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SOME CLASSES OF TWO-PARAMETER MARTINGALES

BY MOSHE ZAKAI

Israel Institute of Technology

A class of two-parameter martingales, named ‘“martingales with orthogonal
increments” or “martingales of direction independent variation,” is introduced.
It is shown that this class, which is characterized by a sample function property,
is included in the class of martingales of path independent variation and
includes the class of strong martingales. The class of martingales with orthog-
onal increments is stable under stochastic integration and some results, which
were obtained previously for strong martingales, hold also for martingales with
orthogonal increments. It is shown that if M. is a martingale with orthogonal
increments on the sigma-fields generated by the Wiener process then there
exists a Wiener process such that M. can be represented as a stochastic integral
of first type with respect to it. :

1. Introduction. The most natural definition of a two-parameter martingale is,
perhaps, the process satisfying E (Xis, ) | Fspty) = Xisyep Whenever s; = s, and £, = £ As is
well known not all the properties of one-parameter martingales are inherited by two-
parameter martingales under this definition and this leads to the introduction of other
classes of martingales with the same partial ordering which are either weaker (e.g., weak
martingales, 1- and 2-martingales) or stronger (e.g., strong martingales, martingales of path
independent variation) than the natural class of martingales. Strong martingales were
introduced in [1] and shown there to play an important role in the theory of two-parameter
martingales and stochastic integration; martingales of path independent variation were
introduced in [9]. It was shown in [1], that continuous strong martingales are of path
independent variation. In the converse direction it was conjectured in [1] that martingales
of path independent variation on the sigma fields generated by the two-parameter Wiener
processes are strong martingales and it was shown that in a certain special case this is
actually so. Weak martingales of path independent variations were introduced and char-
acterized in [4].

This paper was motivated by the relations between strong and path independent
martingales; it considers the problem of characterizing strong martingales by sample
function properties and gives a partial answer to this problem. A class of martingales is
introduced in Section 5 which will be called “martingales with orthogonal increments”
(“martingales of direction independent variation” may be more appropriate). It includes
the class of strong martingales and is included in the class of martingales of path
independent variation. Like the class of path independent martingales, the class of
martingales with orthogonal increments is also characterized by a sample function prop-
erty. On the other hand, martingales of orthogonal increments share with strong martin-
gales several important properties so that results which were obtained for strong martin-
gales hold for direction independent martingales. It is shown that on the sigma fields
generated by the Wiener process, martingales with orthogonal increments can be repre-
sented as stochastic integrals of the first type with respect to a Wiener process.

In the next section we consider stable subspaces of two parameter square integrable
martingales. The main results are similar to those for the one parameter case; these results
clarify the stability properties of the classes of martingales considered later. Section 3 gives
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some results on the increasing functions associated with square integrable martingales and
follows results of [2] (cf. also [5]). Several characterizations of continuous martingales of
path independent variation are given in Section 4. Continuous martingales of orthogonal
increments ae introduced in Section 5. Several characterizations of this class are.given. It
is shown that this class is stable under stochastic integration and it is pointed out that
certain results which were obtained for strong martingales hold under the assumption that
the martingale involved is of orthogonal increments.

A well-known result of P. Lévy states that if M, and M? — ¢ are martingales then M is
a Brownian motion. An analogous result is derived for martingales of orthogonal incre-
ments. A sufficient condition is given, under which a martingale of direction independent
variation is representable as a stochastic integral of the first type with respect to a Wiener
process.

Notation and basic assumptions. We follow [1], in particular: R% will denote the
positive quadrant of the plane, if 2, 22 € R%, 21 = (s, t1), 22 = (S2, L2), then 2; < 2, means
that s; < s; and ¢; < &3; 2; << 2o means that s; < s; and ¢; < ;. Let 2; << 22, (21, 22] denotes
the rectangle {z: z; << z < 2z}, R. denotes the rectangle [0, z]. (2, % P) is a complete
probability space; %, z € R are sub o-fields of & Let z = (s, t), 2 = Fsw), F2 = Fiopn-
Throughout the paper the sigma fields & are assumed to satisfy: (a) %, C %, if 21 < 2,
% includes the null sets of % (b) £, is right-continuous, and (c) Condition (F4) of [1] that
is: . and #2 are conditionally independent given %.

