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Activity
Necessary and sufficient conditions are presented for the measurability of
pth order or symmetric stable stochastic processes and for the integrability or

absolute continuity of sample paths of symmetric stable processes. Also obtained
are sufficient conditions for absolute continuity of pth order processes.

1. Introduction. This paper extends to pth order or symmetric a-stable (SaS) processes
certain results known for second order or Gaussian processes by appropriate modification of
the proofs of the latter. Specifically, we give necessary and sufficient conditions for the
measurability of a pth order or a SaS process (Section 3), necessary and sufficient conditions
for the integrability of almost all paths of a SaS process (Section 4), and sufficient and
necessary and sufficient conditions for almost sure path absolute continuity for pth order and
for SasS processes, respectively (Section 5). The zero-one laws for Gaussian processes in [7] are
results which generalize to SaS processes immediately in view of Dudley and Kanter (1974)
(see also Fernique (1973)).

2. Definitions and preliminary results. Most of the material in this section is from Section
2 of [7], where a more detailed treatment is presented. Let £ = {&, ¢ € T} be a stochastic
process with underlying probability space (2, & P) such that & € L,(S) for all ¢ € T, where
1 < p < o, and let /(£) be the space of all finite linear combinations of elements of {£, ¢t €
T}. Then we call £ a pth order process and define a norm on I/(£) by

¢ = (81812, =263

The linear space £(£) of the process { is the completion of /(£) with respect to this norm, i.e.,
in L,(R). If # is a closed subspace of L,(2), (such as £(£)), then for fixed { € .# the expression

Ce(n) = (P71, nE M,

defines a continuous linear functional on .#, which by Holder’s inequality has norm || C¢ |l
= || ¢|F~". (Note: when raising a number u to a power ¢ we use the convention (x)? =
| |? sign(u).)

An important subclass of pth order processes is the family of symmetric a-stable (SaS)
stochastic processes with | < a =< 2. When a = 2 these are the familiar zero mean Gaussian
processes. For 1 < a < 2, the SaS processes are defined by consistent finite dimensional
distributions with characteristic functions (ch.f.’s) of the form

() = CXP{— j [ (x, ) T (dx)}, yER",

where T is a uniquely determined (Kanter (1973), page 36) finite symmetric measure on the
Borel subsets of the unit sphere S = {x € R™ (x, x) = 1} (Kuelbs (1973), page 264). Following
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PATH PROPERTIES OF STABLE PROCESSES 1149

Paulauskas (1976), page 357, I is called the spectral measure of the distribution. In particular,
if ¢ is a SaS random variable, then there exists some b; = 0 such that &(e™) = exp{—b;|r|*}
forallr € R.

The map { — b}/* defines a norm on a linear space of SaS random variables (Schilder
(1970), page 413);and if 1 < p < q, this norm is related to the usual L,(2) norm by

M (E1¢P)” = cop”

where c is a constant depending on p and « ([7]). The linear space £(£) of a SaS process £ is
therefore the completion of /(£) with respect to either norm, and it can be seen from the form
of the multivariate ch.f. that #(£) is a family of jointly SaS random variables.

In the sequel when { is a pth order process, #(£) will have the usual L,({2) norm, and when
¢ is a SaS process, #(¢) will be normed either by the L,(R2) norm, 1 < p < a, or byby®. As the
latter is the more natural choice for a norm in the Sa$ case, it will be convenient to let || ||
denote b¢* when { belongs to a SaS family, while retaining the notation || {|| = (&] ¢{|F)”?
when { is assumed only to have a finite pth moment.

For any two jointly SaS random variables 7 and ¢, we define

Ci(n) = j x1(x2)* T (dx)
S

where I is the spectral measure of the distribution of (n, {). If £ is a SaS process, then for each
fixed { € L(§) the function C¢ n — C¢(n) defines a continuous linear functional on Z(£),
which by Holder’s inequality has norm || C¢ |z = || 7"

The use of C; to denote a continuous linear functional in both the pth order and the SaS
cases will produce some economy of expression when the particular form of the functional is
not important. As in [19], we shall refer to Ci(n) as the covariation of n with §.

When a particular pth order process £ = {£, t € T} is being considered, the covariation of
£, with { € Z(£) will be denoted by C;(?) and the covariation of & with & by Ce(s, 1), s, € T.
If ¢ is a SaS random variable and {£,, t € T} a SaS process, then by definition of covariation

GO =&

Cee(t, 1) = &I
The following property of the covariation functional is proved in [7].

