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CHARACTERIZATION OF NONPARAMETRIC CLASSES OF LIFE
DISTRIBUTIONS!

NAFTALI A. LANGBERG, RAMON V. LEON AND FRANK PROSCHAN

The Florida State University

In this paper we obtain characterizations of large classes of nonparametric
life distributions, such as the increasing (decreasing) failure rate, increasing
(decreasing failure rate average, new better (worse) than used, etc., classes. The
methods used differ from the usual functional equation methods used for the far
more common characterizations of parametric families of life distributions.

1. Introduction and summary. Characterizations of particular parametric families of life
distributions are quite common in the literature (see, for example, Kagan, Linnik and Rao,
1973, and Patil, Kotz and Ord, 1975). In this paper, by contrast, we present characterizations
of large classes of nonparametric life distributions, such as the increasing (decreasing) failure
rate, increasing (decreasing) failure rate average, new better (worse) than used, etc., classes.
(See Section 2 for exact definitions.) Such characterizations are far less common and generally
require quite different mathematical and statistical techniques.

Our characterizations are based on order statistics, weighted spacings between order
statistics, and total time on test transforms; in most cases inequalities among limiting expected
values determine the characterizations. Related results concerning total time on test transforms
had been obtained earlier by Barlow and colleagues (exact references are given for each of
these results as they appear in the text below), but not necessarily under the weakest
assumptions on the distributions; they use plots of empirical total time on test transforms to
help identify graphically the type of underlying distribution, i.e., IFR, DFR, etc. Since in
characterization, emphasis is placed on obtaining results under the weakest assumptions on
the distributions being characterized, we find it useful to prove stronger versions of a number
of these known results—for example, a characterization which requires that a distribution be
differentiable is not as appealing as one that requires that it only be continuous.

In Section 2, we present preliminaries consisting of definitions and notation. In Section 3,
we present properties of the total time on test transform and a characterization of the
IFR(SDFR) class of life distributions in terms of the concavity (convexity) of the total time on
test transform. In Section 4, we present characterizations of the IFR(SDFR) classes based on
the monotonicity of the expected values of the weighted spacings between successive order
statistics; the number of sample sizes required is infinite. By using the fact that the shifted
exponential distribution is both IFR and SDFR, we are able to obtain a strengthened
characterization of the shifted exponential distribution, as compared with the earlier Saleh
(1976) characterization. We also obtain additional characterizations of the IFR(SDFR)
distribution requiring only a single sample size; of course, we must compensate by making the
stronger assumption of stochastic monotonicity rather than expected value monotonicity. In
Section 5, we present characterizations of distributions such as IFRA, NBU, NBUE, and their
duals, which are similar in spirit to those in Section 4 for the IFR(SDFR) classes. In the same
way that we obtain the (1976) Saleh characterization for the shifted exponential by using the
fact the exponential is both IFR and SDFR, we may obtain characterizations of the exponential
by using the fact that the exponential is both IFRA and DFRA, both NBU and NWU, and
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both NBUE and NWUE. The details are left to the reader.

One final remark should be made. Chandra and Singpurwalla (1978) have pointed out the
close relationship between the total time on test transform and the Lorenz curve used by
econometrists. Thus, some of our results of Section 3 concerning total time on test transforms
can be used to obtain analogous results for the Lorenz curve, and may thus be of interest and
value in fields other than reliability.

2. Preliminaries. Let F be a life distribution, that is, F(0—) = 0. We use the following
notation and conventions: F~'(z) = inf{x: F(x) > 1}, t € [0, 1); F'(1) = sup{x; F(x) < 1}; F
=1- F; R = —In F. We use “increasing” in place of “nondecreasing” and “decreasing” in
place of “nonincreasing”.

Next we define the classes of life distributions to be considered in the sequel.

DEFINITION 2.1. () F is increasing failure rate (IFR) if F(y + x)/F(y) is decreasing in
y(—» <y < F7\(1)) for each x > 0.