Letz<2z,z2=(st), 2 = (s, V), M(2, 2] = Mgy + My, — My, — M,,; let M, z € R%,
be % adapted, E | M, | < o for all z then: (a) M. is a martingale if E(M. | %) = M.; (b) M.
is a strong martingale if E(M(z, 2’] | #; v #2) = 0; and (c) M, is a weak martingale if
EM(z 21| %) =0.

#? will denote the class of right-continuous martingales, vanishing on the axes such
that sup, E | M. |* < o. It follows from the Doob-Cairoli maximal inequality that for every
martingale M in .#2, M, converges a.s. to a random variable .#. as s — o, t — © and M,
= &M | F). #E will denote all the sample continuous martingales in .#2. .42, will denote
the martingales M in .#Z for which (a) either sup E|M,|* < « or else M is locally L*
bounded, that is, there exists a sequence of martingales M" € .#Z such that sup, E | M7 |*
< o and for every finite z for every € > 0 there exists an n, such that

Prob {supier, | M; — M?| # 0} <€ n=no

and (b) Let (M) be the increasing process associated with M (M? — (M) is [1] a weak
martingale) then (M) is assumed to be sample continuous.

REMARK. For the case where the o-fields % are generated by the Wiener process .#*
= .#% and it was shown in [2] that .#? = .#%. It is probably true that .#% = .#% in general
but this has not yet been proved.

3. Stable subspaces of two-parameter square integrable martingales. The
main results of this section follow along the same lines as the one-parameter case (Chapter
11, 1-6, 28, 29 of [7]), with the conclusion “then MN is a martingale” in the one-parameter
case becoming, in general, “then MN is a weak martingale”, except for the case where M
and N are strong martingales (Proposition 2.4).

DEFINITIONS. (a) A random set D(w) from w to the subsets of R is a simple random
set if there exists a partition of R% into rectangles (zi), zi+1,+1] and events A;; €%, such
that

D(w) = {Uij(2i), zir,j+1] 14, (w)}

and there exists a finite zo such that A;; = @ for all z;; € R, (or, otherwise stated, D (w)
C R, as.). The rectangles (2;;, 2is1,j+1] will be denoted by A;; and M(A;;) will denote
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M., ,.+M, ~M,,  — M, . Forasimple random set D, M(D) will denote Y;;M(A;))-
I,

j(b) D(w) is a simple stopping set if it is a simple random set and in addition 2’ € D (w)
implies 2z € D(w) for all 2 < 2'.

LEMMA 2.1. IfM., N, z € R% are square integrable martingales then for every simple
random set D (w)

EM. — M(D))-N(D) = 0.

ProoF. Notice that

(2.1) M. — MD)ND) =%, . (1—1Is)M@A)la,,N@Bmny).

i, j,mn

Ifi=mand j=nthen (1 —I4)4,, =0.If i m,let i > m then

E{(1 = L )MAi)Ia, Nr) | 72}
= (1 — Iy )14, N@Bnn)-EMA;) | F3)
=0
and by similar arguments for the other cases it follows that the expectation of (2.1) is zero.

DEFINITIONS. (1) #is said to be a stable collection of martingales in .#2 if M € #
implies that M € #* and Y, = M(R. N D(w)) € 5 for every simple stopping set D.

(2) # is said to be a stable subspace of .#? if it is a closed linear subspace of .#* and a
stable collection.

(3) M, N € .#* are said to be weakly orthogonal if EM.N., = 0. M, N € #* are said to
be orthogonal if M.N., is a weak martingale.

(4) Let #be a stable collection of martingales in .#2 then #* denotes the collection of
all martingales in .#* which are weakly orthogonal to all the martingales in 3

H = {MeM*:EM,N.=0VN € ).

PROPOSITION 2.2. Let # be a stable collection of martingales in #* then

(a) #™* is a stable subspace;

(b) M € ¥ and N € #* implies that M and N are orthogonal (ie., M-N is a weak
martingale);

(c) every element M of #* can be represented uniquelyas M =N + N, Ne H, N' €
H#*+ and N-N' is a weak martingale.