@

PrOPOSITION 2.1. If £ is a pth order or a SaS process and if A is a continuous linear
Sfunctional on L(£), then there exists a unique { € ¥(§) such that A = C;.

If n = {n, t € T} is a zero mean Gaussian process with covariance function R and ¢ is an
independent positive random variable with Laplace transform W(A) = exp{—A*?}, i.e, a
positive stable random variable of index «/2 (Feller (1966), page 427), then the finite
dimensional distributions of the process £ = {2 7 = {{"? ,, t € T} have ch.f’s of the form

Eexp{i Xalira §°n0} = W27 Y0 a1 FmlaR(tmy tn)] = eXp{—2"%2[E M nct Pl R(tm, 1.)172}.

These finite dimensional distributions are multivariate SaS (Paulauskas (1976), page 359) and
specify an interesting family of SaS processes called sub-Gaussian processes (Bretagnolle, et
al., (1966), page 251). While the theorems in this paper imply certain results for sub-Gaussian
processes £, these results can be obtained immediately from the analogous theorems for
Gaussian processes 7 in [5], [6], and [21], and the representation £ = {'/* 7.

3. Measurability of pth order processes. Let £ = {§{, t € T} and = [n, t € T} be
stochastic processes on the probability space (&2, & P), where T is a Borel subset of a complete
separable metric space and %(T") denotes the Borel subsets of 7. The process 7 is a modification
of £ if P{(§ = n} =1 for all t € T; n is called measurable if (t, w) — n(w) is a product
measurable map from 7' X § into R. The existence of a measurable modification is frequently
of interest in the study of path properties.
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The following condition for the existence of a measurable modification is contained in
Cohn (1972). We shall use £ to denote the map ¢ — £ and shall specify the range space when
required for clarity. Let .# be the space of all real-valued random variables on (2, % P), and

define a metric p on .# by
_ o 18— &l
o m—f<l+|§1—§2|)

for all {1, {» € 4. Then p metrizes the topology of convergence in probability. The process &
has a measurable modification if and only if the map & from T to M is Borel measurable (in
which case it has a separable range).

For pth order process we now obtain further equivalent conditions for the existence of a
measurable modification. The proof is omitted since a similar line of argument is used in [5].

THEOREM 3.1.  Let £ = {&, t € T} be a pth order process with p > 1 or a SaS process with 1
< a <2, and let £(§) be the linear space of the process. Then the following are equivalent:

(i) The process £ has a measurable modification.

(i) The map & T — (&) has separable range and is such that, for every to € T, || & — &, || is
B(T)-measurable.

(iii) The map & T — L(£) is Borel measurable.

(iv) Z(§) is separable and for every { € L(£) the function C¢(t) is Borel measurable.

It should be noted that this result does not reflect the fact that the existence of a measurable
modification is a property of the two-dimensional distributions of the process, as shown in
Hoffmann-Jgrgensen (1973).

COROLLARY 3.2 A stochastic process § as in Theorem 3.1 has a measurable modification
under each of the following three conditions:

(i) £ is a weakly continuous process.

(ii) T is an arbitrary interval and the strong left (right) limit of ¢ exists at all but countably
manyt € T.

(iii) T is an arbitrary interval and & is a SaS process with independent increments.

Proor. (i) If £ is a weakly continuous process, then Ci(f) is a continuous (hence
measurable) function of ¢ for every { € £(£). To see the separability of Z(£), let T* be a
countable dense subset of T and let .#"be the space of all rational linear combinations of
elements in {£, ¢ € T*}. Then.#is a countable dense subset of #(£) by Rudin (1973), Theorem
3.12, and the existence of a measurable modification follows from (iv) of Theorem 3.1.

(ii) Parts (i) and (ii) (a) of the proof in Bulatovi¢ and A$i¢ (1976) for second order processes
hold with no alteration for the process £ and show that the set T; of all points of discontinuity
of £ is countable. Let T C T — T be a countable dense subset of 7. Then the space of all
rational linear combinations of elements in {&, t € T: U T3} is a countable dense subset of
Z(£). It is clear that Ci(¢) is Borel measurable for every { € #(£) since it is a continuous
function on T — Ti. Thus £ has a measurable modification again by (iv) of Theorem 3.1.

