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UNIMODALITY OF PASSAGE TIMES FOR ONE-DIMENSIONAL
STRONG MARKOV PROCESSES!

By UWE ROSLER
Georg-August- Universitdt

Let 7, be the first passage time of x for a diffusion or birth-death process.
If one starts in a reflecting state, say O, then the distribution Py(7, <-) is
strongly unimodal. Here we show for an arbitrary state O the distribution
Py(7, <) is unimodal. Further we give a discrete analogue for the random
walk.

1. Introduction. For a continuous birth-death process with O reflecting, the
distribution Py(7, <-) is (if not degenerate) a convolution of exponential distribu-
tions (Kielson 1971). As a consequence, Py(7, <-) is strongly unimodal. This result
extends partially to diffusions with O reflecting, using an approximation by birth-
death processes (Stone 1963). What happens if 0 is not a reflecting, but an arbitrary
state? For Brownian motion (Keilson 1971) or an Ornstein-Uhlenbeck process we
can explicitly calculate Py(7, <-). This distribution is not strongly unimodal, but is
nevertheless unimodal. In this paper we prove unimodality in general.

THEOREM 1.1. Let X(t) be a continuous birth-death process. Then the distribution
function P(7; <-) is unimodal for all i, j € Z. If |i —j| = 1 then the density of
P(7; <-) is decreasing on t > 0, a.e.

By approximating a one-dimensional diffusion by a sequence of birth-death
processes (Stone (1963)) we obtain

THEOREM 1.2. For any one-dimensional diffusion process the distribution function
P,.(Tj <) is unimodal, i, j € I.

THEOREM 1.3. Let X(t) be a discrete birth-death process. Then P(1; = 2k),
P(1, = 2k + 1) are first increasing in k € Z, then decreasing. If |i — j| =1 then
P,.('rj = 2k + 1) is decreasing on k > 0, k € N, and 0 otherwise.

The three strong Markov processes mentioned above enjoy the common prop-
erty that the basic state space is a subset of the (extended) reals and the trajectories
do not jump over points in the state space. This is the reason (not obvious) for
basically the same proof of Theorems 1.1, 1.2, 1.3. We will give the proof of
Theorem 1.1 in detail in Sections 3 and 4, and the idea in the beginning of Section
3. In order to avoid technical difficulties and different cases, we get Theorem 1.2
by an approximation of the diffusion by birth-death processes. Theorem 1.3 is the
discrete analogue of Theorem 1.1. We omit the proof and mention only the result.

An independent analytic proof of Theorem 1.1 for ergodic birth-death processes
and Theorem 1.2 was given by Keilson (1979).
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The distribution Py(7, <-) for diffusions as well as for birth-death processes is
known to be infinitely divisible. It would be interesting to know whether they
belong to class L or not. If they belong to class L, unimodality follows already by a
paper of Wolfe (1971).

2. Notations and definitions. Let X(¢), 1 € T Cc R* be a stationary strong
Markov process with state space I C R U { — o, + 00} on a probability space (2, F,
P). For a discrete birth-death process (random walk) we have T'= N, I C Z. The
transition probabilities for a jump from x to x+ 1, x — 1 are p,, ¢q,. For a
continuous birth-death process we have T=R*, I c Z yu {— o0, +0}. For cer-
tain birth-death rates A, p, the process will converge to *co in a finite time
(Karlin, McGregor 1957). We include these processes by adding two absorbing
states * oo in an obvious way.

For a diffusion we have 7= R* and I C R U {*o0}. The trajectories are a.s.
continuous relative to I.

In this paper 7,, y € I denotes the stopping time 7, = inf{7 X, = y} relative to the
o-algebras generated by the process X,. We use here the convention inf & = oco.

In general B,(-), P,(-) denotes the probability measures given by the transition
probabilities and the initial measure (pointmeasure in x). For birth-death processes
we further use the-functions

P(x,y,t) = P(X(t) =)

P(p,y,t) = P,.(X(t) =y).

