,(1-1r2) = (1 —irn)[g'r(r,, —1) —3n Ky, + 50 s + 5gn
—2n" ', +%n‘l’r3] + o(n7Y),
. 1 _1 . L.
and since r, = — %n 21 + o(n~2), this expansion implies (14).

In the remainder of this section we consider the behaviour of m, under less
restrictive moment conditions.

THEOREM 5.  If (C) holds and E|X|** < oo then
m,(1 + o(1)) = (2m)"2n = ot [ sin(eX/n) |73 dt + o(1).
THEOREM 6. If conditions (2), (3), (4) and (C) hold, then |m,| — oo and
_1 3 . 1 1.2
m, ~ (27) 2n7f°_°‘,,,t''E[sm(tX/ni)]e‘?' dt
_1 3 1 1 1.2
= —(27) 2n5f3°[1 — F(n2x) — F(—nix)] dx [® (1 — cos tx)e™2" dt.

COROLLARY 3. Suppose that (C) holds,
[1- F(x)]/[1- F(x)+ F(-x)]>p, 0<p<1lp*4,

as x —»> o0, and 1 — F(x) = x~*L(x) where L is slowly varying at oo and 2 < a < 3.
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If2<a<3then
m, ~ D,(p~" = 2)n3[1 = F(n?)]
where
D, = (2m) 7™ e~ 3" difex~(1 — cos ix) dx
= - (2"‘"/77)% sin($am)I(1 — a)l'(3a) >0,
fora+2, and D, = (n/2)%. If « = 3 and E|X| = oo then
m, ~3(p™" = 2)[5x*[1 — F(x)] dx.

ReMARKs. Comparing Corollaries 1 and 3 we see that (1) holds asymptotically
if @ = 3, but not if 2 < a < 3. As a general rule, (1) cannot be expected to hold if
E|X]? = . Since C,/D, = a then for a distribution with regularly varying tails of
exponent a, 2 < a < 3, we have instead of (1) that

mean-mode ~ a(mean-median).

PrOOF OF THEOREMS. In view of (15) we have from Gil-Pelaez’ (1951) inversion

theorem that

P(S, < x) =3+ [&Qmit) " [e"™f(—1)" - e "f(0)"] dt + 0(e~*")

uniformly in x, where the integral exists in the Riemann sense. With Q denoting
the concentration function we deduce from Lemma 3, page 38, of Petrov (1976)
that for any ¢ > 0,

(16) Q(S,; e™) < Ce™* [ ul ()" dt
<2C{e " +[supys | A(DI"]} = O(e™*™)
where 0 < ¢’ < &. Suppose 0 < §, < 1. We can write
P(S, < x) =3+ [&Qmit) "' [e"f(—1)" - e~ f(1)"] dt

+r,(x) + 0(e™*")

where

A7) In(l < GO e+ =) BE D dlaps, < ).

The first term on the right is dominated by

[supy>s | A(D]]" log(27/8,).
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Choose 8,,1,0 so slowly that [supj, - | (D)|I" = 0(n~*) for all k > 0, n%S,, — o0 and
8, > 27" Then the first term on the right in (17) is 0(n %) for all & > 0. Since

ff%dt] < min(1, 1/|az]),

then the second is dominated by
CP(|S, — x| <27 "or >2%)

2" —1 2"
+[ S ey i<ty F ZFS ly—sl<ien) ]

f;?—s-l—n(—x-t_—y—)—tdt dP(S, < y) < CP(|S, — x| < 2™ " or > 27)

+ CET P27 <|S, — x| < (j + 1)27%) /2" 27" + CZ¥1/2" -
< 2C(log 2M)Q(|S, — x|; 27") + C(log 2")2™" + CP(|S, — x| > 2").

The inequality (16) and the fact that m, = o(n %) as n — oo now imply that
r,(m,) = 0(n~) for all k > 0. Therefore for a certain sequence &, — 0,

P(S, <m,) =1+ 238 2mir)”"
[e"”"/”%j(—t/n%)” - e""”"'/"-;f(t/n%)"] dt + 0(n=%)
for all £ > 0. Taking real parts we see that
[zt~ sin(1m, /n3)A,(1) dt = [3%=" cos(tm,/nt)B,(1) dt + O(n~*).
Letd, = n%8,,. Now,
(18)
[t~ sin(tm, /n2)A,(1) dt = (m,, /n%) [&4,(0) dt + a(m,/n3) [#4,(0)| at

where |a,| < 1, and
(A, (1) dt - [Pe~i% dt  and  [HA(8)] dt — [CPe™ 1" .

Instead of (1) we now deduce from (18) and a similar result that

(19) (ma/m3)(1 + o())(w/2) = [t ~'B,(£) dt + O(n~")

for all £k > 0, from which follows Theorem 5.
Theorem 6 and Corollary 3 are proved as before, using (19) in place of (11).

Acknowledgment. I am grateful to the referee for his comments.
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