(iii) If £ is SaS with independent increments, then F(r) = || &|* is an increasing function
(Schilder (1970)) which therefore has at most countably many points of discontinuity. Let T}
be the set of all points of discontinuity of F, and let 7, C T — T; be a countable dense subset
of T. From the relationship | & — &||* = | F(s) — F(¢)| for all 5, ¢t € T (Schilder (1970)), it is
easy to see that the space of all rational linear combinations of elements in {&, 1 € T1 U Ty}
is a countable dense subset of Z(£). For the measurability of C¢(?), { € #(§), we note that C;
has at most countably many discontinuities, since

[ Cels) = @ = €I | F(s) — Fy |, U

For a general Sa$ process § it appears that product measurability of Cy(s, r) and separability
of #(£) are not sufficient for the existence of a measurable modification, though we do not
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have a counterexample. Since || & — &, || cannot be expressed in terms of Cy(, to) for 1 < a <
2, we cannot express the condition for a measurable modification in terms of Cg(t, ), except
in the sub-Gaussian case (Gaussian when a = 2) where

& — &I = Cee(t, 1) — 2Ce(to, 10)*™"*Cee(t, t0) + Ciz (to, 10)”*.

If we set o(s, ) = ||& — &/, then of course product measurability of o(s, ¢) implies
measurability of o(#, %) in ¢, for each fixed #. Conversely, if £(£) is separable and o(-, %) is
measurable for each # € T, then (ii) of Theorem 3.1 implies the existence of a measurable
modification n and we can apply Fubini’s theorem to show that o(s, £) = || 9s — 1| is product
measurable. Hence condition (ii) in Theorem 3.1 may be written in the more symmetric form:

(ii)’. The map & T — L&) has separable range and the function o(s, t) = ||& — &|| is
B(T) X B(T)-measurable.

Finally, we note that if £ is SaS and #(£) is separable, then £ has an integral representation
of the type
1/2
&= Sdu) du,
-1/2
where {{., —% =< u < %} is a SaS process with independent increments, || {. ||* = F(u), and
f{+) € Lu(dF) for all ¢ (Kuelbs (1973), Theorem 4.2). And conversely, if £ has such a spectral
representation, then #(£) is separable since #({) is separable (Corollary 3.2 (iii)). In particular,
every measurable SaS process has such a spectral representation.

4. Integrability of sample paths of SaS processes. In this section we apply a result due to
DeAcosta (1975) to obtain a necessary and sufficient condition for almost all sample paths of
an SaS process to belong to Ly(T, &, »), 1 < p < a. The referee pointed out that the sample
path integral in Lemma 4.2 and the probability measure y in the proof of Theorem 4.3 could
be proved Sa$ by a simple axiomatic approach without the use of Lemma 4.1. The approach
presented here permits a slightly stronger statement of Lemma 4.2 and takes advantage of a
shorter proof suggested by the referee for Lemma 4.1.

Lemma 4.1.  Let (T, o, v) be a finite measure space, and let £ = {&, t € T} be a measurable
pth order process with 1 < p < o and with | || = M < o« for all t € T. For any element f € L (T,
A, v), where (1/p) + (1/q) = 1, the sample path integral [r f(t) £&(w)¥(dt) belongs to LA(£).

Proor. From the measurability of £ and Fubini’s theorem we get that £(w) € Ly(T, <,
v) a.s., since '

& J’ | §(w) [Pv(dt) = J | & FPv(dr) = MPH(T) < .
Therefore X = [ f(¢) £é(w) v(dt) belongs to Ly(2), since
p/q
E|XP = U' lf®| v(dt)] é)f | é(w) PP »(dk).

Suppose now (by way of contradiction) that X & #(£). Then by Proposition 2.1 there exists {
& A (¢) with C¢(&) = 0 for all ¢ € T, but C¢(X) # 0. However,

Cu(X) = Jf(t) Cs(é) v(dr) = 0. o
T
We next state a stronger version of Lemma 4.1 for a SaS process. The proof follows from

a truncation argument suggested by Shepp and used in Rajput (1972), Proposition 3.2, where
a similar result is proved for Gaussian processes (a = 2).
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LemMMA 4.2.  Let (T, o, v) be a o-finite measure space, and let §{ = {&,, t € T} be a measurable
SaS process with £(-, w) € Ly(T, o, v) a.s., where 1 < p < a. Then for every element f € Ly(T,
o, v), where (1/p) + (1/q) = 1, the sample path integral [r f(t)é(w)v(dt) belongs to £(£) (and is
thus a SaS random variable).

THeoOREM 4.3.  Let (T, o4, v) be a o-finite measure space, let {&;,t € T} be a measurable SaS
process, and suppose that Ly(T, o4, v) is separable, where 1 < p < a. Then [7 | & [Pv(dt) < = ass.
if and only if [r &(| & °)v(dt) < .