Proor. If N € s#and M € #* then for every simple stopping set D E M. N(D) = 0.
By Lemma 1 we also have that E (M., — M(D))-N (D) = 0. Hence E M(D)N (D) = 0 and,
again by Lemma 1, E N. M (D) = 0; it follows that M (R, N D) € s#*. Therefore #* is
stable, the linearity and closure of #* are obvious, this proves part (a). Let d denote a
rectangle (21, 22], 21 << 22. In order to prove part (b) we have to show that E(MN (d) | #,)
= 0. By Proposition 1.6 of [1], we have

EMN(@)|#.,) = E(M(d)N(d)|%,).
Therefore, in order to show that M.N., is a weak martingale we have to show that
(2.2) EM()N(d)I4) =0
for every event A € F;,. Let

D(wi = (R,,N d) U (d-1,)
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then D is a simple stopping region. Therefore
EM,,N.,=0, E M., ND) =0, E M(D)N.,=0;

therefore E M(R,, — D)N(R., — D) = 0 which is the same as (2.2) proving part (b). Part
(c) follows directly from (a) and (b).

PROPOSITION 2.3. Let # be a stable subspace of #* then if M € # and ¢ is predictable
and E [r: ¢’d (M) < o then Y. = [, pdM € #.

The stable subspace generated by M is the class of stochastic integrals [ ¢ dM where
@ is predictable and E [ ¢} d (M;) < ». Therefore, if N € .4 then the projection of N on
the stable subspace generated by M is of the form [ h¢ dM; Furthermore, A- is a
predictable density of (M, N) with respect to (M, M). The proof is the same as the
corresponding one-parameter result (Chapter II, Theorem 28 and 29 of [6]) and Theorem
2.2 of [1] and is, therefore, omitted.

The result of part (b) of Proposition 2.2 that M-N is a weak martingale cannot be
improved in general. However, M and N are strong martingales. We have the following
result (which is a direct consequence of Theorem 1.9 of [1]).

PROPOSITION 2.4. If M, N € 4%, are both strong martingales and if M lN is a weak
martingale then M- N is a martingale.

Proor. Note that both M + N and M — N satisfy the assumptions of Theorem 1.9 of
[1]. Therefore M-N = m + b where m. is a martingale and b, is the difference of two
increasing processes. Therefore b is a weak martingale and since b can be chosen to be
continuous and of bounded variation on a countable number of vertical and horizontal
lines, it follows by [10] that b, vanishes which proves the result.

3. Increasing processes. Let {A{P} denote a sequence of partitions of R, into
rectangles A{? = (2, (% js1]. Let | A™ | = sup;;||z{%1j+1 — 2} ||. The sequence of parti-
tions {A"} will be said to be arbitrary fine if |A™| — 0 as n — . We will often write A
instead of A™. If M,, z € R% is a right-continuous square integrable martingale, and A is
an arbitrary fine sequence of partitions, then it was shown in [1] that
Y. E(M(APT|F) converges weakly in L' to an increasing function (M), and M7 —

(M), is a weak martingale.

ProposITION 3.1. ([2]). Let M € M?, then
X M (Ai)))?
converges in probability to (M)..
ProoF. This result was derived in Section 4 of [2] for the case where % are the o-
fields generated by the Wiener process W.. The same proof goes over to the case considered
here with minor modifications:

(a) It suffices to prove the result for the case where E M’ 4 < o since the extension to the
case where M is locally in L* is straightforward. The next step is to prove that

(3.1) lim E{((M). - 3, E (M) 0| F)*1=0
as n — . The proof is exactly the same as in [2]. Therefore, since
E{(M) (A;))|F.)} = E{M@A,)*| %)}

it follows that ¥ E{M(A{})?| %} converges in L, to (M)..
(b) It will be shown that E (3 d{P)? — 0 as n — » where

(3.2) di = M(AD)? — E(MQAY)?| Fiw}.
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The proof is very similar to the proof of the final part of the proof of Theorem 1.9 of [1].
It is given here in detail in order to point out that the proof goes over without the
requirement that M be a strong martingale. For i’ > i

E(didiy | #3,) = diyE(dij | F3,,) = 0.
Therefore,
(3.3) E(Yd))*=ETydy+ESij > didiy.