(b) Fis (shifted) decreasing failure rate (SDFR), if F(y + x)/F(y) is increasing in y(F~'(0)
=< y < ) for each x > 0 or if F is degenerate.

(c) F is increasing failure rate average (IFRA) if (1/y)/R(y) is increasing in y(0 < y <
F7'(1)) or if F is degenerate at 0.

(d) F is decreasing failure rate average (DFRA) if (1/y)R(y) is decreasing in y > 0 or if F
is degenerate at 0.

(€) F is new better than used (NBU) if F(x + y) < F(x)F(y) for x >0, y > 0.

(f) F is new worse than used (NWU) if F(x + y) = F(x)F(y) for x >0, y > 0.

() F is new better than used in expectation (NBUE) if (i) [§ F(x) dx) < o; (ii) [y F(x) dx
= (J§ F(x) dx)F(y) for y > 0.

(h) F is new worse than used in expectation NWUE) if (i) [y F(x) dx < oo; (ii) [3 F(x) dx
= (f§ F(x) dx)F(y) for y > 0.

The chain of implications IFR = IFRA = NBU = NBUE is readily established assuming
a finite mean for F NBU (see Marshall and Proschan, 1972).

Let X3, X, - -+, X, be a random sample of size n from F. The kth weighted spacing, Wi.n,
between order statistics Xz—1.» and Xi., is defined by Wi, = (n — k + 1)+ (Xpn — Xi—1) for k
=1,2, ..., n, where Xo.. = 0. The total time on test up to the kth order statistic, T'(X.), is
defined by T(Xy.») = =%, Winfork=1,2, -+, n, and T(Xo,,) = 0. If we assume that n items
are placed on test at time O and that successive failures are observed at times X, < Xz,
< ... = X, then W, represents the total test time observed between X;-1., and Xg.., and
T(Xxn) represents the total test time observed between 0 and X.. (see Barlow and Proschan,
1975, page 61).

3. Properties of the total time on test and its transform. Let Hz'(f) = [5 " F(u) du for 0
=<t =< 1. Barlow and Campo (1975) call HF' the total time on test transform. In this section we
develop some of the properties of Hr'. These properites are used to prove some of the results
in Section 4. However the results of this section are important in their own right. Barlow and
Campo (1975) use plots of the total time on test transform of the empirical distribution as a
method for tentative identification of IFR and DFR distributions. Incidentally, as mentioned
in the introduction, Chandra and Singpurwalla (1978) have pointed out the close relationship
between the total time on test transform and the Lorenz curve used by econometrists.

Before starting the first theorem we need a definition.

DerINITION 3.1. A sequence {(k n,)};=; of ordered pairs of natural numbers is a t-
sequence (0 <t < 1)if (i) 1 = k, < n, < n,4, for all r, and (ii) k,/n, — t as r — oo,

TueoREM 3.2. Let HF'(+) (equivalently F~'(+)) be continuous at t € (0, 1), and let (k, n)
range over a t-sequence. Then as n — o,
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1
~ T(Xe) = HF'(0) 2.

PrOOF. Let F, denote the empirical distribution function of F. Then

_ l Xy n
) = Jr nF,(u) du
0

(see Barlow and Campo, 1975). Also for (k, n) ranging over a t-sequence, Xi.. — F~'(¢) as. as
n — o since F~'(¢f) is the unique x such that F(x—) < ¢ < F(x) if and only if F!(.) is
continuous at t. The desired result follows by the Glivenko-Cantelli theorem. (Chung, 1974,
page 123). 0

Next we note that if EX; is finite, then EXp.n, EWhi.n, and ET(X:) are also finite, since 0
=< Xpn < T(Xin) < k1 X, = nX,. This observation can be used to show that whenever EX;
is finite, {(1/n;)Tk,n,}7=1 is uniformly integrable for every t-sequence {(k,, n,)}7-1. Since a
uniformly integrable sequence which converges almost surely converges in the mean (see
Breiman, 1973, page 91), we can state the following result.