Proor. Sufficiency is clear. For the necessity, define the map @: @ — L(T, «, ») by
D(w) = &(-, w) if &(-, w) € Ly(T, o, v),
=0 otherwise.

Then @ is a measurable map from (R, &) to (L,, %(Ly)), since the process £ is measurable and
L(T, #, v) is separable. Thus £ induces a measure p on Ly(T, <7, ») by u(B) = P®'(B) for all
B € B(Ly). If f € LT, &, v), (1/p) + (1/g) = 1, and if f* denotes the element of L} (T, <,
v) corresponding to f € Ly(T, <, v), then we have that f*({(-, w)) = [r f(¢)&(w)v(dt) defines an
element of #(¢) by Lemma 4.2. Therefore u(f*)™" is an SaS distribution on R, since for every
Borel subset B of R, )

W(f*)7U(B) = P @7 (x € Ly(T, , v): f*(x) € B)
= P{w € Q: f*((-, w)) € B}.
Thus p is an SaS measure on Ly(7, &, v), so that by DeAcosta (1975), Theorem 3.2,

f £( &Py = f 1&C @), pldc) = f 1 () < . 0
T Q LP(T)

If (T, o/, v) = ([a, b], #Bla, b], Leb), then Theorem 4.3 holds for p = 1. The only alteration
required to the proof is to take ¢ =  and use a result in Doob (1953), page 64, instead of
Lemma 4.2.

By equations (1) and (2) it follows that

E(1&P) = c” |&|” = "I Calt, D1

so the necessary and sufficient condition of Theorem 4.3 can be written [r [Ce (2, £)]*/ v(dt)
< oo,

5. Absolute continuity of sample paths. In this section we obtain sufficient conditions for
the sample paths of a pth order process to be absolutely continuous and show these conditions
to be also necessary when the process is SaS. The argument used is from [6] where second
order processes are considered.

If B is a Banach space with norm | - || and T = [a, b] is an interval of R, then we write
L[ T, B] for the space of Borel measurable functions f: 7— B such that ||f(z) | € Li(T, Leb).
We call f: T — B absolutely continuous if for every € > 0 there exists a 8 > 0 such that for
every disjoint family {(ss, #)}%-1 of subintervals of T, ¥ %1 (# — sx) < § implies that Y%, || | f(2x)
— f(s1) || = €. Then f'is absolutely continuous if and only if it can be expressed in terms of a
Bochner integral

@ =f(a)+jf(3) ds, 1ET,

where f € Li[ T, B] (Brézis (1973), Appendice).
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THEOREM 5.1. Let £ = {&, t € T = [a, b]} be a separable process on (2, & P). If { is pth
order with p > 1, then each of the following two equivalent conditions is sufficient for the sample
paths of & to be absolutely continuous with probability one (and have a measurable pth order
process as derivative).

(i) The map T — £(§) defined by t — &, is absolutely continuous.

(ii) The function C(t) is absolutely continuous for all { € L(£), for all t € T — To with
Leb(To) = O the derivative Ci{(t) exists for all { € L(£), and

j ||£t||dt<°°’
T

where for each t € T — To, & is the unique element of L(£) such that the covariation of & with §

equals CYt) for all { € A¥).
If £ is SaS with 1 < a < 2, then each of (i) and (ii) is necessary and sufficient for the sample
paths of & to be absolutely continuous with probability one.

Proor. The equivalence of (i) and (ii) is contained in Brézis (1973), page 145. If (i) holds,
then we have

£t=§a+J’ £ ds

for all ¢ € T where £ € Li[T, #(£)]. By Theorem 3.1, £ has a measurable modification, say 1.
Observe that

b b b
& f [n(t, w)|dt = J' @, ©) || z,@dt = f 1€ 1l 2, dt < o;
so n(+, w) € Ly(T, Leb) ass., i.e., for every w € & — Q with P(%) = 0. Define X by

t
X(t, w) = &a, w)+f 1(s, w) ds, teT, w€EQ—Q,

=0, teT, weE o,

and note that the sample paths of X are absolutely continuous.
Let £, be a sequence of simple functions T — #(§) such that

J' I é,,(s) - é(s) ||Lp(mds -0

for all t € T. Then

= limye &

Elé&— Xi|=¢&

j&m—me f&@ﬂ—jM®m

t t
= lim, . f E|&:(s) — m(s) | ds < limyc: j Il €x(s) = n(5) |z, ds — O.

