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AN INVARIANCE PRINCIPLE FOR CERTAIN DEPENDENT
SEQUENCES

By C. M. NEwWMAN' AND A. L. WRIGHT

University of Arizona

Let X, Xz, --- be a strictly stationary second order sequence which is
“associated”; i.e., is such that any two coordinatewise nondecreasing functions
of the X,’s (of finite variance) are nonnegatively correlated. If 3, Cov(X1, X))
< oo, then the partial sum processes, W,(t), defined in the usual way so that
Wam/n) = (X3 + -+« + Xn — mE(X1))/vn form = 1, 2, ..., converge in
distribution on C[0, T'] to a Wiener process. This result is based on two
general theorems concerning associated random variables which are of inde-
pendent interest.

Introduction. Following the suggestion of an invariance principle by Erdos and Kac
(1946) and its proof by Donsker (1951) for sequences of independent random variables,
there have been various extensions to the case of dependent variables. The necessary
assumption of asymptotic independence has generally been given in terms of mixing
conditions (see, e.g.; Ibragimov (1962) or Theorem 20.1 of Billingsley (1968)) which can be
difficult to verify in practice. It is the purpose of this paper to replace these mixing
conditions for second order sequences by a simple and natural summability condition on
the covariance; this is accomplished at the expense of restricting the nature of the
dependence to that of “associated” random variables.

A finite collection of random variables, X;, - -+, X, is said to be associated if for any
two coordinatewise nondecreasing functions fi, fo on R™ such that fi=fX, -+, X,) has
finite variance for j = 1, 2, Cov(fi, ) = 0; an infinite collection is said to be associated if
every finite subcollection is associated. This definition was introduced in Esary, Proschan
and Walkup (1967) as an extension of the bivariate notion of positive quadrant dependence
of Lehmann (1966). The basic concept however actually originated in Harris (1960) in the
context of percolation models and was subsequently generalized in Fortuin, Kasteleyn and
Ginibre (1971) and shown to apply to the Ising models of statistical mechanics; in the
statistical mechanics literature which developed subsequently, associated random variables
are said to satisfy the FKG inequalities. Much of the motivation for our present work is
statistical mechanical in nature and some of the results appear in that context in Newman
(1980). On a technical level, the relevance of the FKG inequalities to asymptotic indepen-
dence (but not to a central limit theorem) was first pointed out in Lebowitz (1972) and the
subsequent related work of Simon (1973).

In this paper, Theorems 1 and 2 are general results concerning associated random
variables which are presented because of their use in the proof of our invariance principle,
Theorem 3. In Newman and Wright (1980), martingale type inequalities related to Theorem
2 are derived and then used to obtain an invariance principle for two-parameter sequences
of associated random variables. The problem of determining when random variables are
associated is an interesting one which does not properly belong in the present paper; we
refer the reader to Kemperman (1977) for criteria in terms of the joint distribution and
note that independent variables are always associated.
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2. Some results about associated random variables. Before stating our first
theorem, we note that if X, Y are associated, then

(1) Hx, y)=PX>x,Y>y)— PX>x)P(Y>y) =0,

so that if X, Y also have finite variance, we can generalize an argument of Lehmann (1966)
to obtain:

| Cov(exp(irX), exp(isY)) | = ' f f (ir) (is)exp(irx + isy)H(x, y) dx dy
(2) e

= |rs|f f H(x, y)dxdy=|r||s| Cov(X, Y).

We also point out that nondecreasing functions (such as positive linear combinations) of

associated variables are associated.

THEOREM 1. Suppose X, ---, X,, are associated finite variance random variables
with joint and marginal characteristic functions, ¢(r1, « -+, rm) and ¢;(r); then

1
3 [o(re, «++, rm) = [I7=1 ¢5(ry) | SEZEISj#ksm [75] [ rr] Cov(X;, Xk).

