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A STRONG LAW FOR LINEAR FUNCTIONS OF ORDER
STATISTICS

By W. R. VAN ZWET
University of Leiden

A strong law of large numbers for linear combinations of order statistics is
proved under integrability conditions only. Together with some straightforward
extensions, the theorem generalizes previous results of Wellner, Helmers and
Sen.

1. Introduction. Let U, U,,--- be random variables defined on a single
probability space (2,&,P) and suppose that U, U,,--- are independent and
identically distributed (i.i.d.) according to the uniform distribution on (0, 1). For
N=12---, U.y< U,.y<--- < Uy.ydenote the ordered U,,- - -, Uy. Intro-
duce Lebesgue measurable functions Jy:(0,1) > R, N=1,2,---, a Borel mea-
surable function g: (0,1) -» R and define g,,: (0,1) > R, N =1,2,---, by

(1.1) gn(t) = g(U[Nt]+l:N)’
where [x] denotes the integer part of x. We adopt the convention that when
integration is with respect to Lebesgue measure A on (0, 1), we shall write (f for
[fdA. The range of integration will be (0, 1) unless explicitly indicated otherwise.
For 1 <p < o0, L, is the Lebesgue space of measurable functions f:(0,1) - R
with finite norm || f ||, = {f|f|?}'/? for 1 < p < oo and || f||,, = ess sup|f| for
p = oo.

The purpose of this note is to show that under integrability assumptions on J,
and g,

(12) My = [Jy(gy—8) = zx{ilg([]i:N)f('x:/—A;)/NJN = JIng
converges to zero for N — oo with probability 1 (w.p. 1). If, moreover, J,, converges

in an appropriate sense to a function J which shares the integrability properties of
Jy» we prove that

(1.3) My = [Jugn — |Jg

also converges to zero w.p. 1.

If Jy(t1)=cy,; for i—1)/N<t<i/N,i=1,---,N, and g=hoF ! for a
probability distribution function (df) F on R and a Borel measurable function
h:R— R, then the joint distribution of [Jygy, N =1,2,---, is that of
N™'Scy ;h(X;.x), N = 1,2,- - -, where the X;, 5 are order statistics of a sequence
of ii.d. random variables with common df F. We are therefore concerned with the
almost sure convergence of suitably standardized linear combinations of a function
of order statistics.
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Previous results in this direction may be found in Wellner (1977), Helmers (1977)
and Sen (1978). Wellner restricts attention to the case where Jy(¢) = ¢y ; for
(i—1)/N<t<i/N,i=1,---,N, and assumes that g is left continuous and of
bounded variation on closed subintervals of (0, 1). He proves that M,, — 0 w.p. 1 if
numbers b,, b, and C, as well as § > 0 exist such that, for all N and ¢ € (0, 1),

(14) |g(£)] < Crri+bitd(q — )~ 1+ba*e,
(1.5) [Jy(2)] < Ct=o1(1 — 1) P2,
(1.6) [mm38(1 — )1 7hm 8y g| < oo,

where d|g| denotes integration with respect to the total variation measure induced
by g. He shows that My —0 w.p. 1 under the additional assumption that Iy
converges to J pointwise.

It is clear that Wellner’s result will cover most cases that one is likely to come
across in practice, the main flaw being that it just fails to contain the strong law for
the sample mean, i.e., the case where Jy =1 and g € L,. This gap is closed in
Helmers (1977) where it is shown that MN—->O w.p. 1 for ¢y, =J(i/(N + 1)), J
piecewise continuous and bounded and g = F '€ L,.

For b,,b, € [0, 1), Wellner’s conditions (1.4) and (1.5) imply integrability of g
and Jy, and for this case a mathematically more satisfactory result was obtained in
Sen (1978, Theorem 4.1). Sen also takes Jy(t) = cy ; for (i — 1)/N <t <i/N,
i=1,---,N, and assumes that J, converges pointwise to J, but now J is required
to be continuous and of bounded variation on closed subintervals of (0, 1). This
switching of the smoothness condition from g (Wellner) to J (Helmers and Sen) is
quite common in problems concerning linear functions of order statistics, where
one can use both kinds of smoothness almost interchangeably. The improvement,
however, is that instead of (1.4)—(1.6), Sen requires that g € L, and supy || Jy |l , <
oo for some p,q € (1, 0) with p~'+ g~ ! =1, to prove that M, — 0 w.p. 1. Note
that Jy— J pointwise and supy||Jy ||, < co imply J € L, by Fatou’s lemma and
together with g € L, this ensures that Sen’s assumption that Jg € L, is automati-
cally satisfied. Apparently unaware of Wellner (1977), Sen also proves another
result (Theorem 4.2) which is strictly contained in Wellner’s.