T(Xin) = nHi! (k

THEOREM 3.3. Let t, k, and n be as in Theorem 3.2 and let EX, be finite. Then E|(1/n)T
(Xin) — H7'()| = 0 as n — oo. In particular, (1/n)/ ET(Xun) — H7" as n— .

We remark that neither Theorem 3.2 nor Theorem 3.3 is true if ¢ is not a point of continuity
of F7'(-). In this case a counterexample to Theorem 3.2 and to Theorem 3.3 can easily be
constructed using the facts that lim inf, . X(uen = F~'(-) and lim supn e Xingn = F~'(¢) and
that F~'(t—) # F7'(?). ([-] denotes the greatest integer function). To show that lim inf, ..
Xinetn = F7'(t—) and lim sup, .. Xinen = F~' (2), use the fact that P[X.q. > x] = P[B(n, F(x))
> n — [nt] + 1], where B(n, F(x)) denotes a binomial random variable (see Mood, Graybill,
and Boes, 1974, page 252), and the law of the iterated logarithm (see Breiman, 1968, page
291).

To state the next lemma we need a definition.

DEFINITION 3.4. A point x is a point of increase of F if F(x — h) < F(x) < F(x + h) for
every h > 0.
Let *f(xo) denote the right-hand derivative of f at the point xo.

LeMMA 3.5. Let (a, b) be an interval of points of increase and of continuity of F. Then
*HF7'(F(x)) exists and is nonzero for x € (a, b) if and only if * R(x) exists and is nonzero for x
€ (a, b). In either case, *Hz'(F(x))*R(x) = 1.

Proor. Note that in the interval (a, b), F~' behaves like the usual inverse function of F.
The result follows using standard differentiation results. [
The next proposition is easily verified.

PROPOSITION 3.6. A nondegenerate life distribution F is (i) IFR if and only if R(x) is convex
on (F~'(0), F~'(1)) and F(F~'(0)) = 0; (ii) SDFR if and only if R(x) is concave on (F~'(0),

o).

THEOREM 3.7. (Barlow and Campo, 1975). The life distribution F is IFR(SDFR) if and
only if H7" is concave (convex) on [0, 1].

Proor. To show sufficiency let H7' be concave (convex). If Hz' is constant on [0, 1], then
F is degenerate and thus IFR (SDFR). Now assume H7' is not constant on [0, 1]. Then (a) F™'
is continuous on [0, 1]; (b) the interval (F~'(0), F~'(1)) consists of points of increase of F; (c)
H7'(F(x)) is strictly increasing on (F7'(0), F7'(1)); and (d) F is continuous on [0, F~'(1))
((F'(0), )). Since the concavity (convexity) of Hz' implies by (d) that F(F~'(0)) = 0 (F~(1)
= o) we have by Lemma 3.5 and Proposition 3.6 that F is IFR (SDFR).
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To show necessity let F be IFR (SDFR). If F is degenerate, then H7' is constant on [0, 1]
and thus concave (convex). Now assume F is nondegenerate. Then by Proposition 3.6, R is
convex (concave) on (F~(0), F'(1)). Thus R is continuous, strictly increasing, and has a
positive right derivative on (F~'(0), F~'(1)). Consequently, necessity follows from Lemma 3.5.
0

Theorem 3.7 is due to Barlow and Campo, (1975) (see also Barlow, 1977), but our proof is
new. Our proof avoids some technical difficulties which arise in the limiting argument used in
the Barlow and Campo proof of the “if” part of Theorem 3.7.

4. Characterizations of the IFR(SDFR) class. Barlow and Proschan (1966) have shown
that if F is IFR(SDFR), then for all x > 0, P(W.. >x) is decreasing (increasing) in k (k = 2,
3, .-+, n) for all n = 2. If F has a finite mean, then EW,., < o for all choices of k and n and
consequently EW., is decreasing (increasing) in k(k = 2, 3, - - -, n) for all n = 2. In this section
we prove that a slightly weaker version of the last condition is sufficient for F to be IFR
(SDFR). Then we use this result to obtain a characterization of the shifted exponential
obtained by Saleh (see Kotz, 1974), who required regularity conditions on F. Two other
characterizations of the IFR (SDFR) are given.