E Y d? converges to zero exactly as in [1] (the five lines following equation 1.11). Considering
the second term of (3.2)

|E (s> disdiy) | = |[E'Y M(A:)*diy |
(3.4) < E(Zy M©:i)*Y > M(ij)?)
+E(Z M@A)? 3> E(M(A:)? | £3,)).

Consider the first term and let 8;; = Uj'~; A;;
E(Zi; MB:)* Z)> MLij)?)

= E(3 M@:)* 35 EM L) | Fij+1)

= E(3y M(8:)*-E(M(3:)* | F101))

= E (3 M(Ai)*M 6:)?)

= E (3 M(A;)* sup;,; M(5:)?)

= EV*(3i; M(:)*)*- EV*(supi,; M(3:)*).
The first expectation is bounded by ¢ E M4 by Burkholder’s inequality [6], the second
expectation converges to zero since E sup M(8;)* = E supM} < ¢ E M% and M; is
continuous. Therefore, the first term of (3.4) converges to zero. By very similar arguments
(and since conditional expectations with respect to &} and #% commute), it follows that

the second term of (3.4) converges to zero. Therefore (3.3) converges to zero.
(c) Let, now

(35 - di = E(MQAR) | Fw) — EMQAY)? | Flw).

In order to complete the proof, it remains to be shown that E(¥;,d{?)? — 0 as n — . The
proof is the same as the proof of the final part of Theorem 1.9 of [1] and very similar to the
proof of part (b) above. It is, therefore, omitted.

In the following corollary, (M)}, i = 1, 2, will denote the unique % predictable process
such that M? — (M)’ is an i-martingale (cf. Proposition 1.8 of [1]). An adapted one-
martingale M, is said to be proper ([10]) if for all s, the expectation of the variation of M,
in the ¢ direction is finite in every finite ¢ interval.

CoRrOLLARY. Under the assumptions of Proposition 3.1,

(3.6) Sisiiwei M(Ai;; N RIM(A;y N RY)
converges in probability to a proper two-martingale B, and B, = (M). — (M).. Similarly
(3.6a) Yijisiwi M(Bi; 0 RIM(Ay; 0 R))

converges in probability to a proper one-martingale C, and C, = (M)% — (M).. Further-
more,

3.7 Sisiiiw EMMAR 0 R)MQAY n R)| Fip) - pB.
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and
(3.7a) Yisiniwi E(MAJ 0 R)M(AY) n R,)| #2p) —> pC..

PROOF. Let 2, = (s, £,). Consider the one-parameter martingale (M., #.,0 < u < s,)
then

Zi (Mslﬂ,t - Msl,to)Z

o

converges in probability to (M); as the sequence of partitions of [0, s,] becomes arbitrary
fine. However,

i (M0, — Ms,e)? = 0 MP(Ai; 0 R.)? + Yij iy M(Aijn R)M(Ay 0 Ry).

Therefore by Proposition 3.1, the last term converges in probability to a limit B, and B.
= (M). — (M).. Since M? — (M)* and M* — (M) are weak martingales, B is also weak
martingale. Since (M)' and (M) are of integrable variation in the s direction for every ¢,
so is B, therefore B is a proper two-martingale [10], Equation (3.7) and (3.7a) follow by
similar arguments.

4. Martingales of path independent variation. Let M € .#2, M is said to be of
path independent variation if the quadratic variation of M, as a one-parameter martingale,
along every increasing path depends on the initial and end points of the path only ([9],
[1]). Since M is a two-parameter martingale if and only if M is a one-parameter martingale
along every increasing path [9] it follows immediately that M is of path independent
variation if and only if there exists an order increasing predictable function A such that
M? — A, is a martingale. Let (M)%, i = 1, 2, be the process such that M% — (M)! is an i-
martingale ([1]), then M is of path independent variation if and only if (M); = (M)%, z
€ R?2 or (since M? =2 [ Mo; M + (M)"):

j M§81M§=J MgazMg
Hz VZ

where z = (s, t) and H,(V.) denotes the horizontal (vertical)line connecting (s, t) with (0,
t) (with (s, 0)).