The present note constitutes an attempt to provide a mathematically cleaner
version of the above results. Roughly speaking we shall show that all smoothness
conditions on g and J, including (1.6), are superfluous and that the pointwise
convergence of J,, can be relaxed. We do not assume, that Jy, is a step function.

2. A strong law. Let g:(0,1) > R be Borel measurable and let g, be defined
by (1.1). We begin by proving -

LemMmaA 2.1. With probability 1, g, converges to g in Lebesgue measure, i.e.,
lim ., A{#:|gn(2) — g(2)| > 8} = O for every § > 0.
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ProOF. Choose & > 0. By Lusin’s theorem there exists a Borel set B c (0,1)
and a continuous function £: (0, 1) —» R such that A(B) < eand g =g on (0,1) N
B¢. Define gy(¢) = §(Uinyy+1.v) and By = {t:Uy, 41 € B}, so that gy = gy on
(0,1) N Bj,. Since A(By) = Py(B), where P, denotes the empirical distribution of
Uy, -+, Uy, it follows from the strong law that lim supyA(By) < & w.p. 1. In view
of the Glivenko-Cantelli theorem and the continuity of g, this implies that w.p. 1
we have for every 6 > 0

lim ysup A {z:|gy(7) — g(2)| > 8} < A(B) + limysupA(By)
+ limysup A {z:|gx(7) — £(2)| > 8} < 2e.
Since ¢ > 0 is arbitrary the lemma is proved.

THEOREM 2.1. Let 1 <p < oo, p~' + q~' = 1, and suppose that Jy € L, for
N=12--- and g € L,. If either

(1) 1 <p < oo and supy || Jyll, < o, or

(i) p=1and {Jy:N = 1,2, - -} is uniformly integrable,
then lim _, M, = 0 with probability 1.

ProoOF. Suppose first that 1 < p < o0, 50 ¢ < c0; W.p. 1, g5 —> g in Lebesgue
measure and [|gy|?= N ~'Z|g(U))|?— f|g|? by the strong law. By Vitali’s theo-
rem this implies that f[|gy — g|?— 0, and Hoélder’s inequality yields |My| <
1wll,llgn — &l 4= 0 w.p. 1.

Suppose now that p = 1, so ¢ = co. Because of the uniform integrability of J,,
and Lemma 2.1, we have w.p. 1

lim ysup |[My| < 8limysup || Jy|l, + 2”g”oolimNsupf(lgn—g|>6)l']NI
= §lim ysup || Jy|l,

for every & > 0. Since supy || Jy||; < oo, the proof is complete.

ForJyeL, N = 1,2,- - -, consider the type of convergence to J € L, defined
by limy . [Jyf = [Jf for every f € L,. For 1 < p < oo this is weak convergence
in L, and for p = oo it is weak* convergence in L. Necessary and sufficient
conditions for a set {Jy, N = 1,2,- -+ } C L, to be sequentially relatively compact
in the topology of this convergence are precisely conditions (i) and (ii) in Theorem
2.1 (for 1 € p < o see Dunford and Schwartz (1958), 1V.8.4 and IV.8.11; for
p = oo see Banach (1932), page 131, for the sufficiency of (i); the necessity is easy).
To ensure that Jy converges to J € L, in the above sense one only has to add to
conditions (i) and (ii) the further assumption that [jJ,— fg/ for every ¢t € (0, 1)
(see Dunford and Schwartz (1958), IV. 13.23, 25, 27, and Banach (1932), page
135-136). Under this additional assumption we may therefore replace [J,g by [Jg
in Theorem 2.1 to obtain

COROLLARY 2.1. Suppose that the conditions of Theorem 2.1 are satisfied and that
there exists a function J € L, such that lim y_, , foJy = [oJ for every t € (0, 1). Then
lim _, My = 0 with probability 1.
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Note that the remarks preceding Corollary 2.1 also imply that the conditions on
Jy and J in the corollary are necessary as well as sufficient to ensure that My — 0
w.p. 1 forevery g € L,.

3. Variations on a theme. Theorem 2.1 and its corollary clearly contain
Wellner’s result for 0 < b;= b, < 1 as well as those of Helmers and Sen (cf.
‘Section 1). In this section we extend our results to cover the other cases discussed
by Wellner, which enlarges the range of applications considerably. Though these
extensions are straightforward, the conditions inevitably become more cumbersome
to state.