The main result of this section follows.

THEOREM 4.1. Let F be a life distribution. Then F is IFR (SDFR with finite mean) if and
only if F has a finite mean and EWy., is decreasing (increasing) in k (k =2, - -+, n) for infinitely
many n.

Since an IFR life distribution has a finite mean the “only if ” part has already been shown.
We prove the “if ” part. We remark that this proof avoids all unnecessary assumptions on F.

PROOF OF SUFFICIENCY. Since F~'(+) is an increasing function it has at most a countable
number of discontinuities. Thus C = {t € (0, 1); F~'(+) is continuous at ¢} is all of (0, 1) except
for at most a countable number of points. Now to show F is IFR (SDFR) it suffices, by
Theorem 3.7, to show that HF' is concave (convex). But since Hz' is increasing and right
continuous, to show that Hz' is concave (convex) we need only show

@.1) Hi'(h + h) — HF'(t1) = (S)Hr (2 + h) — Hr'(t2)

for all #,, t2, and A such that #, to,h +hta+h€ Cand t; < to.
Let #1, 1o and h be as above. We show that inequality (4.1) holds. Since T(Xi») = pLI
W:n, we obtain, for each one of the infinitely many n, that
4.2) ET(X(nt,1+tnm1n) — ET(Xiny1n)
Z(S)ET(Xnty1+nnrn) = ET(Xingy1n)-
Applying Theorem 3.3 to both sides of inequality (4.2), we conclude that inequality (4.1) holds
as was to be shown. ]

It is clear from the proof of Theorem 4.1 that the following characterization of the
IFR(SDFR) class is also true.

THEOREM 4.2.  Let F be a life distribution with finite mean. Then F is IFR(SDFR) if and
only if for infinitely many n = N and some (1 <1< N)

E 355 Wen
is decreasing (increasing) in k(1 =k <n—1).0

Note that F is both IFR and SDFR if and only if F is degenerate or if F is shifted
exponential, that is,

F(x) = exp[-A(x — F7(0))] x=F(0)
B x < F7(0),



CHARACTERIZATION OF LIFE DISTRIBUTIONS 1167

for some positive A. Hence as a corollary of Theorem 4.1 we obtain the following:

THEOREM 4.3. Let F be a life distribution with finite mean. Then F is shifted exponential or
degenerate with mean p + F~'(0) if and only if for infinitely many n = 2, EW,., = p for k = 2,
3, .., n.

A similar characterization was obtained by Saleh (1976) but with the additional (unneces-
sary) condition that inf{x: F(x) = ¢} is differentiable on (0, 1).

Now we give another characterization of the IFR(SDFR) class which requires conditions
for only one sample size. Since for F continuous we have

4.3) P(Xms1n = Xmn > | X = x) = (F(x + u)/F(x))"™"
(see David, 1970, page 18), the following result holds.

THEOREM 4.4.  The continuous life distribution F is IFR(SDFR) if and only if for some fixed
nandm2=m+1=<n),and allu =0, P(Xn+1:n — Xomin > t| X:n = X) is decreasing (increasing)
in x(—o < x < FY()[(F'(0) = x < «)].

Actually if F is IFR(SDFR), then P(Xp+1:n — Xmn > | Xmn = x) is decreasing (increasing)
in x for all n and m, where 2 < m + 1 < n. However, since the emphasis of this paper is on
characterizations, we omit this generalization from the statement of Theorem 4.4. A similar
remark can be made about other theorems in this paper (see Theorem 5.1 for example).

Recall that a random variable X is stochastically increasing (decreasing) in Y, another
random variable, if for all x, P(X > x| Y = y) is increasing (decreasing) in y. Hence Theorem
4.4 can be restated using this language. Similar remarks apply to other theorems in this paper
(see, for example, Theorems 5.1 and 5.7).

