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TAUBERIAN THEOREMS AND THE CENTRAL LIMIT THEOREM

By N. H. BINGHAM

University of London

We prove Tauberian theorems for random walks with positive drift
obeying the central limit theorem. The results include (i) conclusions involving
certain averages, relevant to number-theoretic densities and extending results
of Diaconis and Stein; (ii) pointwise conclusions, including the classical Borel-
Tauber theorem and extending results of Schmaal, Stam and de Vries.

1. Results. Let X, be independent and identically distributed random variables with
law P, mean p > 0 and variance o% < o, S, = 21 Xi. Write P,,, @, ® for the laws of S,,
(Sp— np)/ (0\/1—7, ) and the standard normal N(0, 1); thus @, = ® (weak convergence) by the
global central limit theorem.

We shall need the local central limit theorem (see e.g., Ibragimov and Linnik (1971),
Theorems 4.4.1, 4.2.1, 4.2.2). We shall assume either

(LLT-I) some P has an absolutely continuous component, in which ¢ase || @, —

®|| - 0 as n — o (variation-norm), or

(LLT-II) P is lattice, supported by some arithmetic progression a + hk with k

integer and A maximal. We shall suppose for simplicity that @ = 0 and A
= 1, when, writing p,: for P.({k}),

k—
e e

I

We shall be concerned with Ef(S,) as n — o for suitable measurable functions f. We
shall always suppose f(x) = 0 for x < 0 (as S, — » and we are concerned with the
behaviour of f at +o). In the lattice case (when S, is supported by the integers) we
suppose also that f is constant on each [k, £+ 1),k =0, 1,....

THEOREM 1. If P satisfies (LLT-I) or (LLT-II) and f is bounded and satisfies the
conditions above, the following are equivalent:

1) Ef(S,) = ¢ (n — =) for some P with mean >0 and variances? < «
(2) Ef(S,) = ¢ (n— ®) for P=N(,1),ie,
—\/;=WL’ f(y) exp{—%(x—y)z/x} dy/Vx— ¢ (x — )
1 x—eVx
(3) —j f(dy—>c (x—») forall €>0.
evx J,

By Theorem 1, if Ef(S,) converges with {S»} a random walk generated by one law P
with positive mean and finite variance satisfying (LLT-I) or (LLT-II), Ef(S,) converges
for all such P, and the limits are the same; such convergence is equivalent to that of the
‘delayed averages’ of f in (3).
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Taking P the Poisson law with parameter 1, (1) is
Y50 e n*f(k) /R — ¢ n— o

ie., f(n) = ¢ (B)—in the sense of Borel summability. Taking P the Bernoulli law with
parameter p, (1) is

pIy (Z) p*1 —p)" (k) > ¢ n— oo;

ie., f(n) > ¢ (E,)—in the sense of Euler summability with parameter p. With P the
geometric law with parameter p = 1 — g, (1) may be written

1-¢)""" Yo (n -,: k) qa*fk) > ¢ n— oo,

ie., f(n) = ¢ (M-K,)—in the sense of the Meyer-Konig method (usually written S,: Meyer-
Konig (1949)). With P = N(1, 1), (1) becomes (2), which is f(x) — ¢ (V’)—the continuous
Valiron method (Hardy and Littlewood (1916)). We thus have (Meyer-Konig (1949); see
also Jurkat (1956)).

COROLLARY 1. For bounded f, the Borel (B), Euler (E;), 0 < p < 1, Meyer-Konig (M-
K,), 0 < ¢ <1 and continuous Valiron (V') methods are all equivalent, to each other and
to (3).