For different b, and b, in [0, 1), (1.4) and (1.5) allow a different balance between
the rates of growth of g and Jy near 0 and 1. Correspondingly, we shall show that
in Theorem 2.1 and Corollary 2.1 one may allow different values of p and g on
different subintervals of (0, 1), provided these subintervals overlap; the existence of
such overlapping subintervals is easily seen to be equivalent to the assumptions of
Theorem 3.1. The indicator function of a set 4 is denoted by x(A4) or x(4,.).

THEOREM 3.1. Let 0=t < ,<---<tr=1ande >0. Forj=1,---, k, let
1< p;< oo, p '+ g7 ' =1 and define intervals A;= (t;_,,t;) and B;= (1,_,— &,
t;+¢€) N (0,1). Suppose that, for j =1,---, k, Jyx(4;) € ij for N=1,2,---,
gx(B) € L, and either

() 1 <p;< ooand supy || Jy x(A4))l| ,, < 0, or

@) pj=1and {Jyx(A4;): N = 1,2,- - - } is uniformly integrable.

Then lim _, .. My = O with probability 1. If, moreover, there exists a function J with
Ix(4;) EL, forj=1,---, k, such that limy . fo/y = foJ for every t € (0, 1),
then also limy,_, M, = 0 with probability 1.

Proor. Consider an index j with 1 < p; < 0, 50 g; < . Choose § € (0, ¢] and
define C; = (¢;_, — 6,¢; + 8) N (0, 1). The Glivenko-Cantelli theorem and the strong
law ensure that w.p. 1

. . 1
lim ysup [, |gn|¥ < lim ysup = Z|g(U)|9x (G, U) = Je|8|¥ < oo.

Since 8 € (0, ¢] is arbitrary, this implies that [|gy|¥x(4,) — [|g|¥x(A4;) w.p. 1 by
Fatou’s lemma. Arguing as in the proof of Theorem 2.1, we conclude that
[7gx — 8)X(A4;) >0 wp. 1.

For an index j with p;=1 and g; = o, the Glivenko-Cantelli theorem ensures
that lim supy || gy X(4)|l» < [|8X(B;)ll < oo W.p. 1, and again copying the proof
of Theorem 2.1, we find that [Jy(gy— g)x(4,;) >0 w.p. 1. This proves the
first statement of the theorem. The second statement is obvious because
the assumptions of the theorem imply that [Jygx(4;)— [Jgx(4;) for j=

L,---, k.
A second extension of our results concerns, e.g., the case where near a point

to €[0,1], |g| (or | Jy|) grows faster than (uniform) integrability would allow, but
where the effect of this is cancelled by the fact that J,, (or g) tends to zero at ¢, at
an appropriate rate. Since we are concerned with the product of J, at the point ¢
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and g at the point Ujy,;4 .y, this cancellation will work best if we can pin down
the order statistics near ¢, quite close to their expected values. This means that the
best results are to be obtained for 7, = 0 and/or 1, which corresponds to (1.4) and
(1.5) for the case where one or both of the b, are outside the interval [0, 1). As this is
also the most common situation in applications, we shall restrict the few remarks
we make to this case. The reader can easily formulate a similar result for arbitrary
t, for himself.

Take any 6 >0 and define intervals Ky ; for i=1,---,[(N + 1)/2], N =

1,2,...,by
i N? -1
Ky, =|~{log| ———— ,
" [N{°g(,-(N_,~+1))}

i 4N?
1+ 8)— loglog| ———____
(1+d)y Ogog(i(N—i+1))

For P — almost every w € Q, there exists N(w) such that for N > N(w) and
i=1---,[(N+ 1)/2] we have U, y € Ky ;. This follows easily from Theorems 2
and 3 in Shorack and Wellner (1978) together with Bernstein’s inequality for
binomial tails. For N = 1,2, - - -, define gy : (0, 1) - [0, c0] by

gv(1) = sup{|g(s)|:s € Ky yye1}  forz € (0,1),

= sup{lg(l —s)|:sEKN’N_[N,]} for ¢ E[%,l).

Then, w.p. 1, |gy| < gy on (0, 1) for sufficiently large N.
For 1 € (0, 1), let D, denote the interval (1, 1 — 7). The following result is now
an immediate consequence of Theorem 3.1.

THEOREM 3.2.  Suppose that, for every n € (0, 3), gx(D,), Jyx(D,) and Jx(D,)
satisfy the conditions on g, Jy, and J in Theorem 3.1. If also

limn—)OIimNsupr;IJNl(gN"' lg]) = limn—mfo;

then the conclusions of Theorem 3.1 continue to hold.

N (0,1).

Jg| =0,
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