5. Characterization of classes of life distributions other than the IFR(SDFR). In this
section we characterize classes of life distributions other than the IFR(SDFR). The following
characterization is similar in spirit to the characterization of the IFR(SDFR) class given in
Theorem 4.4. By (4.3) we immediately obtain:

THEOREM 5.1.  The continuous life distribution F is NBU(NWU) if and only if P(Xin-m >
u) 2(=) P(Xmi1n — Xmen > | Xmin = x) for some fixed n and m (1 = m <n), and allu = 0 and
x=0.

To obtain another characterization of the NBUNWU) class we need the following two
lemmas:

LEMMA 5.2. Let F be a life distribution with finite mean and let t € (0, 1). Then
{Xtneyn} =1 is uniformly integrable.
Proor. We have
P(Xnpn > x) = P(B(n, F(x)) = n — [nf] + 1),

where B(n, F(x)) denotes a binomial random variable with parameters n and F(x). Thus

G.1) P(Xingn > %) < n_—[:ﬁ;—l Fx)

since P(Z > t) < EZ/t for any nonnegative random variable Z. Hence

EX[nt]:nI[X[nt]:n = A]

= J P[ Xinan > x] dx + AP(Xinn = A] [by integration by parts]

A
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n = —
= n——[m]—+_1<L F(x) dx + AF(A)) [by (5.1)]
1
= (EXJ[Xi=A)).
1 - [n_t] + _l_
n n

Consequently the uniform integrability of the sequence {Xins.n}n=1 follows. [

LemMA 5.3.  Let F be a continuous life distribution. Let M be a dense subset of the support
of F. Assume F(x + y) =(=) F(x)F(y) for all x, y € M. Then F is NBU(NWU).

ProoF. Let F(x + y) = F(x)F(y) for all x, y € M. Then since F is continuous we have
that F(x + y) < F(x)F(y) for all x and y in the support of F. Now for z > F~'(0) let 7 =
F7Y(F(z) -). Let x, y € (F™'(0), »). Since % and j are in the support of F, we have that F(x
+ y) = F(X + y) < F(®)F(p) = F(x)F(y). It follows that F is NBU.

To show the NWU case let 7 = F~'(F(z)), z = 0, and follow a similar argument. 0

THEOREM 5.4.  Let F be a continuous life distribution with finite mean. Then F is NBUNWU)
if and only if for for every t, s € (0, 1), we have .

E(X[nt]+[n(1—t)s]:n - X[nt]:n| X[nt]:n) Sa.s.(za.s.)EX[n(l—t)s]:n—[nt]
for infinitely many n.

Proor. We first prove sufficiency. There exists a subset M of the support of F with F
measure 1 such that for each # in the infinite sequence of the hypothesis and each y € M we
have:

(52) E(X[nt]+[n(1—t)s]:n - X[nt]l X[nt]:n = y) 5(2) EX[n(l—t)s]:n—[nt]-

For y such that F( y) > 0, define a life distribution G, by G,(-) = F(- + y)/F(y). By Lemma
5.3, to show that F is NBUNWU) it is enough to prove

(5.3) Gy(x) =(2) F(x)

for all x > 0 and y € M/{F~'(1)} (note that y € M/{F~'(1)} implies F(y) > 0.

Let x >0and y € M/{F ~I(1)}. To show that inequality (5.3) holds let Y1, Yz, « -+, Yo—fng
be independent random variables with common distribution G,. Then by the Markov property
of order statistics (see David, 1970, page 18), the left-hand side of inequality (5.2) is equal to
EY(na-ysin-[na- Thus we have

54 EY(na-osin—1ne) =(=) EX{na-sin—ne

By Lemma 5.2 we can let n — oo (along the infinite sequence of the hypothesis) on both sides
of inequality (5.4) to obtain that G;'(s) <(=) F~'(s) for all s € (0, 1) which are continuity
points of both F~'(-) and G;(-). Since F~'(-) and G5'(-) are right continuous on [0, 1) and
left continuous at 1 and since the points of continuity of both F~'(-) and G,(-) form a dense
set in [0, 1], we see that G5 '(s) =(=) F~(s) for all s € [0, 1]. This implies that G,(x) =(=) F(x)
which is equivalent to inequality (5.3).