This result may be restated in terms of number-theoretic densities. For A a subset of
the positive integers Z., let f be constant on each [n, n + 1) with f(n) = I.(n). We obtain
(Diaconis and Stein (1978)):

COROLLARY 2. For A C Z.,, the following are equivalent:

Lin) > c (B),
Ii(n) > ¢ (Ep) for some (all) p€ (0, 1)

1
—— Y n<h<ntevn La(k) > ¢ forall €>0.
evn

The summability methods above are included in the circle family (cf., Meyer-Konig
(1949)). We may thus say that A C Z. has circle density ¢ € [0, 1] when any (all) of the
statements of Corollary 2 hold. We shall see below that this is stronger than saying A has
density c in the usual (Cesaro) sense.

The lattice case (LLT-II) is the most interesting; here our results may be restated in
more classical language. Write f(rn) — f(n — 1) = a@,; 80 f(x) = Yo<n=x @ and, in the usual
notation for sequences, with s, := Yj-o a, we have f(x) = siy. We write f(n) — c (R) if

1 x
—J Dewn<tan} dt — ¢ X —
x o

(the Riesz typical mean R(e ‘/", 1); see Chandrasekharan and Minakshisundaram (1952)).

THEOREM 2. For f bounded, the following are equivalent:

4) f(n) > ¢ (B)
(5) f(n) —-c (R)
(6) there exists €, — 0 such that ——— Zk—o f(k) =c+ o(1/ Vn ) +——— Vi€

(n (+1)
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(7) ~/2/_ﬂf f(¥?) exp{—2(x — »)*} dy > ¢
—o0 X —> 0
(8) %f f(y*)dy—c (x> ) foralle>0.

CoRroOLLARY. The following are equivalent to (1)-(8) under the conditions above:

x+evx
1 [ . o :
9) 7 j f(y) dy = ¢ (x — «) for two positive values of € with irrational quotient
evx J,

1™ . e :
(10) p f f(y?) dy — ¢ (x = ®) for two positive values of € with irrational quotient.

The results above link (1) for random walks with positive mean to Borel (and related
methods of) summability. By contrast, for random walks with zero mean it is Cesaro
summability which is linked to (1); see Davydov and Ibragimov (1971), Davydov (1974).

That (2) and (4) are equivalent (under the weaker Tauberian condition f(n) =o(\/; )
is due to Hardy and Littlewood (1916) and Meyer-Konig (1949). That (4) implies (5) for
bounded f is due to Karamata (1937), (1938). That (6) implies (4) is due essentially to
Hardy (1949), Theorem 149 (see also Diaconis and Stein (1978), Theorem 3). Hardy did
not have the last term on the right in (6). Including this, however, we can reverse the
implication in Hardy’s theorem to see that (6) is necessary as well as sufficient for (4), and
thus obtain an explicit representation of bounded Borel-summable (or bounded ‘circle-
summable’) sequences. Note that (6) always implies f(n) =O(\/Y_L) (multiply by (n + 1)
and difference).

We remark briefly on the role of the two ‘error terms’ on the right of (6). The second
may tend to zero arbitrarily slowly, but does so ‘smoothly’ in the sense that, when
multiplied by n + 1 and differenced to give €, it still tends to zero. The first tends to zero
at the specified rate o(1/ \/Y—L), but in general gives o( \/)7) when subjected to the operations
above. The representation (6) arises from the Karamata theory of regular variation and,
like all representations of Karamata type, is essentially nonunique; see Seneta (1976), page
14, Bingham and Goldie (1980), II. Note that (6) may be interpreted as telling us (at least
for bounded sequences) exactly how much stronger than Cesaro convergence the Borel
convergence in (4) is.

We can obtain pointwise (rather than average) conclusions by imposing a Tauberian
condition of slow-decrease type. Consider the one-sided Tauberian condition

(TC) lime—>0+ lim infx—)oo infye[x,x+e\/x] f( y) - f(x) = 0
and the corresponding two-sided condition
(TC) If(9) = @] >0  xy—>o |x-y| =o()

((TC) for f and —f).