Thus P{{ = X;} = 1 for all t € T, and the result follows from the separability of £

In [4] it is shown that for a separable Gaussian process £, at every fixed ¢ € T the paths of
¢ are continuous, or differentiable, with probability zero or one. Also, if £ is measurable, then
with probability one its paths have essentially the same points of differentiability and
continuity. These same results follow for SaS processes (with no change in argument) by
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applying a zero-one law for stable measures from Dudley and Kanter (1974).

Let now £ be SaS, 1 < a =< 2, and assume that with probability one its sample paths are
absolutely continuous. We will show that (i) holds, and thus the proof of the theorem will be
complete. By an argument similar to the final paragraph of [6], we get that for allt € T

t
£, w) = §(a, w) + J (s, w) ds
where 7 is such that 9(-, w) = £(-, w) a.e. [Leb] and
f s llz,@) ds < oo.
T

Let {(s, t)}=1 be a family of disjoint subintervals of T. Then

te
j n(s, w) ds

k

Zz=1 "Etk - gsk ”Ll(m = Zz=1 &

7
SZZ=1J' llmslle, @ ds = f o Mmsllzy@ ds.
Sp U

B=1 (sp &)

Therefore the map ¢ — £, is absolutely continuous by the absolute continuity of the indefinite
integral since [7 || ns ||z, ds < .0

Theorem 5.1 with appropriate modifications gives conditions for paths to be absolutely
continuous with derivatives in L,(T, Leb). It can also be extended to give conditions for paths
to have (n — 1) continuous derivatives with the (n — 1)th derivative absolutely continuous with
derivative in L,(7, Leb).

The following corollary utilizes a stochastic integral introduced by Schilder (1970) and
generalizes a well known result for stationary Gaussian processes to the (nonstationary) SaS
case.

COROLLARY 5.2. Let {{), — < A < o} be a SaS process with independent increments and
FQ\) = || $ " @ bounded function. Then a separable stochastic process £ = {¢&, a <1t < b} defined

by
gt — j ezM d{)\

has absolutely continuous sample paths with probability one if and only if
j [A]* dFA) < oo

Proor. Even though complex-valued random variables appear formally in this result, the
proof can be carried through with methods previously developed in the real-valued case. If £
has absolutely continuous sample paths with probability one, then Theorem 5.1 shows that £,
is weakly differentiable at every t € T — T, with Leb(To) = 0. Thus f(s, £) = (s — £)"'(e"* — &)
converges weakly in Lo(dF) as s — ¢, so that the set {||f(s, ?) |z @r)}s—: is bounded. Since
S(s, 1) = iNe for all A, it follows that f(s, 7) converges weakly as s — ¢ to iAe® in L(dF)
(Hewitt and Stromberg (1965), page 207). In particular,

J’ I)\ 'a dF(}‘) = " e "aLa(dF) < .

For the converse, observe that the space # = {{: §{ = [2 g(A) d§, g € L. (dF)} contains
Z(£), and therefore by Proposition 2.1, {Cy: { € .4} respresents the dual of #(£). Proposition
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3.3 of [7] shows that for every g € L, (dF) and { = [Z, g(A) d&y,

G@) = J’ NgN) T dFQ),

which is clearly absolutely continuous since 2o |A|* dF(A) < ». Moreover, Ci(t) exists at
every t € (a, b) and & = [7, i\e* d{, is such that the covariation of £ with { equals C; (¢) for

all { € 4. Since
b o o
fllézlldt=(b—a)<f IAI“dFO\)) < o,

the paths of £ are absolutely continuous with probability one by Theorem 5.1. 0

It should be remarked that a SaS process £ = {£, a < ¢ < b} with independent increments
cannot have absolutely continuous sample paths (except in the trivial case where F(f) = || & ||*
is a constant function). For, the claim is obvious if F is not absolutely continuous. In the case
of absolutely continuous F, given any € > 0 and § > 0 it is possible to choose a finite family
of disjoint subintervals {(s, #)}%=1 such that Yi-; (& — sx) < 6, but

22;1 " gtk - gsk " = 2;;:1 |F(tk) _ F(Sk) Il/a > e

To see this case, let (a1, b1) be a subinterval of [a, b] such that b; — a; < 8, F(b:) — F(a:) >0,
and define

- (Eo0 =)

a €

By the uniform continuity of F we can choose n so large that | — 5| < §/n implies | F(z) —
F(s)| < h, for all s, t € [a, b]. Let {(sk, t)}#-1 be a partition of (a1, b1) into n subintervals of
equal length. Then Yi-; (% — sx) = b1 — a1 < §, but

F() = Flsy) _

S | Fi) = Flsn) [V > T =0
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