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ON EDGEWORTH EXPANSIONS IN BANACH SPACES!

By F. GOTzZE
University of Cologne

In this paper we define a generalization of Edgeworth expansions for the
expectation of functions of normalized sums of i.i.d. Banach space valued
random vectors. These expansions are valid up to 0(n~*“"?/%) for functions
with 8(s — 2) bounded Fréchet derivatives and random vectors with finite s
absolute moment.

1. Introduction and Notations. Let (2, </, P) denote a probability space and let X;,
i € N denote a sequence of i.i.d. random vectors with values in a separable Banach space
E and distribution @. Assume EX; = 0. Let f: E — R denote a measurable function.
Assume that there exist an E-valued random vector Y with mean zero and Gaussian
distribution ® fulfilling condition (3.3) (which is related to the condition that ® has the
same covariance operator as @, i.e.

fx*(x)y*(x)(Q—Q)(dx)=0 forall x* y*€ E*,

for all x*, y* € E*, where E* denotes the dual space of E). Assume that the symmetric
function

(L1) -l = ff(y +mx + - -+ %) P (dy)Q? (dy)

is defined on 5 € [0, n7"/*)? for some integers ¢ = 3(s — 2)/2, s = 3, and has uniformly
bounded derivatives up to the order 3(s — 2).

Let @, denote the distribution of n™/%(X; + .- + X,). Then we define the formal
Edgeworth expansion of order s — 3 by

(1.2) f fd@n ~ ¥i=8 n™Pi(D,)p (1)|y=o0

where P,(D,) denotes a sum of partial derivatives with respect to n with orders between i
and 3i. In particular, we have
3

14
Po(D,,) = 1, Pl(D,,) = 63_17:1; and

D) =L a* 3 a* ) I
2 ( n) = ﬁ a_'l]f - m) + ﬁm, see (2.2).
For E = R*, this yields the usual Edgeworth expansion, provided that differentiation and
integration (with respect to @ and the Lebesgue measure) can be interchanged.

In this case, the expansion (1.2) is valid up to a remainder term of order 0(n = 2/2) if f
is the indicator function of an interval in R* and @ fulfills Cramér’s condition

(1.3) lim supy | Q(8)] < 1
where @(t) denotes the characteristic function of @ at ¢ € R*. See R. N. Bhattacharya and
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R. Ranga Rao (1976, Corollary 20.5, page 215). A. Bikjalis (1968) proved under the
assumption that @ has an absolutely continuous component (which is stronger than (1.3))
that this assertion even holds for every measurable bounded function f.

On the other hand (1.2) holds up to 0(n~“"?/2), if f has s — 2 derivatives which are
bounded by polynomials. See F. G6tze and C. Hipp (1978).

For a separable Banach space E we prove with Theorem 3.1 that (1.2) holds with an
error 0(rn~“"2/2) if the functions

(14) pilen, o€ My e, mg) = f f(s8) (@ y)Q™ (dx)®™ (dy),

where

s Y) = nT @+ e Xt Yo+ e+ Y

+ € Yn+1+ o0 + €Yn+q
+ MXns1 + oo 0+ NgXnig 29 = 3(s —2),

admit derivatives of sufficiently high order which are uniformly bounded for 0 < i < n,
n € N and ¢, n € [0, n”%]% This condition is fulfilled if f has 3(s — 2) bounded Fréchet
derivatives. See Theorem 3.5. Theorem 3.1 and Theorem 3.5 extend a result of V. I.
Paulauskas (1976, Theorem 4, page 393) who proved a Berry-Esséen bound (i.e. the case
s = 3 in Theorem 3.5).

The expansion (1.2) does not apply directly to the distribution of functionals of i.i.d.
sums in Banach spaces but it yields an expansion for c.f. of the following type

(1.5) fexp(itg[n'l/z(xl + - +x,)])Q" (dx), tER,

where g admits sufficiently many Fréchet derivatives. In F. Gotze (1979) we use the
asymptotic expansion for (1.5), where g is a quadratic form, in order to derive expansions
for the distribution of bivariate von Mises functionals.