THEOREM 3a. With P as in Theorem 1, (1) implies
flx) > ¢ x> ®
if and only if (TC) holds.
If we strengthen the Tauberian condition from the one-sided (TC) to the two-sided

(TC’), we can weaken the conditions on P and use the global rather than the local central
limit theorem.
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THEOREM 3b. If P has positive mean and finite variance, (1) implies f(x) — ¢ (x —
) if and only if (TC’) holds.

Theorem 3b is Theorem 1 of Schmaal, Stam and de Vries (1976). On the other hand,
the Poisson case of Theorem 3a is the classical Borel-Tauber theorem of Schmidt (1925);
cf., Hardy (1949), Theorem 241:

COROLLARY. If f(n) — ¢ (B) (n — =), then f(n) —» ¢ (n — «) if and only if the
Tauberian condition

lim, 0+ lim inf, o MiNy<m<ntevn f(m) - f(n) =0
holds.

It is interesting to compare Theorem 2 with the following result of Chow (1973).

THEOREM. For X, ii.d. random variables, the following are equivalent:
EX,=c, Var X, < o,
X.—>c (B) as. (n— ),

X.—c (E,) as. forsome (all) peE (0,1),

Y n=k<ntevn Xp — € as. (n— x) for some (all) €>0.

ef

Note that, by a Borel-Cantelli argument, Var X,, < o« implies X, =o(«/; ) a.s. When X,
= o(«/r_z), these statements are equivalent to analogues of (6)-(8); see Section 2 below. I
am indebted for these remarks to Dr. J. Mijnheer.

2. Proofs. We first quote the following result (Beurling’s generalisation of Wiener’s
Tauberian theorem; see Moh (1972), Peterson (1972)):

THEOREM B. Let 6(x) be positive for large x, o(x) at infinity, with
(B) O(x + t(x))/0(x) > 1 (x> ) forallteR.
IfK € Li(R) with K(t) := [*. e™K(t) dt # 0 (t € R), and ¢ € L.(R),

*) f ¢(y)K( ) dy/6(x) —+AJ' K(y) dy

8(x) —o x—
implies
**) f \I/(y)H( ) dy/0(x) — AJ' H(y) dy

0(x) x—
for all H € Li(R).

Extension: if (+) holds for a class of kernels K whose Fourier transforms K have no
common zero on R, then again (**) holds for all H € Li(R).

The case (x) = 1 is Wiener’s Tauberian theorem (Wiener (1932), Widder (1941)). For
the proof of Beurling’s theorem see Peterson (1972); the extension may be proved as in
Wiener (1932).

ProOF oF THEOREM 1. Since f is bounded and Ef(S,) = [ f(np + xo Vn) d@n(x),
statements (1) with P and with N(u, o) are equivalent in the case (LLT-I). In the lattice
case (LLT-II),
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Ef(S.) = Y& f(B)Dnr.
As f is bounded, (LLT-II) shows that

f(k) (k - nu)
Ef(S,) — -0 — o,
A8 =2 T n
Writing (& — np)/(6vVn) = xe, Axx = xre1 — 2, = 1/Vn, this is
Ef(Sn) — Sk f(np + xx 0Vn)d(xe)Axe — 0 n— .

Now

Dk

-0 n— o,

o(xp)Axr — f o(x) dx

k

as may be seen by using the monotonicity of ¢ on each half-line separately. As f is
bounded, this gives

e flnp + xkox/r—z)¢(xk)Axk - j f(np + xos/r_z)q)(x) dx— 0 n— o,

The integral here is Ef(S,) with P replaced by N(u, o). Combining, (1) with P and with
N(u, o) are equivalent, as before.
Next, (1) with P = N(p, o) is

L
1) J f(y) exp{ —-;— (y— n#)z/(noz)} dy/Vn— ¢ n— o,

ovV2r

It is easy to see that we may let n — o here through continuous rather than discrete
values (cf., e.g., Hardy and Littlewood (1916), 613). So we may take u = 1 by replacing n
by n/u. We may then also take o = 1 by Beurling’s Tauberian theorem with 6(x) =x,and
K(x), H(x) as successively exp{—'%x%u/0?}, exp{—%x?} and the same functions reversed;
thus (1’) and (2) are equivalent.