Theorem 1.9 of [1] states that if M € .#% and M is a strong martingale then M is of
path independent variation.

The corollary to Proposition 3.1 leads to the following additional characterizations of
path independent variation:

PROPOSITION 4.1 Let M € .#%.. Then the following are equivalent.

(a) M is of path independent variation.

(b) (M)L= (M)2 for all z in R% (and then (M)} = (M),).

(c) For every arbitrary fine sequence of partitions, for all z € R% as n —

(4.1) Sissiwi MAY 0 RIMAY 0 R,) —p0
and
4.2) Sisisiwi MAAR 0 ROM(AY) n R,) —>p0.

(0
(4.3) Yo EMQAR 0 RIMAY n R)| Fip) — 0
and

(4.4) Yijiwi EQM(AY 0 R)M(AY) 0 R,)| #2g) — #0.
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Proor. The equivalence between (a) and (b) has been shown in the beginning of this
section. Now, if M is of path independent variation, then (M). = (M)Z and, therefore,

(M), — (M); = (M). — (M)

Since the left-hand side is a continuous proper two-martingale and the right-hand side is
a continuous proper one-martingale, each side of the above equation vanishes and (4.1)
and (4.2) follow by the corollary to Proposition (3.1). Conversely, if (4.1) and (4.2) are
satisfied then by the corollary to Proposition 3.1, (M)' = (M)? and therefore M is of path
independent variation. The equivalence between (a) and (c) follows by similar arguments.

PROPOSITION 4.2. Let M™ be a sequence of martingales of path independent varia-
tion, assume that M™ converge in quadratic mean to a martingale M, (sup, E| M —
M |* — 0) then M is also of path independent variation.

Proor. By the Cairoli-Doob inequality for two-parameter martingales (Theorem 1.2
and Proposition 1.4 of [1]) it follows that M is sample continuous. By the Burkholder
inequality for one-parameter martingales (M™)' — (M)’, i = 1, 2, in L. Therefore (M)?
= (M)? and M is of path independent variation.

5. Martingales with orthogonal increments. Let M, € .42 Consider the rectangle
[21, 22), 21 << 25, 21 = 81, b1; 22 = Sy, Lz and

m; = Msz,t - Ms,,t
ns=M;,, — M,
Then (m,, #7, t =t < t,) is a continuous one-parameter martingale and so is (n,, #., s:
= S§=<s).
DEFINITION. M € % is said to be a martingale with orthogonal increments if
(m)e, = (m)e, = (n)s, — ()5,

for all z; << z; in RZ.

PROPOSITION 5.1. Let M € 2. then the following are equivalent

(a) M is a martingale with orthogonal increments.

(b) M is of path independent variation and so are the martingales Y, = M(R, n («a,
) for all a € R2.

(c) For every A = (21, 23], 21 << 22 << o, and every arbitrary fine sequence of
partitions

Zi,j,j';jy‘j' M(A,’j n A)M(A,‘jf n A) —p0
and
Ziyfvi';i"‘i M(A,'j n A)M(A,’fj n A) —p0.

(d) Let M.(w) = M,(t, w) and consider the collection of one-parameter martingales
(M,(¢, w), FE) with s as the parameter of the collection then, s; > s,

(Msl; (Msz - Msl))l =0
and similarly, setting M,(w) = M,(s, w), t2 > t:
(M., (M;,— M,)), = 0.



262 MOSHE ZAKAI

(e) With the same notation as in (d):
M, (¢, ), (Ms,(t, w) — M, (¢, w))
are orthogonal one-parameter martingales, that is,
(M, (8, w) - (Mo, (t, 0) — My, (¢, ), F7)
is a martingale and similarly
M, (s, ), (My,(s, w) — M, (¢, w))

are orthogonal one-parameter martingales.
(f) Let Dy, = (21, 21], Da(22, 25), zi = (s;, t;) i = 1, 2. Assume that D, n D; = ¢ and let s,
= min(s,, Sz), £, = min(¢,, t;) then

E(M(D)M(Dy)| #1, =0

and
E{MD)MD2)| 3} = 0.