To show necessity note that F is NBUNWU) if and only if for all y, 0 < y < F7'(1), Y1 is
stochastically smaller (larger) than X, written Y, <u(=«)X1. Hence if F is NBUNWU), then
for y, ¢, and ssuch that 0 < y < F7}(1),0<t<1l,and 0<s < ,

Y[n(l—t)s]:n—[nt] Sst(zst)X[n(l—t)s]:n—[nt]'
Since by the Markov property of order statistics the conditional random variable
Xing+tn-ospn — Xinetn| Xinern = y has the same distribution as the random variable

Yin(1-tsin—[ne, DECESSity follows. O
For continuous F, we have by the Markov property of order statistics,
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00

| Fi (x + Xnepn) dx

n — [nt]

E<zz;§nt] (X[nt]+k:n - X[nt]:n)l X[nt]:n) = a.s.

F (X[nt]:n)

Hence we can use the methods of the proof of Theorem 5.4 to obtain the following
characterization of the NBUE (NWUE) class.

THEOREM 5.5. Let F be a continuous life distribution with finite mean. Then F is NBUE
(NWUE) if and only if for every t in (0, 1) we have

Zﬁﬂ"ﬂ E(X[nt]+k:n - X[nt]:n | X[nt]:n) =as. (za.s.)EXi

n — [nt]

for infinitely many n. _ _
Since E(Xpn — Xn—1n | Xn—1:n = x) = (% F(u) du)/F(x) for continuous F we have:

THEOREM 5.6. Let F be a continuous life distribution with finite mean. Then F is NBUE
(NWUE) if and only if E(Xnn — Xn-1n = x) =(=) EX for some fixedn = 2, and all 0 < x <
F7().

Next we give a characterization of the IFRA(DFRA) class.

THEOREM 5.7. Let F be a life distribution. Then F is IFRA(DFRA) if and only if for all x
> 0, P(W1.n > x) is increasing in n = N where N is arbitrary.

Proor. We prove the theorem for the IFRA case. The proof of the DFRA case is similar.
We have for 0 < x < o, P(Wy,, > x) = F"(x/n). Tt follows that P(Wy., > x) is increasing
in n = N for all x > 0 if and only if

(5.5) Fr(x/n) < F™(x/m) forall N=<n<mand all 0 < x < co.
Note that F is IFRA if and only if
(5.6) F'%4) < FYt;) forall 0<t <t <o,

We show that (5.5) implies (5.6). Let 0 < #; < t; both be rational, and let N < n < m be
natural numbers such that t,/t; = m/n. Let a = (mt;)”". Then na = 1/t; and ma = 1/t,, so it
is easily seen that (5.5) implies that F/“*(xats) < F"/"'(xaty). Letting x = a™%, (5.6) follows since
F is right continuous and the rationals are dense.

To show (5.6) implies (5.5), let x, n, and m be such that x > 0 and N < n < m, then set #;
= x/m and & = x/n in (5.6) to obtain (5.5).0

To prove our next result we need a theorem of Barlow and Proschan (1966).

THEOREM 5.8. (Barlow and Proschan, 1966, Theorem 3.6). Let X(Y) have distribution
F(G). Assume that F(0) = 0 = G(0), and that F and G are continuous. Assume also that the
support of F is an interval, possibly infinite, and that G is strictly increasing on its support. Let
G™'F(x)/x be increasing in x in the support of F. Then EXin/EY:n is decreasing in i (i = 1, 2,
oo, n).

THEOREM 5.9. Let F be a continuous life distribution with finite mean. Assume that the
support of F is an interval and that F(0) = 0. Then F is IFRA(DFRA) if and only if EXy.n/Z )
1/(n — k + 1)) is decreasing (increasing) ini (i = 1, 2, - - -, n) for infinitely many n.