Using Beurling’s theorem with 8(x) = Vx, K(x) = exp {(—%x?}, H(x) = Li-n(x), (2)
implies (3) (Moh (1972), Theorem II).

If (3) holds for € = €, &, > 0 with €;/e; irrational, write K;(x) = Ij—¢,0(x), j = 1, 2. Then
K;(t) = (1 — exp{—ie;t})/(it) = 0 for t = 2nm/e; (n a nonzero integer). Since K; and K, have
no common zero for e fe, irrational, the extension to Beurling’s theorem with H(x) =
exp {—%x”} yields (2), which completes the proof of Theorem 1.

PROOF OF THEOREM 2. Put € = 2 log A (A > 1). As f(x) is bounded (o(vx) would
suffice), (3) is equivalent to

1 x+2 Vxlogh+log2\
——j f(y)dy—c x— ooforal A>1.
2vVx log A J,
Put A(x) = exp{\/;}; then A™!(x) = log®x, and for all A > 1
A (AA(x)) = x + 2Vx log A + log?\.
So replacing x by A~!(x) and writing A(y) = u, this is
1

() log x

Ax
J' f(log®u) log u du/u — clogA x— o forall A>1.

But this is of the form
[F(Ax) — F(x)]/L(x) — clog A
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with F(x) = [T f(log®u) log u du/u and L(x) = log x slowly varying; for the theory of such
asymptotic relations see de Haan (1970), Seneta (1976), II, Bingham and Goldie (1980), II,
Section 4. From these results, each of the following is equivalent to (3):

(11) F(x) — i f F(u) du = ;lcj f(log®u) log u du — clog x x — o,
0 0

(12) F(x) = j f(log®u) log u du/u = J [e + 8(w)]log u du/u + o(log x),
1 1
where 6(x) >0 as x— o,
Writing log?u = v and replacing x by exp{«/)_z} , (11) is

ﬁj; f() exp{Vv} dv— ¢ x—> 00,

Write Ai(x) = vxe'®; as dA:(x)/dx = %(1 + x"2)e”* and f(x) = 0(1) (o(~¥x) would
suffice),

Y f(x)e¥* dx = (f(x) + o(1)) dAi(x),

so this is
1 x
mj; f(u) dA](u)—> c X — 00,
As f(u) = Yr=u an, this is (replacing x by A7'(x) and writing A:(z) = v)

1 X
;J' {¥am=ean} du—c X — oo,
0

or s, — ¢ (R, A1, 1) in the notation of Riesz typical means. As A;(x) = Vxe¥* is bounded
above and below by positive powers of A(x) = e"*, this is

1 x
(5') ; J’ {ZA(n)su a,.} du— ¢ X —> 00
()

or s, = ¢ (R, A, 1) (Chandrasekharan and Minakshisundaram (1952), 35), which is (5);
thus (3) and (5) are equivalent.
We may rewrite (12) (equivalent to (1)-(3) and (5)) as

17 1 (7
;f f(u) du=c+o(1/«/;c)+;f 8(e") du x—> o
0 0
where 8(x) > 0. Takex=n+1,n=0,1,..., and recall f(x) = s, forn <x <n + 1: then
writing €, = [**! 8(e**) du, €, — 0 and
1 n — n
m2k=o se=c + o(1/vn) +(n—+"1—)2k=0 €k

which is (6).
Now assume (6). Then Theorem 149 of Hardy (1949) yields

Sn— €, — ¢ (BEyp) forall p e (0,1),

which by regularity of E; is s, — ¢ (E;). Thus by Theorem 1 and its Corollaries, (1)-(6) are
equivalent.
Next, write (5), (5") with ¢(x) = f(A™'(x)) = f(log’x) as
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lf o(u) du— ¢ X —> %,
x 0