A function F is called unimodal if there exists at least one value b such that F(x)
is convex for x < b and concave for x > b (Ibragimov 1956). Every unimodal
distribution function has left and right derivatives, except perhaps at the point b.
These derivatives increase monotonously for x < b and decrease for x > b. A
distribution function is called strongly unimodal, if any convolution with a uni-
modal distribution is unimodal. Strong unimodality implies unimodality (convolu-
tion with pointmeasure). Ibragimov (1956) showed that a unimodal distribution
function is strongly unimodal iff F is continuous and In F'(x) is concave on
{F’ # 0}. This leads to: the derivative F’ of a strongly unimodal function is a
Polya frequency function of order two (Schoenberg 1951).

3. Idea. LetJ be an ordered set, f: J — R a function. The sign sequence for f
is the sequence of =+ I’s generated by sgn f(x) as x runs through J with the given
order. Zeros are neglected. The function S;” (f) counts the sign changes of the sign
sequence of f. (The index — is only used to have the same notation as Karlin
(1968)).

The following theorem is in Karlin (1968). For an introduction to totally positive
matrices of order r € N (TP. matrices) and the variation diminishing property see
Karlin (1968). We will not use these properties, except in the Theorem 3.1.



UNIMODALITY OF PASSAGE TIMES 855

THEOREM 3.1. Let K(x,y), x, y €J, be a TP, matrix, J a finite subset of Z.
Define as usual pK = 3, K(x, -)u(x) for p a signed finite measure on J. Then

Sy (hK) < 8§ (n)

holds for Sy (u) < r — 1. Furthermore the sign sequence of uK is contained in the
sign sequence of .

We will apply this theorem to the transition matrix P’ of a birth-death process.

LetI = {0,1,---,x, — 1, x5} with x, absorbing and J be the state space I without
xo. It is well known (Karlin 1968) that these matrices P‘ for fixed ¢, defined by
Pi(x,y) = P(x,y,1) x,y €J

are totally positive of all orders.

The following picture shall help to understand the next two lemmas and the
underlying structure of the proof. For simplicity we take a discrete time.

Every point represents a + or — according to sgn 9/9P(u,-,-), sign changes of
a row (excluding x,) is decreasing. This is the main statement of Theorem 3.1.
Then the Kolmogorov backward equations give us the upper line, the sign of the
second derivative to the time of P(u, x,,¢). This line starts with a + switches ones
to — and then remains —. A discussion of this behaviour will finally show the
unimodality of P (7, <:),x € L

LeEMMA 3.2. Let X(t) be a continuous birth-death process on I = {0,1,---,x,}.
The state x is absorbing. For simplicity we may assume all birth-death rates Ay, A, 1,

state 1
N
&
%o + + + - - - - son S Plu,x,..)
x-11 + 4 + - - - -
+ + - - - - -
+ + - - - - -
+ + - - - - -
+ - - - - - - a
- - - - _ sgna-t Ply,.,.J
<+ - - - - - -
1 + + - - - - -
+ + - - - - -
2 + <+ - - - -
11 + + + + - - \ -
0 ++ \§\ tt \\\ o= \\\ an dtime t
0

FiGc. 1
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are positive for i = 1,2, -+ ,xo — 1. Let N be {0,1,- - - ,x, — 1} then

(a) Sy (%P(p,,- ,t)) is decreasing int > 0.

_ ad 9
(®) S0, (@P(M’xo - 1”)) - S[o,rol(gp(#,xo - 1:')) =Lt > 1
implies
S; (ip(y ot )) > Sq (Lﬂ(u : t)).
N\t >0t N o\or i
© si (5P ) < n
implies
_ 9
Sg+ (EP(”"XO— l,-)) < n.
ProoF. Take the derivative to ¢ of the Chapman-Kolmogorov equation to get