2. Notations. Let i, j, %, n, g, r, s denote nonnegative integers and let a, 8, y denote
tuples of nonnegative integers of length ¢ = 3(s — 2)/2. For a g-tuple a = (iy, - - -, i,) let
|a| ;=i + --- + i; and denote by D¢ resp. D¢ the partial derivatives

i & & EX
— et —— TESP. — e —
sen oy 0P Gpi T o

of functions g(e;, -+, €|, +- -, 7¢), sSymmetric in € andn. For reasons of simplicity we
shall write g(e|n) resp. g(e;, e2|n) instead of g(e, O, --+, 0|7, O, -+, 0) resp. g(e, €,
0,::-0]|n,0, ..., 0) etc. Furthermore, we shall use the abbreviation 7 := n~'/? in sections
4 and 5.

Let u, ds, ds, - - -, di denote formal variables. Define the r*" Edgeworth polynomial (with
respect to the moment variables dz, ---, dr2) by means of the formal power series
expansion

(2.2) Yoo Pr(u; do, +++, dri2)t” = exp(ue(2))

where @ (¢) = t*[log(1 + Y% d;j!"'t/) — dst?/2]. See A. Bikjalis (1967), translated (1973,
page 153/5).

Replacing the monomials d; d;, -+ d;, in P.(u; *) by the partial derivatives D{ "%
applied to symmetric functions of the variables 7;, --., )+ we obtain the differential
operator P,(u; D,). (Notice that this correspondence is well defined since the partial
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derivative D ***) of a symmetric function does not depend on the order in the tuple (i1,
«+, ix) so that algebraic identities in the commutable variables d, -, d;, --- imply
identities for the corresponding partial derivatives).
Define P,(D,) := P.(1; D,). Finally, let [ f(x)Q"*(dx), ¢ € N, denote the integral
Ty, « oo, x) Q(dx1) - -+ Q(dxe).

3. Results. The following is the main result.

THEOREM 3.1. Let s = 3. Assume that the functions p(e [n), i=0, ---, n defined in
(1.4) are differentiable such that
3.2) R, :=sup | DYV 9D 4 ei(e, 0, « -+, 0| 9,0, -+, 0)|

exists, where the supremum is taken over 0 < e, n<n "’ withe.n=0,i=0, ---, n and
all integers 0 <j, iy, +++ , iy <ssuchthats<j+ i, + --- + i, < 3(s — 2). Furthermore
assume that

(3.3) D:D2pi(0 | 0) = Deg;(0 | 0)

for a = (iy, g 0=S0R=2,B8=(, -, Jo)h+te=sforl=sk=q0=i=n,|af
+|B|=8(s—2)anda+B:= @1+, -, i, +J,). Then

f fd@, — Y23 n"/zPr(D,,)q)(q_;) < c(s)R.n =272,

7=0

(For the definition of P.(D,), see (1.1) — (1.2) and the notations.)
DEFINITION 3.4. A Banach space E is called of type 2 if there exists a constant d > 0
such that for every m € N and every set of vectors x1, - -+ , x, € E
27 Nttt awm P=da P+ e+ ]2 |P)
where }* denotes summation over the 2" combinations of + and — signs.
See J. Hoffmann-Jgrgensen and G. Pisier (1976). Obviously every Hilbert space is of

type 2 and it is well known that all function spaces of the form L”, 2 < p <  are of type
2.

THEOREM 3.5. Let s = 3. Assume that E is a separable Banach space of type 2.
Furthermore, assume that
(@) m, = E | X |’ is finite and EX = 0.

(ii) The function f: E— R has 3(s — 2) Fréchet derivatives (in the sense of J. Dieudonné
(1969, page 149)) which are uniformly bounded on E with respect to the supremum
norm of multilinear functionals. Then

(3.6) ffdQn =3 n~?P.(D,)p (M)]y=o + 0(n~=6-272)

where 2q = 3(s — 2) and ¢ () is defined as in (1.1) with respect to a limiting Gaussian
distribution ® with the same covariance operator as Q.