By the theory of Frullani integrals (Aljanc¢i¢ and Karamata (1956), Ostrowski (1976),
Bingham and Goldie (1980), II, Section 6) this is equivalent to

1 Ax
(13) mj, o) dt/t—c x—> o forall A>1.
Writing ¢ = e* and replacing log A(A > 1) by A > 0, this is
1 x+A 1 x+A
Xf f(A™ (")) du=XJ f@?) du—c x—>o forall A>0,

which is (8); so (8) is equivalent to (1)-(6). That (7) is equivalent to (2) for bounded f
follows by (12.15.9) of Hardy (1949). Alternatively, the equivalence of (7) and (8) follows
by Wiener’s Tauberian theorem (6(x) = 1 in Theorem B): take K(x) = exp{—2x%}, H(x)
= Ii_0)(x) to pass from (7) to (8); (8) includes (10); take K;(x) = I (%), j =1, 2, H(x)
= exp{—2x?} to pass from (10) to (7)).

Putting y% = u and replacing x by Jx (8) is

1 x+2€ Vx+e?
2—J f(u) du/~vu— c.
€
As f is bounded, this is equivalent to
1 x+2eVx
ﬂf f(u) du/~Nu— c.

But 1/vu = [1 + o(1)]/Vx, uniformly in u € [x, x + 2¢vx], so this is

1
2¢ Vx

which as f is bounded is (3). Taking € = €, € the equivalence of (9) and (10) follows.
Alternatively, the equivalence of (8) and (10) follows from the theory of Frullani integrals
(see (13) and Bingham and Goldie (1980), II, Section 6). In fact we only need f bounded
below here, as this ensures the Tauberian condition

x+2eVx
j f(W)[1 + o(1)] du— ¢,

Ax
(14) lim infi; lim infs... j #(8) dt/t = 0.

This completes the proof of Theorem 2 and its Corollary. We remark that f bounded
below suffices also for the implication from (7) to (8), by the one-sided version of Wiener’s
Tauberian theorem (Widder (1941), 216).

ProOF oF THEOREM 3a.

(I) First, from Ef(S,) and (TC), we deduce boundedness of f. In the lattice case (LLT-
IT), this follows by Vijayaraghavan’s theorem (Hardy (1949), Theorem 238 and page 313).
We need only check that

ZkSnp—y\/n Prk — 0» Zkznp+vs/n Pnk — 0 n,v— oo,

both immediate from the (global) central limit theorem, and

1
7'—1: Zkzmﬁ-w/n (k- nﬂ)pnk -0 n,v— o,
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But the left-hand side is
1/2
E[n"Y%(S, — nu)I{(S, — nu)/Vn=v)]= {E[%(S,. — nu)*I{(S, — nu)’/n= v}]} -0

Vv —> ©

as the variance is finite. In the absolutely continuous case (LLT-I), we use the continuous
version of Vijayaraghavan’s theorem (Karamata (1937), Theorem IV). We need to check
that (with p, the density of P,)

j Pa®) | VX — Vya| dx = O(1) (n — ; 2, := (y» — np)/~n bounded).
0

First, y, = np + O(«/r_z) > 0 for large n as p > 0. But (cf., Schmaal, Stam and de Vries
(1976), 80)

[ VS5 = Vyul = |85 = ya| /(NSF + Vyn) < |SF = ya| /V7m

=|Su = yal/ V7
(as y, > 0), so
E|VS% = Vyal = 52" {E(|Sn = ya| )}
= O(n 2 {E((Ss — np — 02,Vn)?}2)
= O(n"*{E((S, — nu)? + 0%nz2)"?)
= 0(1)
as required.