9 9
S Pt = Zyen( PGy 1)) PO 1y = 1)
Now apply Theorem 2.1 to obtain
_ (9 _ (9
Sy (EP(”'"JO)) > Sy (a_tp(l“"’tl))' 7
(b) Suppose equality above holds. The sign rule of Theorem 3.1 —50? P(p,-,ty)
and % P(p,-,t,) possess an identical sign sequence.
Our assumption in b implies % P(p,xq — 1,¢,) has a different sign from that of

% P(p,xq — 1,¢5)(both without loss of generality are non-zero). This is a con-
tradiction.
0]
(c) Suppose SE*(EP(””XO - 1,-)) > n. Choose a sequence ¢, < t; <, -+ <

t,+, such that sgn% P(p,xy, — 1,¢,) alternates and
- d _ a
S!O"i] (a—tp(p"xo - 1")) - S[O,t,-u (EP(I"’XO - 1")) =1,

i=1,---,n+ 1holds. An inductive application of b gives us Sy (%P(u;,O)) >
n. This proves (c).

LeMMA 3.3. Take the same assumptions asin Lemma 3.2. Let p. be a point measure
on x, € N. Then

S];I_(%P(xl" ’O))

2 0<x, <xo-—1

1 X, =x9— 1

SJG(%P(XD"O))

or x, =0
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_ (9
S§+(%P(x,,xo— 1,~))=0 X, =xo— 1.

ProoF. The Kolmogorov backward equations give the first two statements. The
sign sequence looks like - -1, — 1, 1, -. For the third statement, Lemma 3.2 says

S = S|;+ (%P(xl,xO_ 1,‘)) < 2 xl < xo - 1.

We will show S = 0 and S = 2 are impossible.

(i) Suppose S = 0. % P(x,,xy — 1,1) is always greater than or equal to 0 since
P(xy,x5 — 1,0) = 0, P(x;,xo — 1,¢) > 0 and S = 0. This is impossible by reason
of lim, , P(x;,xq — 1,¢) = 0 (x, is absorbing) and the existence of at least a ¢,
satisfying P(x;,xq — 1,¢5) > O.

(ii) Suppose S = 2. By P(x;,xy — 1,0) = 0 and P(x;,x, — 1,¢) > O the func-
tion — P(x;,x, — 1,-) is initially positive. S = 2 implies the sequence positive,

at
negative, positive. There exists a ¢, satisfying

P(xy,xo—1,25) > 0 and %P(xl,xo—- 1,¢) > 0 forallz > ¢,.

This implies
lim, P(x,xq—1,) > P(xy,x9— 1,25) > 0
in contradiction to x, absorbing and P(x,, xq,¢) — 1 as x — oo.

We now prove the fourth statement. We know already by Lemma 3.2 that S < 1
holds.

Suppose S = 1. We have P(xqg — 1,x5— 1,0) =1 and P(xy — 1,x — 1,£) < 1.
Therefore %P(x,,x0 — 1,-) is first negative, then by S = 1 always positive or
zero. Choose a ¢, big enough in the positive part. We have

lim, P(xo— 1,xo— 1,2) > P(xo— 1,x5— 1,25) > O.

t—>o0

This is a contradiction to P(xy — 1, xq, ) —,1.

LemMMA 3.4. Let X(t) be a continuous birth-death process on I = {0,1,- - - ,x,}.
The state x, is absorbing. All birth-death rates Ao,A\,p;, i=1,-+-,x5— 1 are
strictly positive. Then the distribution function P(t, <-), j € I, is unimodal. For
J = xo — 1 is the distribution function P, _ (1, <-) concave on {t > 0}.