(g) For any rectangle D = (21, 2]
E((M)X(D)| #:)) = E(M(D))*| #:,) i=12.

Remarks. (1). The definition of martingales with orthogonal increments and charac-
terizations (b) or (c) of Proposition 5.1 indicate the relation of martingales with orthogonal
increments to martingales of path independent variation. On the other hand, (d) to (g)
indicate the relation of martingales with orthogonal increments to strong martingales. It
follows immediately from (g) and by a direct calculation (or by Proposition 1.7 of [1]), that
every strong martingale belonging to M?, is a martingale with orthogonal increments.

(2). When certain results requiring M to be a strong martingale are examined it turns
out that the proof depends on the assumption that M is strong only via (f) of Proposition
5.1 (with either s; = s; or t; = £;) and in these cases the assumption that M is strong can
be replaced by the assumption that M is of orthogonal increments. In particular, the
stochastic integral of the second type [[ ¥(S, {') dM; dM;, was defined in [1] under the
assumptions that M is a right continuous, strong martingale and EM? < . Going through
the details of the proofs (Proposition 2.4 and Theorem 2.5 of [1]), we notice that the
assumption that M is strong is used only via property (f) of the last proposition. It,
therefore, follows that the assumption that M is a strong martingale can be replaced by
the assumption that M is orthogonal increments without changing the results of Theorem
2.5 [1] regarding [ [  dM dM.

Proor. Leta=(si,t),lett>¢,s>s;andlet Y = M(R,: N (o, ©)) = M) + M(Sl,tl)
— M) — My, if Y is of path independent variation for every a then M satisfies the
definition of a martingale with orthogonal increments and therefore (b) implies (a). From
part (b) of Proposition 4.1 it follows that (a) implies (b). The equivalence between (b) and
(c) follows directly from part (c) of Proposition 4.1. Turning to (d), let A, = ((s1, 0), (s2, t1)]
and Az = ((s1, t), (se, £2)], A1, A2, and A; U A; are rectangles and if M is a martingale with
orthogonal increments, then (c) holds for A = A,, for A = A, and also for A = A; U A; and
therefore (c) implies (d) and (e). Conversely, if (d) (or (e)) are satisfied then equations (4.3)
and (4.4) are satisfied for M, and for M(R, N (a, «)) and therefore M is of orthogonal
increments. The equivalence between (d) and (f) follows directly from part (d) of Propo-
sition 4.1. Setting D, = A, and D, = A, (where A; and A; are the rectangles defined in the
proof of the equivalence between (c) and (d)) then (g) follows directly from (f) and
conversely, setting D = A; U A,, then it follows by a straightforward calculation that (g)
implies (e). .
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PROPOSITION 5.2. If M™ is a sequence of martingales with orthogonal increments
and sup, E|M{ — M.|*> — 0 as n — o where M € 42, then M is a martingale with
orthogonal increments.

Proor. By part 2 of Proposition 5.1, M{” and [ I () dM™ are path independent
variation. The convergence of M™ in quadratic mean to M implies the same type of
convergence of M (R, N (a, »)) to M(R. N (a, )). It follows therefore by Proposition 4.2
that M and M(R. N (a, )) are of path independent variation and therefore by part 2 of
Proposition 5.1 M is of orthogonal increments.

PROPOSITION 5.3. Let M € .4, be a martingale with orthogonal increments, if o, is
predictable and [r o dM € M. then [ ¢ dM is also of orthogonal increments.
PrOOF. Let {A;} be a partition of R? and let ¢ be a simple function:
o(2) = Yy In (2)ay
where the a;; are & -adapted and bounded random variables and I, (2) is the indicator

function of A;; = (2i, Zi+1,+1]. In this case

J @y dM; = 3i; 0;;M(A; N R.)
R,

z

and by (8c) of Proposition 5.1, [ ¢ dM is also of orthogonal increments. The extension
from the case where ¢ is a simple function to the general case follows.from the previous
proposition.