(II) Using the boundedness of f, we obtain (3) as in the proof of Theorem 1.
(III) From (3) and (T'C), f(x) — c follows by a classical argument.
For, for all € > 0 there exist A > 0, X < o« with

f(y) — fx)=—e forall x+8vx=y=x=X, 0<d=<A.
Buttheny+8«/_;2x+8~/;2y2X,soalsof(x+8«/;)—f(y)z—e.So

1 x+8vx
mj [f(y) — fx)]dy= —e,

1 x+8Vx
g—ff [flx +8vx) — f(N]dy= —.
X Jx
So
x+8vx
f(x)Se+8—1\/;f f(ydy=c+ 2

for large x, by (3), and

1
= —€+—=
5Vx

for large x. So lim sup f(-) <c + 2¢, lim inf f(-) = ¢ — 2¢, and thus f(-) — c, as required.

x+8Vx
flx + 8vx) J f(y) dy=c — 2

PrOOF oF THEOREM 3b.

(I'’) The proof of boundedness of f is of course contained in (I) above, but with a two-
sided Tauberian condition much simpler arguments than Vijayaraghavan’s suffice; cf.,
Karamata (1938), 56, Schmaal, Stam and de Vries (1976), Lemma 5.
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(II'’) We have f bounded and

Ef(S,) = J' f(ru + x0vn) d@.(x) — ¢,

where @, = ®. Let f.(x) := f(nu + xo \/I_l); then the f, are uniformly bounded, and for all
8 > 0, np — o (TC’) shows that |y, — 25| < 8 implies

fre(I0) = fur(21) = flrrp + ynovVre) — fep + zo V) — 0 n— oo,
Hence (Topsge (1967), Theorem 1; cf., Billingsley and Topsge (1967), Ranga-Rao (1962))

ff(nu+xa«/r_z) d®(x) > ¢ n— oo,

which is (1) with P = N(u, 0). Then (3) follows as in Theorem 1.
(IIT') By (TC’), for all n > 0, f(y) is within n of f(x) in [x, x +€ ~/.;] for large enough x
and small enough ¢, whence (3) gives f(-) — ¢, completing the proof.

3. Remarks. .
1. Apart from B, E;, M-K,, the circle methods include the discrete Valiron methods
Ve, a>0:

Va/m Yi-o exp{—a(n — k)*/n} f(k) > ¢ n—
and the Taylor methods T,, 0 < a < 1:

(1-a)"" Yo <n Z k)a"f(n +k)—>c n— oo,

The methods B, V,; and its continuous analogue V;,» (denoted simply V’ in Section 1) are
equivalent for f(n) = o(vn) (Hardy and Littlewood (1916), Theorem 3.4; Meyer-Konig
(1949), Section 5). With P the law of 1 + X, X geometric with parameterp =1 —q, (1) is
f(n + 1) — ¢ (T,). For the equivalence of all the circle methods for bounded sequences,
see Meyer-Konig (1949) Section 6. For the analogue of Hardy’s result (Hardy (1949),
Theorem 149) for circle methods, see Parameswaran (1959).

2. Also related to the central limit theorem is the family of F(a, g)-methods introduced
by Meir (1963) (cf., Meyer-Konig (1949), Section 5.2), who studied their Tauberian
constants. Swaminathan (1974) proves for them the analogue of Hardy’s result, while
Sitaraman and Swaminathan (1977) obtain the analogue of the Borel-Tauber theorem.

3. Theorem 2 shows that Borel summability B implies Cesaro summability C; for
bounded sequences f(n). For unbounded sequences this need not hold (e.g., if f(n) grows
exponentially. Consider ¥ 2" outside the unit circle; Hardy (1949), IX). However, f(n) =
O(«/-r;) suffices (Parameswaran (1975)), and so does f(n) = f(n — 1) bounded below (a,
= 0r(1)); see below.

4. Laws of the iterated logarithm for Borel and Euler summability have been obtained
by Lai (1974a), (1974b). These provide analogues to the laws of the iterated logarithm for
Cesaro and Abel summability by Gaposhkin (1965), and provide interesting complements
to the work of Chow (1973) cited in Section 1.