Proor. Let G in Theorem 5.8 be the exponential distribution with mean 1. Then EY,.,
= 241 (n — k + 1)" (see Barlow and Proschan, 1975, page 60). Thus necessity follows from
Theorem 5.8 (as does the dual result for the opposite direction of monotonicity) if we note that
G '(x) = —In(1 — x).

To prove sufficiency, first observe that every point in the interior of the support of F(G) is
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a point of increase of F(G). Hence Yiugn — G7'(f) = —In(1 — ¢) and Xpngn — F7(2) as. as n
— o for ¢t € (0, 1). By Lemma 5.2 it follows EX{ny.n — F~'(?) and EYpngn — G7X(f) as n —
. Thus by hypothesis, F~'(¢)/(—=In(1 — ?)) is decreasing (increasing) in ¢t (0 < ¢ < 1).
Equivalently

FY(F(x)) x

—In(1 - F(x)) —InF(x)

is decreasing (increasing in x (0 < x < F~Y(1)). Sufficiency follows. O

Acknowledgment. The authors are indebted to the referee for valuable comments and
suggestions.

REFERENCES

[1]1 BarLOW, R. E. (1977). Geometry of the total time on test transform. Technical Report ORC 77-11,
Univ. California, Berkeley.

[2] BarLOW, R. E. and Campo, R. (1975). Total time on test processes and applications to failure data
analysis. In Reliability and Fault Tree Analysis. (R. E. Barlow, J. B. Fussell and N. D.
Singpurwalla, eds.) 451-482. SIAM, Philadelphia.

[3] BARLOW, R. E. and PrOsCHAN, F. (1966). Inequalities for linear combinations of order statistics from
restricted families. Ann. Math. Statist. 37 1574-1591. .

[4] BArLOW, R. E. and ProscHAN, F. (1975). Statistical Theory of Reliability and Life Testing: Probability
Models. Holt, Rinehart and Winston, New York.

[5] BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, Massachusetts.

[6] CHANDRA, M. and SINGPURWALLA, N. D. (1978). On the Gini index, the Lorenz curve, and the total
time on test transform. George Washington Univ. Serial T-368.

[7] CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic Press, New York.

[8] DaviD, H. A. (1970). Order Statistics. Wiley, New York.

[9] KaGaN, A. M,, LINNIK, YU. V. and Rao, C. R. (1972). Characterization Problems in Mathematical
Statistics. (in Russian), Nawka, Moscow. (English translation by B. Ramachandran. Wiley,
1973).

[10] Kortz, S. (1974). Characterizations of statistical distributions: a supplement to recent surveys. Rev.
Inst. Internat. Statist. 42 39-65.

[11] MARSHALL, A. W. and PROSCHAN, F. (1972). Classes of distributions applicable in replacement, with
renewal theory amplications. In Proceedings Sixth Berkeley Symp. Math. Statist. Probability 1
(L. LeCam, J. Neyman and E. L. Scott, ed.) 395-415. Univ. California Press, Berkeley.

[12] Moop, A. M., GRAYBILL, F. A. and Bogs, D. C. (1963). Introduction to the Theory of Statistics, 3rd
ed. McGraw-Hill, New York.

[13] PaTiL, G. P, KOTZ, S. AND ORD, J. K. (1975). Statistical Distributions in Scientific Work, Volume 3—
Characterizations and Applications.

[14] PyKE, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 7 395-449.

[15] Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.

[16] SaLeH, A. K. Mp. E. (1976). Characterization of distributions using expected spacings between
consecutive order statistics. J. Statist. Res. 10 1-13.

RAMON V. LEON NAFTALIL, A. LANGBERG AND FRANK PROSCHAN
DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS AND

RUTGERS UNIVERSITY STATISTICAL CONSULTING CENTER

NEw BRUNSWICK, NEW JERSEY 08903 THE FLORIDA STATE UNIVERSITY

TALLAHASSEE, FLORIDA 32306