REMARK 3.7.
(i) The remainder term in (3.6) can be estimated by
c(s)sup{m{* | D'f (x)|:x E E, s < i < 3(s — 2)} n~ =272,
where || D'f (x)|| denotes the supremum norm of the i-linear functional Df(x).
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(i) For weaker differentiability assumptions and generalizations to the non i.i.d. case see
F. Gotze (1978).

ExampLE 3.8. Let E denote a separable Hilbert space with norm | x| = (x, x)"/2
Assume E || X||* < «. Let ¢, ¢;, 8 denote positive constants. Then we have uniformly in a
€E with|a|<ciandrwithd=r=c;

J' exp(—r || x + a |>)Q. (dx)
(3.9) = x(r)exp(— % (Ba, a)) [1 +n72 f (3(B:a, x)(B:x, x)
- (B,a, x)°)Q (dx) + O(n_l)],
where

x(r) =17, A +2\)7"%  (B.a, a) =2r Fiu (a, er)2(1 + 2rA;) 7!

and {A:; ex}ren denotes the set of eigenvalues and corresponding orthonormal eigenvectors
of the convariance operator of @. The expansion (3.9) can be easily extended up to the
order 0(n~“"2/%) if condition (i) of Theorem 3.5 is fulfilled. The proof of these results is
referred to Section 5.

4. Lemmas. In the following we shall consider the class of functions
Fp = {Dipile | n):i=0, .-+, n}

where @; are defined in (1.4). Furthermore, we shall use the abbreviation (i), (i, j) etc. for
the g-tuples (3,0, - -+, 0), (7, ,0, -+, 0).

LEmMMA 4.1. Let g € %, 4. Then
@) D:g(0 | 0) = 0 if one of the components of a is odd.

(ii) Let ¢; = ()j!27, j € N and ajr = (%, 2(k — j), js, -++, Jg). The numbers
b = ¢j'cil{D¥'g)(0|0), 0 <j < k, are equal.

Proor. (i) This follows from the symmetry of ® with respect to the map x - —x,
x€E.
(ii) Since ® has a stable law of index 2, p® + ¢* = 2, p, ¢ € R implies

(Dz*g)(e, €| 0) — (D2®g)(pe, qe | 0) = 0,0 < e < n™'2
The (2k)™ derivative with respect to € at € = 0 of this identity yields

4.2) Ti-o bj(f)(l - (Y@ -pH*) =0.

Since (4.2) is a polynomial in p? which vanishes identically for 0 < p? < 2 we obtain the
relations

25‘;6 bj+r(k ; r)(—l)j =0, O0=sr=<k-1 and Z§=o b,(f) - b2k =0
which imply part (ii) of Lemma (4.1). As an application of Lemma 4.1 we have
REMARK 4.3. Let g € %

) Theo (DEPg)(0 | (»(f)(—l)f =0
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(i) D#*g(0 | 0) = cic;DZg(0 | 0)
where 2 denotes the (i +j)-tuple (2,2, - - - , 2). Notice that condition (3.3) implies DZg (0| 0)
= Djg(0]0).

LEMMA 4.4. Let p € N, and denote by Bi, 2 < 2i < p, the (i + 1)-tuple (p — 2i, 2,-- -,
2). Let Bo = 0. For g € &, 4 define

R,(D,)g = YA i1'27(p — 2i)!""(-1)‘Dég.
Notice that Ro(D,) = 1 and Ri(D,) = Rs(D,) = 0. Then
| 30 T'Ri(D,)g(0 | 0) — Y5 7°Pi(r% D,)g(0 | 0)|
=< cr'sup{| Dfg(0 | 0): BE {0, --- ,s— 1}, s<|B|=<3(s —3)}

fors=4 (r=n"1?),

PROOF. Assign to each partial derivative DV»**>/” the monomial d;, --- d;, j: € N, in
the formal variables d, - - - , d;. (Compare the remarks following (2.2).) Then R;(D,) can
be defined by means of a formal power series

Y20 t'Rilds, « -+ , div1) = (1 + 3i2s i1 di)exp(—t* d»/2).
The definition (2.2) of the Edgeworth polynomials P;(u; d, -« , di+2), u € R, implies
Y20 t'Rilde, «++ 5 div1) = Y20 E'Pi(t% dy, ++ + , disa).
Define the polynomials P, ;(ds, - - , dir2), 0 <j < i by
Pi(t% dy, +++ , diva) = Ej‘=o tYPij(d, + -+, disa).