5. Our results link (1) with (3), a stronger mode of convergence (‘circle-convergence’)
than Cesaro convergence. When p = 0, the results of Davydov and Ibragimov (1971) and
Davydov (1974) link (1) with Cesaro convergence of f and convergence in law of n™* 32
f(S:). When p > 0 one can link Cesaro convergence of f with convergence of n™* Y7 Ef(Sy),
and of convergence of n™' Y% £(S:), almost surely or in probability, under suitable
conditions; see Bingham and Goldie (1981).

6. In Theorem 2 the boundedness of f plays the role of a Tauberian condition. The
question arises as to whether, or to what extent, this Tauberian condition can be weakened.
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One possibility is to use instead the weaker Tauberian condition f(n) = o(¥n ). The proof
given above shows that under it (3), (5), (6), (8) are equivalent, (2), (4) are equivalent, and
(6) = (4). The difficulty is to obtain (2) = (3) (the step where the Wiener Tauberian
theory is used above).

One-sided Tauberian conditions are also relevant. Assume, for instance, a, := f(n) —
f(n — 1) = O.(1). Then (2) im| J_phes f(n) = ¢ (C;) by a result of Rajagopal (1960) (Theorem
2, k = %). Then f(n) = o(¥n) by a result of Minakshisundaram and Rajagopal (1948)
(Theorem 2, O-form, r = 1, 8(x) = s/a-c, ¢(x) = x) and we are back in the situation just
considered. The corresponding two-sided results with a, = O(1) are classical (Hardy and
Littlewood (1916), Theorems 3.11, 3.12).

REFERENCES

[1] ALJANCIC, S. and KARAMATA, J. (1956). Fonctions a comportement régulier et l'intégrale de
Frullani. Srpska Akad. Nauk Zb. Rad. 50 239-248. (Serbian, French summary).
[2] BILLINGSLEY, P. and Topspg, F. (1967). Uniformity in weak convergence. Z. Wahrschein-
lichkeitstheorie und verw. Gebiete 7 1-16.
[3] BingHAM, N. H. and GoLbiE, C. M. (1980). Extensions of regular variation. I: Uniformity and
quantifiers. II: Representations and indices. To appear, Proc. London Math. Soc.
[4] BinGHAM, N. H. and GoLbIE, C. M. (1981). Probabilistic and deterministic averagmg Preprint.
Westfield College, London and Univ. Sussex.
[5] CHANDRASEKHARAN, K. and MINAKSHISUNDARAM, S. (1952). Typical Means. Oxford Univ.
[6] CHOW, Y. S. (1973). Delayed sums and Borel summability of independent, identically distributed
random variables. Bull. Inst. Math. Acad. Sinica 1 207-220.
[7] Davypov, Yu. A. (1974). Sur une classe de fonctionelles des processus stables et des marches
aléatoires. Ann. Inst. H. Poincaré (B) 10 1-30.
[8] Davypov, Yu. A. and IBRAGIMOV, 1. A. (1971). On asymptotic behaviour of some functionals of
processes with independent increments. Theor. Probability Appl. 16 162-167.
[9] DE Haan, L. (1970). On regular variation and its applications to the weak convergence of sample
extremes. Math. Centre Tracts 32, Mathematisch Centrum, Amsterdam.
[10] Diaconis, P. and StEIN, C. (1978). Some Tauberian theorems related to coin-tossing. Ann.
Probability 6 483-490.
[11] GaposHEKIN, V. F. (1965). Laws of the iterated logarithm for Cesaro’s and Abel’s methods of
summation. Theor. Probability Appl. 10 411-420.
[12] HARDY, G. H. (1949). Divergent Series. Oxford Univ.
[13] HARDY, G. H. and LITTLEWOOD, J. E. (1916). Theorems concerning the summability of series by
Borel’s exponential method. Rend. Ciré. Mat. Palermo 4 36-53 (reprinted in Collected
Papers of G. H. Hardy VI, 609-628, Oxford Univ. 1974).
[14] IBrRAGIMOV, L. A. and LINNIK, YU. V. (1971). Independent and Stationary Sequences of Random
Variables. Wolters-Noordhoff, Groningen.
[15] JURKAT, W. B. (1956). Ein funktiontheoretischer Beweis fiir 0-Taubersitze bei den Verfahren
von Borel und Euler-Knopp. Arch. Math. 7 278-283.
[16] KARAMATA, J. (1937). Sur les Théoremés Inverses des Procédés de Snmmabilité. Act. Sci. Ind.
450 VI, Hermann, Paris.
[17]) KARAMATA, J. (1938). Augememe Umkehrsitze der Limitierungsverfahren. Abh. Math. Sem.
Hansischen Univ. 12 48-63.
[18] Lar, T.-L. (1974a). Summability methods for independent identically distributed random vari-
ables. Proc. Amer. Math. Soc. 45 253-261.
[19] Lar, T.-L. (1974b). Limit theorems for delayed sums. Ann. Probability 2 432-440.
[20] MEIR, A. (1968). Tauberian constants for a family of transformations. Ann. of Math. 78 594-599.
[21] MEYER-KO6NIG, W. (1949). Untersuchungen iiber einige verwandte Limitierungsverfahren. Math.
Z. 52 257-304.
[22] MINAKSHISUNDARAM, S. and RasacopaL, C. T. (1948). An extension of a Tauberian theorem of
L. J. Mordell. Proc. London Math. Soc. (2) 50 242-255.
[23] MoH, T. T. (1972). On a general Tauberian theorem. Proc. Amer. Math. Soc. 36 167-172.
[24] OsTROWSKI, A. (1976). On Cauchy-Frullani integrals. Comm. Math. Helvet. 51 57-91.
[25] PARAMESWARAN, M. R. (1959). On summability functions for the circle family of methods. Proc.
Nat. Inst. Sci, India A 25 171-175.
[26] PARAMESWARAN, M. R. (1975). Some Tauberian theorems for the circle family of summability
methods. Math. Z. 143 199-201.
[27] PETERSON, G. E. (1972). Tauberian theorems for integrals II. J. London Math. Soc. (2) 5 182-
190. ‘
[28] RaJacopraL, C. T. (1960). On a.theorem connecting Borel and Cesaro summabllltles J. Indian
Math. Soc. 24 433-442.