Proor. Without loss of gen_grality we may assume 0 < i <j and j = x,. We
will first_grove the theorem for N = {0,1,---,i,- - -,j = xo} and A, p; are positive
fori € N\ {0,x4}. s

(1) Let i < xy — 1. According to Lemma 2.3 % P(i,xy — 1,-) possesses one

2
sign change. The backward equations imply one sign change of -:—2- P(i, xq,°).
t
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Therefore a% P(i, xy,-) has at most two extrema. By reason of P(i, x,,0) = 0 and
P(i,xy,t) > 0 we first have a local maximum. A further local minimum is not
possible, because otherwise P(i, x,, t) would be unbounded. Therefore 9 P(i,xq,")

at
possesses only one maximum, is increasing until this maximum and decreasing

afterwards.
2
(i) Let i = x; — 1. Now 835 P(i, x4,+) has no sign change. Thus % P(i,xq,*)
t

has at most one extremum. Assume one extremum. This extremum is a local

ot
big enough. This contradicts P(i,x,,¢) < 1 and % P(i,xq,t) > 0. Therefore

.. . d , . . J _ . . .
minimum since —a—z P(i, xy,0) is negative. Hence — P(i, x,?) is increasing for ¢
t

d . . .
3 P(i,xq,t) has no extremum and is monotone decreasing on ¢ > 0.

4. Results. We will now extend the result of Lemma 3.4. The main tool
thereby is the fact, the weak limit of unimodal distributions is unimodal (Ibragimov
1956).

1. Let X(¢) be a birth-death process in Lemma 3.4, but some A, p; may be zero.
(This includes 0 absorbing by A, = 0). Construct a sequence X" of birth and death
processes with N, A}, u} converging to Aq, A;, p; and Ay, A, y, strictly positive for
i=1,--+,xy— 1. Then 7 will converge weakly to Ty, This implies 7, has a
unimodal distribution.

2. Proof of Theorem 1.1. Let X(t) be an arbitrary birth-death process. Without
loss of generality it suffices to show Py(, <-) is unimodal for x, > 0 absorbing.
Define a sequence X" of birth-death processes by the same rates. Change only the
state —n into an absorbing one. Now 7, converges weakly to 7, . This finishes the
proof of Theorem 1.1.

3. Proof of Theorem 1.2. Let X(t) be an arbitrary diffusion. We will show
Py(7,, <-) is unimodal, x, > 0. Without loss of generality the diffusion is on the
natural scale. The process is completely determined by the speedmeasure m(-).
(Our processes all have infinite lifetime by the introduction of + co and therefore
the killing measure is 0.) Following Stone (1963) we construct a sequence of
birth-death processes satisfying some conditions (i — ix on page 643 of Stone
(1963)). These processes X" converge to X. More precisely: Let p be a pseudo
metric on R (we allow p(x,y) = 0 for x # y) such that if x, € R for n > 0 and
x, — xo— 0, then p(x,,x,) —> 0. A sequence x"(¢) is said to be J convergent to
xo(2), if there is a sequence of continuous one-to-one mappings A, (¢) of [0, co] onto
itself such that for every 7> 0

Sup0<1<T|>‘n(t) - tl -0
and
supy <, 7P(x,(2), x(A,(¢))) = 0.
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It remains to show 7 converges in distribution to 7,. Choose an increasing

sequence y; € I, i € N, with p(y;, x,) strict decreasing to 0. We may assume x,, y;
are elements of /" for all i and n. By the Stone convergence we get

— n —
T, 2e¢ < T, — € < T

for n = n(w, €) big enough. With e - 0, i — oo we get 7,} converging weakly to 7, .
With the arguments as before, we get the desired unimodality.

4. Proof of Theorem 1.3. The proof is analogus to that of Theorem 1.1. It is easy
to show the matrix

P= (Pi,j)i,jez Pi; = 4q; j=1i—1
= p; Jj=i+1
=0 otherwise

is total positive for every order on N = {0,1,---,x, — 1}. 0 is absorbing or
reflecting. The composition of TP, matrices is again TP, (Karlin 1963). For reason
of the periodicity 2 it is appropriate to use the matrix P2 = P-P instead of P.
Furthermore the functions

F(p,i,n) = P(p,i,n) — P(p,i,n—2)

replace % P(u,-,-). With these aids we can first prove the analog to Lemma 3.4
and then extend the result to a general discrete birth-death process.

Acknowledgment. I wish to thank Prof. Dr. Ulrich Krengel for his interest and
support during the development of this paper.
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