Hence
Ri(*) = Yri2j=ij=1 Prj(®), i=1
implies
YIS Pit? Ot + Y54 Ri()E = t* Y jpea, PijC)t e
where

A= {(,J)EN}:i+2j=s50=<iss-3,1=j=<1i)

and s = 4, which proves Lemma 4.4, since P;;(D,) is a sum of partial derivatives of order
i+ 2j,where s<i+2j=<3(s— 3)._Notiqe that we have }7_ (i —2) =i, i =2, k=1,
-, q, for any partial derivative D"~ which occurs in P,(t%; D,).

LEMMA 4.5. Let g := D¢, € % pfor0=m <n — 1. Let r = 3. Then
< c7"sup{|(D}g=)(0 | n7)| + (D& Digm+1)(er | 0)|:

YE{O, -+, r},r<i+|y|=3(r—2),0=<en7=<10=<i=r}.
Proor. By Remark 4.3 we have
&n+1(0 ]| 0) = Yo<or=r—1 T*27R17 T\ (?)(—l)ici_lcj_lDem’ ) gm+1(0 | 0)

= ZOszisk—l Tzi(zi)!_l(—l)i[2052jsr—2i—17'Zj(zj)!_lDe(Zi’ 2j)gm+1(0 I O)]
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By Taylor expansion, the sum over j within the brackets is equal to (D*gy+1)(r|0) +
0(7""%) (use Lemma 4.1(i)). By definition (D*'g,.+1)(7|0) = (D®*g,)(0| 7). Hence.

&m+1(0] 0) = Yozzizr—1 720! (1) (D gn)(0 | 7) + O(7").

Expanding v - (D#*'g,,)(0| Tv), v € R in a Taylor series up to a remainder term of order
0(7") we obtain

8n+1(0] 0) = Y520 7°R,(D,)gn(0 | 0) + 0(7").

An inspection of the various remainder terms and the application of Lemma 4.4 proves
Lemma 4.5.

LEMMA 4.6. Assume that E is a separable Banach space of type 2 (see Definition 3.4).
Assume E| X|? < o. If ® has the same covariance operation @ then

4.7) f w(x, x)(Q — P) (dx) =0
for every continuous bilinear form w: E?2 - R.
ProoF. For (¢, x) € R+ X R let
0 x=t+1
xe(x) yt—x+1 xE [t t+1]
1 X<t

By M. X. Fernique (1970, page 1698) [ || x |"® (dx) exists for every p > 0, especially for p
= 2. Using f w(,*) d@ = [ w(,*) dQ, and |w(x, y)| = ||w]| || x|l | ¥ | we obtain

‘ fw(‘, ) d(Q — (1))! = ’ f w(, I (Fl) d(Q —‘I’)‘
+w ||[ f I % [PLgei=e (@ + @) dx)]-

By the central limit theorem (see J. Hoffmann-Jgrgensen and G. Pisier (1976, Theorem
3.6, page 597)) the first term on the r.h.s. of (4.8) tends to zero for n — . Since the
sequence @, is relatively compact, we can apply a result of A. de Acosta and E. Giné (1979,
Theorem 3.2(3), page 217) with ® = 4(2 + x%) which shows that the second term on the
r.h.s. of (4.8) converges to zero for ¢t — « uniformly in n = 1, thus proving (4.7).

(4.8)

5. Proof of the theorems.

Proof of Theorem 3.1. The proof runs by induction on the length of the expansion.
We shall prove that for 7 = 3, gn(€|n) := Dfpn(eln ) and0=m =n

(5.1) | &n(0 | 0) — X728 7/Pi(m7*:D,)£0(0 | 0)] < ¢ ()7 wpn,n(r)
where wn,.(r) := sup{|(DD}g;)(er|n7)|: e =0,0<i=<r,
YE{0, -+, 1}, r<|y|+i<30r—2),0<en=<1L1j=0,...,m}.
The assertion (5.1) implies Theorem 3.1 withm =n,r=sand 8= (0, ---, 0).
The induction is based on the obvious identity
(5.2) &n(0]0) —£(0]0) = X% (g — &-1)(0] 0).