TAUBERIAN THEOREMS AND THE CLT 231

[29] RaNGA Rao, R. (1962). Relations between weak and uniform convergence of measures, with
applications. Ann. Math. Statist. 33 659-680.

[30] ScHMAAL, A., STAM, A. J. and DE VRIES, T. (1976). Tauberian theorems for limitation methods
admitting a central limit theorem. Math. Z. 150 75-82.

[31] ScuMIDT, R. (1925). Uber das Borelsche Summierungsverfahren. Schriften d. Konigsberger gel.
Gesellschaft 1 205-256.

[32] SENETA, E. (1976). Regularly Varying Functions. Lecture Notes in Math. 508 Springer, Berlin.

[33] SiTARAMAN, Y. and SWAMINATHAN, V. (1977). Tauberian theorems for the family F(a, q) of
summability methods. Acta Math. Acad. Sci. Hungar. 30 45-47.

[34] SWAMINATHAN, V. (1974). A note on the family F(a, q) of summability methods. Math. Z. 138
119-122. )

[35] TopsoE, F. (1967). Preservation of weak convergence under mappings. Ann. Math. Statist. 38
1661-1665.

[36] WIDDER, D. V. (1941). The Laplace Transform. Princeton Univ.

[37] WIENER, N. (1932). Tauberian theorems. Ann. of Math. (2) 33 1-100 (reprinted in Selected
Papers of Norbert Wiener, M. 1. T., 1964, 261-360).

DEPARTMENT OF MATHEMATICS
WESTFIELD COLLEGE
UNIVERSITY OF LONDON
KIDDERPORE AVENUE

LonpoN NW3 7ST

ENGLAND )