A characterization of the Wiener process. A well-known result of P. Lévy states that
if M, is a continuous (one-parameter) martingale and M? — ¢ is also a martingale then M,
is a Brownian motion. An analogous result was obtained by E. Wong for strong two-
parameter martingales (unpublished). A similar result for martingales with orthogonal
increments is the following.

PROPOSITION 5.4. If M. is a martingale with orthogonal increments and M? — area
(§ < 2) is a martingale then M, is a Wiener process.

ProoF. Let A;; be a finite partition of R., and consider:

m} =Y ayM(A; N Ry,)
where a;; are nonrandom. Then, since M is a martingale with independent increments,
(myi=Y:a}j area (A;jNR,,)
(m’m*), =0, j# k.
By the differentiation formula for one-parameter processes:
EExp(iy;mi +%Y; (m),} =1
and since (m) is nonrandom in this case:
E Exp i Yja;M(Ay) = Exp — % Y} - area(d;)

and therefore M, is a Wiener process.
A random function will be said to be predictably absolutely continuous with respect to
the Lebesgue measure in the plane if the corresponding Radon-Nykodym derivative is
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predictable. The following result is a two-parameter counterpart of a result of Doob ([3],
page 449).

ProPOSITION 55. If M € M#Z% is a martingale with orthogonal increments, and
(M), is predictably absolutely continuous with respect to the Lebesgue measure in the
plane then there exists a Brownian motion W? on the original probability space or
adjoined to it such that M. = [r_f; dW?%.

ProoF. By the assumptions on (M); (M). = [r,¢; d{ where ¢ is predictable. Set
_[UVer it g0
f ¢ = 0

otherwise.

Let W* be an adjoined Brownian motion and set

W2=j f;dM;+J’ I(fe = 0) dWS.
R, R

z

Then M, = [ ¢ dW®. Moreover, by Proposition 5.3 W? is of direction independent variation
and, by Proposition 5.4, W? is a Brownian motion, which completes the proof.

PROPOSITION 5.6. If (M., F.) is a martingale with orthogonal increments, and &%, are
the o-fields generated by the two-parameter Wiener process then there exists a Wiener
process W? such that M. = [r_f; dW%.

Proor. By the previous proposition it suffices to show that in the present case M, is
absolutely continuous with respect to the the Lebesgue measure in the plane. Since

<M>z=j 0§d§+j f\l/z(s“,{')ds“ds“'
R, R xR,

it suffices to consider the second term only:

j j¢2(§, ¢ d§d§’=J do’ d‘rj V%o, m;0',7') do dr’.
R, X R, (¢',T)ER, (o,7)ER,

Since ¥(¢,{’) = 0 for ¢ < ¢’ and for {’ < ¢, the above integrals become

f do’ dTJ Y*(o, 7; 0", 7’) do dr’
(d,7)ER, (a,)<(d',7)

=j (J ¥ (a, 75 0, B) da,B) dg; §=(o,7).
R, (o,B)<¢

Therefore (M), is absolutely continuous with respect to the Lebesgue measure, the R-N
derivative is % adapted and the result follows from Proposition 5.5.

REMARK. An earlier version of this paper contained the following result:
ProposiTION. Let W, be a Wiener process and F, the o-fields generated by W,. Let
(M., F.) be a two-parameter martingale, assume that M, is a Wiener process on its own

o-fields. Then M, is a strong martingale on F,, that is: in the representation of M, as an
F, martingale,

Mz=f¢dW+JJ\dedW’, we have |¢¢| =1 and ¢ =0.
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It follows immediately from this result that if (M., F.) is a martingale with orthogonal
increments, and F’ are the o-fields generated by the two-parameter Wiener process then
M is a strong martingale. However, Professor D. Nualart pointed out to us a serious error
in the proof. A correct proof of this result will be published by Prof. Nualart (cf. also part
(4) of Theorem 2.1 of [8] for a closely related result).
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