Proor. We proceed by induction on m. The result is true for m = 1 trivially and for
m = 2 by (2); we suppose it is true for m = M. For m = M + 1, we may (by relabelling
indices if necessary) assume that for some e = +1,8§ =+land m’ € {1, .., M}, er, = 0 for
l1=j=m’'whiledr;=0form’ +1=1[= M+ 1. We then define

(4) Y. = 23"=1 e X;, Y, = f]litlt'i'l or, X;

and note that Y; and Y. are associated. Denoting the joint characteristic function of Y;
and Y by y, the marginal characteristic functions by ¢, (I = 1, 2), [[71 ¢;(r;) by m, and
[1%22+1 ¢,(r;) by 72, we have that the left-hand side of (3) is bounded by

| Y&, 8) — Yu(e)a(d) | + [ da(e) | - | ¥(8) —me | + | ¥n(e) —mu | - | 2|
which by the induction hypothesis is in turn bounded by
|€||8]Cov(Y1, Ya) + % Y Ymrizymr=rrrt | 15| | 7| Cov(X;, Xp)
+ % Y Yisjmhzm | 75| | 1] Cov(X;, Xi)

which equals the right hand side of (3). This completes the proof.

REMARK. Theorem 1 implies that associated random variables which are uncorrelated
are jointly independent; a less elegant proof of this fact based on the techniques of Lebowitz
(1972) and Simon (1973) is contained in Section III-0 of Wells (1977).

The next theorem will be used to provide the tightness needed for our invariance
principle. Although its proof is not difficult, we have not been able to find this result stated
in the literature even for the case of independent random variables.

THEOREM 2. Suppose X; ,‘ ..+, X, are associated, mean zero, finite vari-
ance, random variables and M,, = max(S;, Sz, - -+, Sn) where S, = X1 + --- + X,,; then
(5) E(M},) < Var(S,).

Proor. Wedefine K, =min(Xo + -+ + X, Xa+ -+« + X, ++ +, X, 0), L, = max(Xs,
X+ X, -0, X0+ - + X)), Jw = max(0, L,,), and note that K, = Xo + -« + X;, — Jn,
is a nondecreasing function of the X/’s so that Cov(X:, K,) = 0, that J2 < L2 pointwise,
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and that M,, = X; + J; thus
E(M2) = E((X1 + Jw)?) = Var(X1) + 2 Cov(Xi, Jn) + E(J7)
(6) = Var(X;) + 2 Cov(X1, Xz + - -+ + X))
— 2 Cov(X1, K») + E(J3)
= Var(X;) + 2 Cov(Xy, Xz + -+ + Xp) + E(L},).
The proof is completed by induction on m since the induction hypothesis implies E(L%)

=< Var(X; + - -- + X,,) which together with (6) yields (5).

REMARK. A slight variation of the above proof shows that (5) remains valid with M,,
replaced by S(;), the jth order statistic of (S, - -+, S»).

3. An invariance principle. The next theorem gives our invariance principle; the
portion of the proof based on Theorem 1 can be applied to obtain a central limit theorem
for certain associated random fields, (X;, i € Z%} (see Newman (1980)).

THEOREM 3. Suppose X:, Xs, .-+ is a nondegenerate, strictly stationary, finite
variance sequence which is associated and such that
7) o2 = Cov(X1, X1) + 2 ¥ 7-2 Cov(X1, X)) < oo.
Foreachn=1,2, ..., define the stochastic process
®) Wal) = [Xi + «+ - + X + (0t — m)Xps1 — ntE(X1)]/(0Vn),

m/n<t<(m+ 1)/n,

for 0 <t < T, then the sequence of processes W, converges in distribution (on C[0, T]) to
the standard Wiener process.

