CORRECTION TO "ON THE RANGE OF RECURRENT MARKOV CHAINS"

By Leo Chosid and Richard Isaac

New York City Community College and Herbert H. Lehman College, CUNY

In the above paper, our computation for the tail of the distribution of W in the random walk case (Theorem 2) is incorrect ((2.2) was erroneously applied to III). As a consequence, Corollary 1, which asserts that random walks satisfy (1.3), is wrong. It is therefore desirable to state the following variation on Theorem 1:

THEOREM 1'. In the nullrecurrent case $(\pi(\Omega) = \infty)$, if there exists an $r, 0 < r \le 1$ with $EW' < \infty$, and if $kN_k^{-r} \to 0$, then (1.2) is true.

The proof follows from adapting (1.7) and (1.8) to the inequality $N_k^{-r} \cdot R'_{N_k} \le (k^{-1} \sum_{j=1}^k W_j^r) \cdot (k N_k^{-r})$. Theorem 1 is obtained when r = 1, and then $k N_k^{-1} \to 0$ is automatic.

It has been pointed out to us that a counterexample to Corollary 1 is provided by simple symmetric random walk on the integers. In that case $E_0W = 1 + E_1U$, where $U = \max_{n < N} X_n$ and $P(U \ge k) = k^{-1}$, the probability of the classical gambler's ruin, and so $E_0W = \infty$. We note, however, that $E_0W' < \infty$ for any r with 0 < r < 1, and since N_k grows as k^2 , the hypotheses of Theorem 1' are satisfied for $r = \frac{2}{3}$, say. We think a large number of nullrecurrent chains will satisfy the conditions of Theorem 1'.

It has also been pointed out that the chain in Section 3 is transient, not recurrent as claimed. In the definition of the transition probabilities both 2^{-n} and $1 - 2^{-n}$ should be replaced by $\frac{1}{2}$. Also, in the last line of page 685, the second equality should be an inequality, and following that we should have equality.

REFERENCES

[1] CHOSID, LEO and ISAAC, RICHARD (1978). On the range of recurrent Markov chains. Ann. Probability 6 680-687.

New York City Community College 300 Jay Street Brooklyn, New York 11201 DEPARTMENT OF MATHEMATICS
HERBERT H. LEHMAN COLLEGE
OF THE CITY UNIVERSITY OF NEW YORK
BRONX, NEW YORK 10468