B-SPACES ARE STANDARD BOREL

By S. Ramakrishnan and B. V. Rao

Indian Statistical Institute

Separated B-spaces introduced by E. B. Dynkin are just standard Borel and thus here we have an intrinsic definition of standard Borel spaces.

We consider a measurable space (Ω, \mathbf{F}) where \mathbf{F} is countably generated and contains singletons. Following Dynkin [1978], we say that a countable family W of bounded functions—always real valued—on (Ω, \mathbf{F}) is a support family if the following two conditions hold:

- (A) If (μ_n) is a sequence of probability measures on F and if for each $f \in W$, $\lim_n \int f d\mu_n = l(f)$ exists then there is a probability μ on F such that for each $f \in W$, $l(f) = \int f d\mu$.
- (B) If a class H of functions on Ω contains W and is closed under addition, multiplication by constants, and bounded convergence then H contains all bounded measurable functions (f_n) converges boundedly to f means f_n converges to f pointwise and the functions f_n are uniformly bounded).
- (Ω, \mathbf{F}) is said to be a *B*-space if it has a support family. From Condition (B) it follows that if (Ω, \mathbf{F}) is a *B*-space and *W* is a support family then *W* generates **F**. As noted by Dynkin every standard Borel space is a *B*-space. We now show that the converse is also true, that is, every *B*-space is a standard Borel space. We find this observation helpful in understanding the content of Dynkin [1978].
- So, let (Ω, \mathbf{F}) have a support family $W = \{f_1, f_2, \dots\}$. Let M be the space of all probabilities on (Ω, \mathbf{F}) . The σ -field \mathbf{M} on M is the usual one generated by all functions of the form $p \mapsto p(A)$ for $A \in \mathbf{F}$. By (B), \mathbf{M} is also the σ -field generated by the functions $p \mapsto \int f_i dp$ $(i \ge 1)$. Since \mathbf{F} is countably generated it is easy to see that the collection D of point masses belongs to \mathbf{M} and further $(D, D \cap \mathbf{M})$ is Borel isomorphic to (Ω, \mathbf{F}) . We shall now topologize M as follows: consider the map $e:p \mapsto (\int f_1 dp, \int f_2 dp, \dots)$ from M to $R \times R \times \dots = R^{\infty}$. By (B) e is a 1-1 map and by (A) the range of e, denoted by e(M), is closed in R^{∞} . Thus identifying M with e(M) we make M into a complete separable metric space. Let $\overline{\mathbf{M}}$ be the Borel σ -field of M. Since the Borel σ -field on R^{∞} is generated by the coordinate maps, $\overline{\mathbf{M}}$ is generated by the maps $p \mapsto \int f_i dp$ ($i \ge 1$). This implies that $\overline{\mathbf{M}} = \mathbf{M}$ and so (M, \mathbf{M}) is a standard Borel space. As remarked earlier (Ω, \mathbf{F}) is isomorphic to a Borel subspace of (M, \mathbf{M}) so that (Ω, \mathbf{F}) is also a standard Borel space. This completes the proof of the observation.

We assumed F to be countably generated. If (Ω, F) has a countable support family then Condition (B) implies that F is countably generated. We assumed F to contain singletons. This is no restriction because otherwise we can look at the space of atoms.

The referee has remarked that the concept of *B*-space was introduced in Dynkin [1971] and was used extensively in Dynkin and Yushkevich (1979).

REFERENCES

DYNKIN, E. B. (1971). Initial and final behaviour of trajectories of Markov processes. *Uspehi Mat. Nauk* 26 153-172. (English translation in *Russian Math. Surveys* 26 165-185).

DYNKIN, E. B. (1978). Sufficient statistics and extreme points. *Ann. Probability* 6 705-730.

DYNKIN, E. B. and YUSHKEVICH, A. A. (1979). *Controlled Markov Processes*. Springer.

Indian Statistical Institute 203 B. T. Road, Calcutta-700 035 India

Received July 16, 1979.

AMS 1970 subject classifications. Primary 04A15; secondary 28A65.

Key words and phrases. Support family, B-space, standard Borel space, Borel isomorphism.