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BOREL SETS VIA GAMES

BY D. BLACKWELL

University of California, Berkeley

A family of games G = G (o, u) is defined such that (a) for each o the set
of all u for which Player I can force a win in G (o, ©) is a Borel set B(u) and
(b) every Borel set is a B (u) for some u.

1. Introduction. The subsets of the line now called Borel sets were defined by Borel
(1898) as the smallest class Zof sets that (a) includes all intervals and (b) is closed under
countable disjoint union and under proper difference; i.e., if Si, S, - - - are disjoint sets in
% then U, S, is also in & and if S and S* are in ¥and S* C S, then S/S* is also in ¥ Borel
called these sets ensembles mesurables, and his definition was motivated by measure: we
know the measure of an interval—its length—and if the measures of S,, S, S* in (b) are
a., a, a*, then we want the measures of U,S, and S/S* to be Ya, and a — a* respectively.

If we replace (b) by (b’) closed under countable union and countable intersection or by
(b”) closed under countable union and under complementation, we get the same class &
These definitions of Borel sets, especially via (a) and (b”), are now standard. The definition
is not only simply stated; it is technically convenient. To prove that all Borel sets have a
certain property, e.g., the Baire property, we have only to check that intervals have the
property and that the class of sets with the property is closed under countable union and
under complementation.

Nevertheless, the definition seems to me somehow unsatisfactory. For instance it is not
immediately clear from the definition that there are only ¢ Borel sets; just as, if we defined
the rationals as the smallest field containing the integers, it would not be immediately
clear that there are only countably many rationals. We present here a direct description of
Borel sets, based on games. Our description was suggested by one given by Hausdorff
(1937).

2. The main result. Denote by X the set of all finite sequences x = (x(1), - - -, x(k))
of positive integers. We include in X the empty sequence e of length O. A subset Y of X is
a stop rule if every infinite sequence w = (w(1), w(2), - - -) of positive integers has exactly
one segment on Y. (The set whose only element is e is a stop rule.) We shall associate with
each stop rule Y, function f defined on Y whose values are intervals, and real number u a
game G(Y, f, u) played as follows. Two players, I and II, alternately choose positive
integers ni, ns, ---. I chooses first, and all choices are made knowing the results of all
previous choices. As soon as a position y = (n1, - -+, nz) in Y is reached, play stops. I wins
if the number u is in the interval f(ni, .- -, n:), and II wins otherwise. Denote by B(Y, f)
‘he set of all real numbers u for which I can force a win in the game G(Y, f, u).

THEOREM. The sets B(Y, f) are just the Borel sets.

SKETCH OF PROOF. The class 4 of sets B(Y, f) includes all intervals I, since for any Y
f we take f= I we get B(Y, f) = 1. To show # D %, it suffices to show that, if By, By, - -
we in 4, so are U = U, B, and V = n,B,. Say B, = B(Y,, f.). For U, associate with each
‘eal number u the game played as follows: I chooses a positive integer r, then II chooses a
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positive integer s, then they play G(Y,, f,, u). This is just the game G(Y*, f*, u), where
Y* is the set of all y* = rsy with y € Y, and f*(rsy) = f-(y). And I can force a winin G(Y*,
f*, w) iff there is an r for which he can force a win in G(Y,, f;, u); i.e, iff u € U, B(Y,, f;)
= U. So B(Y*, f*) = U. Similarly for V, except that after r and s are chosen, they play
G(Ys, fs, w).

To show that # C & note that we can associate with any stop rule Y, set-valued f (not
just interval-valued), and real number u a game G(Y, f, u) and corresponding set B(Y, f).
We show that, if all values of f are in &, then B(Y, f) is also in &. So, in particular, any
B(Y, f) with f interval-valued is in % Suppose, then, that we have a Y and set-valued f
with B(Y, f) & & We shall show that there is a y with f(y) & & For all x that are segments
of some y € Y, denote by B(Y, f, x) the set of all u for which I can force a win in G(Y, f,
u), starting from x. Then

1) B(Y,f, x) =f(x) for x€Y;
(2) B(Y,f, x) = U,B(Y,f, xn), for x&€ Y, length of x even;
(3) B(Y, f,x) = n.B(Y, f, xn), for x€& Y, length of x odd.

It follows from (2) and (3) that if B(Y, f, x) & &and x € Y, there is an n for which B(Y,
f, xn) & & So, starting with B(Y, f) = B(Y, f, e) not in &, we get a sequence ni, ng, - - -
such that B(Y, f, (n1, - - -, nz)) &€ & The sequence ni, nz, - - - continues until Y is hit, say
at y; yielding B(Y, f, ¥) = f(y) not in &£

A referee has given the following short proof that # C & The set B(Y, f) is clearly
analytic, being the projection of the set of all pairs (u, r) such that r is a winning strategy
for Player I in G(Y, f, u). Since, from a theorem of Gale and Stewart, the clopen game
G(Y, f, u) is determined, the complement of B(Y, f) is also analytic. So, from a theorem
of Lusin, B(Y, f) is Borel.

CoMMENT. The classical constructive definition of Borel sets is based on ordinals. We
have in effect replaced ordinals by stop rules.
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