Proor. Without loss of generality, we may assume that E(X;) = 0. We claim that it
suffices to prove that
©) Su/Vn =4 N(O, 0%)

where S, = X; + - -+ + X,.. To see this, first note that it would follow from (9) by simple
estimates thatforO< =t < ... <tn=T,

(10) Un,i = Wn(ti+1) - Wn(tz) —>9 N(O, tH-l - tt) Vl)
and then by simple estimates based on (7) that
Cov(Uy,, Un;) > 0 Vi

Thus if (U, - - -, Uy) is a limit in distribution of any subsequence of (Un1, - - -, Unn), the
U/s would be associated and uncorrelated random variables and hence independent by
the remark following Theorem 1. This, together with (10), shows that the finite dimensional
distributions of W, converge to those of the standard Wiener process. We next define S7,

as
S;:z =’maX(O, Sl) M) Sm)

and note that for \; < A,
PSE=N)=P(Sn=A1) + P(Sh1= X, St — S>> — Ay)
=P(Sn= A1) + P(SH1 = A)P(Shici — S > A — A1)
= P(Sn= A1) + P(SE = M)E((Sk-1 — Sw)?)/ (2 — A1)?,

where the second inequality (compare equation (1) above) follows from the fact that S5,
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and S,, — S.—; are associated since they are both non-decreasing functions of the X,’s. Now
Theorem 2 with X; replaced by Y, = —X,,,_,+1 yields that

E([S}h-1 — Sm]z) =E(max(Y:, Y1+ Y,, -+, Y14+ .- + Ym)]z) =< E(S2)
and thus we have, for (A\; — A\1)? = E(S2%) = s, that
(11) P(Sx =N) = (1 —s&/(A2 — M) P(Sn = A1)

By adding to (11) the analogous inequality with each X, replaced by —X,, and by choosing
Az = ASm, At = (A — ¥2)s,,, we obtain

12) P(max(| S, -+, |Su|) = Asm) = 2P(|Su| = (A = v2)s,)

which yields by standard argument the needed tightness of the distributions of the W,’s
to obtain the desired convergence in distribution (see the proof of Theorem 10.1 in
Billingsley (1968)).

It remains to prove (9); i.e., to show that

(13) Yn(r) = E(exp(ir S,/Vn)) — exp(—a?r?/2).

For any fixed I =1, 2, -- ., we let m = [n/l] (where [-] denotes the usual greatest integer
function) and note that as n — oo,

(14) [ Yn(r) — Ymi(r) | < | 7| [Var(Sa/Vn — Smi/vml)]"2 — 0.

We next define Y’ = (S;, — S<,~_m)/~/2 for j = 1, ---, m (with S, = 0) so that
Spmi/Nml= (Y: + ... + Y%)/Ym; it then follows from Theorem 1 with X; = Y’ and r; =
r/\/;, that

15) | Ymir) — Wulr/Nm)™| < Yo ¥ 1<jhem (F/m)Cov( Y}, Yh)
= (r2/2)[Var(Sm/vml) — Var(S;/VI)] = (r2/2)(c% — 6})

where o7 = Var(S,/ V1) and we have used in the right hand convergence the fact that o2
— o7 which follows from (7). As in the proof of the standard central limit theorem, we

have that

(16) | ur/Vm))™ ~ exp(~oir*/2)| — 0,

so that by combining (14), (15), and (16), we have for any fixed l,
lim sups_.« | Y(r) — exp(—o2r?/2)|

17
an =< (r?/2)(6? — 0}) + | exp(—07r?/2) — exp(—a’r?/2)|.

Since 67 — 0% as [ — o, this yields (13) as desired and completes the proof of Theorem 3.

REMARK. Assume all the hypotheses of Theorem 3 except (7). Now let K(R) = Cov(X,
X1) + 2 Yocj<r Cov(Xi, X;) and suppose that K(R) — o as R — o but that K is slowly
varying as R — = (see e.g. Section VIII-8 of Feller (1971)). We conjecture that in this case
the conclusions of Theorem 3 remain valid providing the ovn normalization in (8) is
replaced by vK(n) - n.
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