We start with r = 3. By Lemma 4.5 (with r = 3) the r.h.s. of (5.2) can be estimated by
(5.3) C(3)Tamwm,n(3) = 0(3)7wm,n(3)-
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Assume that (5.1) has been proved for r =3, ... , s — 1. We apply Lemma 4.5 to each term
of the sum (5.2), expanding up to terms of order 0(*). Hence

(5.4) l(gn — g0 — X/ i 7°Pilr?; D,)gj-1)(0 | 0)| < v°mR,,

for 0 < m < n, where the remainder term is the supremum over the remainder terms of
Lemma 4.5. Application of the inductive assumption (5.1) to Pi(% D,)g—1 withm =j — 1,
r=s—1,i=1,yields
| Pi(7% D,)g—1(0 | 0) — Y5207 7#Py(r%; D,)Py(r*(j — 1); D,) (0 | 0)|
(5.5) = 7°7'sup{|(DPDYP;x(D,)gy) (e | n)| 7%y E {0, ---, s — 1},
Il=sk=i,p=0,---,j—1,s—i<|y|+1I=3(—-1—-2),
O0<l=s—-1,0=<en=<r,en=0}.
Since P;(D,) has degree i + 2r, we obtain from (5.4) and (5.5) for0=m =<n
£n(0]0) = (0| 0) + ¥/ T T8 7'Pu(r% D,) 7*Pu(r(j — 1); D,)go(0 | 0) + Rumr®

where |R, | < ctn.(s) and
L (R
Using the relation
exp(Jo(#)) = exp((j — Do (¢))exp(p (¢))
@(t) =log(l + Yirs drk!™'t*) — dot?/2
of formal power series we obtain
Skri=r Pi(?(j = 1); D) Pi(z*; D,) = P(r%; D,)

for j = 1, r = 0. This together with (5.6) implies

&n(0]0) =g(00) + 3721 r" 37 [P,(jr% D,) — PA((j — 1)7%; D,)]&(0 | 0) + 7°mR,

thus concluding the proof of the induction step.

Proor oF THEOREM 3.5. We show that the conditions of Theorem 3.1 are fulfilled. By
Theorem 3.5 in J. Hoffmann-Jgrgensen and G. Pisier (1976, page 596) there exists a mean
zero Gaussian p-measure ® with the same covariance functional as Q. Notice that

ry al’k

X1y ooy Xp) = —— o0e —
’ ’ del! det*

fly+exi+--- + ekxk)|€l=...ek=o

is a multilinear functional bounded by wy+...+r, ()| x1]|™" -+ [|x||™, where w.(f) :=
sup{|| D'f (x)|: x € E}.

Furthermore, we have [ || x||” ® (dx) < c(p)mf’?, p > 0. See F. Gétze (1979, Lemma
3.30).

Hence,

(5.7) [ DE(J],...,jq)D#'l,.-.,i(,)q)i(§ | "_7)| < wr(f)mi, e miqmé'l/2 D m%‘q/z
where
Lt e tig+ji+ oo tjp=r and iy .-, igSs

follows by interchanging differentiation and integration with the help of Lebesgue’s
Theorem of Dominated Convergence and Fubini’s Theorem. Similar arguments together
with Lemma 4.6 prove condition 3.2.
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ProoF oF REMARK 3.7(1). The assertion follows from m; < m*, i < s together with
(6.7) and Theorem (3.1).

Proor oF EXAMPLE 3.8. The functions f,.(x) := exp(—r| x + a|®) fulfill the condition
(ii) of Theorem 3.5 uniformly in r and a, for every s = 3. It remains to show that

j exp(—r || x + a [P)® (dx) = x‘(r)exp(—% (B.a, a)).

This relation follows from the corresponding formula for the sequence of subspaces Re;
+ .-« + Rer C E, k € N, see G. V. Martinov (1975, page 790, (18)) and the Theorem of
Monotone Convergence.
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