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THE SPECTRAL DECOMPOSITION OF A DIFFUSION HITTING
TIME

By JouN T. KENT

University of Leeds

All first hitting times for a one-dimensional diffusion belong to the
Bondesson class of infinitely divisible distributions on [0, «]. A distribution
in this class can be conveniently represented in terms of its canonical measure.
In this paper we establish a link between the canonical measure of a hitting
time and the spectral measure of the differential generator of the diffusion. In
particular, it is shown that the derivative of the canonical measure with
respect to natural scale (as a function of the point being hit) equals the
spectral measure of the differential generator on a restricted interval. The
canonical measure is then calculated for several examples arising from the
Bessel diffusion process, including the inverse of a gamma variate and the
Hartman-Watson mixing distribution.

1. Introduction. Consider a nonsingular diffusion on an interval [ro, r1] and let 7as
denote the first time the diffusion hits b starting at a, ro < a < b < r;. In Kent (1980) and
Bondesson (1981) it was shown that 7, lies in the Bondesson class of infinitely divisible
distributions on [0, «]. Properties of this class of distributions are described in Section 2.
In particular, it follows that associated with 7, is a canonical measure Q.s(do) on (0, )
which can be used to give an integral representation for the moment generating function
(m.g.f.) of 745. The precise form of the measure Q.:(do) is derived in Section 3.

There is also an infinitesimal version of a hitting time distribution as a 1 b and we shall
denote the canonical measure corresponding to this limiting distribution by Qs(do). It turns
out (see Section 4) that ©,(do) is related to Q.s(do) by

3Qqs(da)/ds(b) = Qp(do)

where s(-) is the natural scale of the diffusion.

The canonical measure £(do) is important because it also plays a role in the spectral
theory associated with the diffusion. The following theorem forms the core of this paper
and is proved in Section 5.

THEOREM 1.1. The canonical measure Q(do) can be identified with a spectral
measure corresponding to the differential generator of the diffusion on the interval up
to b, with a Dirichlet boundary condition at b. 0

Recall that a complete description of a spectral measure depends upon a choice of
normalization for the eigenfunctions. To make the above theorem valid we choose the
eigenfunctions to have constant derivative at b (see Section 5). The above theorem
provides a “probabilistic motivation” for this normalization. Moreover, since the support
of a spectral measure does not depend on the normalization, there really is a significant
connection between probability theory and spectral theory here (although there seems to
be no simple intuitive way to “explain” this connection).

The important special cases of discrete and continuous spectral measures are covered
in Sections 6-7. Sections 8-10 describe some bounds on the magnitude of diffusion hitting
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208 JOHN T. KENT

time densities near ¢ = 0, the effect on the canonical measure from augmenting the killing
measure, and some implications for the spectral measure when the hitting times lie in the
Thorin class of distributions. Consideration of only those diffusion hitting times which are
finite with probability one can be achieved by a conditioning argument (Section 11). More
general additive functionals up to hitting times can be analyzed by means of time changes
(Section 12).

Two examples based on the Bessel diffusion process are examined in Sections 13-14. In
particular it is shown that the Hartman-Watson mixing distribution can be given a
meaningful probabilistic interpretation as a diffusion hitting time.

2. The Bondesson class of distributions. An important class of infinitely divisible
distributions on [0, »] was introduced by Bondesson (1981) who used the somewhat
awkward name generalized convolutions of mixtures of exponential distributions. We
shall use the term Bondesson class and the following characterization is central to our

purposes.

DEFINITION 2.1. Say that a distribution function F(¢) on [0, ] comes from the
Bondesson class if its moment generating function (m.g.f.) G(\) = f[o.-) eMF(d¢), A <0, can
be analytically continued to the cut complex plane C\[0, ») and given the representation

(o% _ l) Q(do)}, A€ C\[0, »),

(2.1) G) = exp{—a + o\ + j
Ao

(0,0)

where a = 0, § = 0 and @(do) is a non-negative measure on (0, ) satisfying
(2.2) J’ o7'Q(do) < J’ 072Q(do) < .
(0,1) [1,00)

(For simplicity, we exclude the trivial distribution concentrated at «.) Further, we shall
call a, § and @Q(do) the deficiency, infimum and canonical measure, respectively, of the
distribution.

The deficiency and infimum are so named because

e = F(x —), 8 = sup{t: F(t) = 0}.

They and the canonical measure can be found by the inversion formulae

(2.3) e = G(0-), 8 = limy;—»{log G(\)}/A,

and

(2.4) Qo) = f Q(dp) = 7—17 lim,,wJ‘ arg G(p + iy) dp
0 ()

at continuity points ¢ of @(o).

It is easy to see any function G(A) of the form (2.1) is an m.g.f. of a distribution on
[0, ], so that every function of the form (2.1) is the m.g.f. of a distribution from the
Bondesson class. Further, it is clear that if G1(\) and Gz()\) are m.g.f.’s from the Bondesson
class, so are G1(A\)Gz(\) and G1(A\)°, where ¢ > 0. The Bondesson class is also closed under
weak limits as the following “continuity” theorem shows.

THEOREM 2.1. (Bondesson, 1981) Let F,,n=1,2, ..., be a sequence of distributions
in the Bondesson class with m.g.f.’s G,(\).

(i) If F, converges weakly to a distribution function F with m.g.f. G(\), then F lies in
the Bondesson class and Gn.(A\) = G(A) for all A € C\[0, ).

(ii)) If for some function G(\), G.(A) = G(A) for A\ € A where A is a set of points in
C\[0, =) containing a cluster point, then G(\) can be analytically continued to C\[0, ©)
as the m.g.f. of a distribution function F in the Bondesson class, and F, converges weakly
toF. '
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(iii) If (i) (or equivalently (ii)) holds, then in an obvious notation
Q(do) = limn—»an(do)

0_2Q,,(d0)}, a = limK—>0 liInn—»oo{an + f U_IQn(dO)}.

o=K

8 = limK—»oo limn—»eo{sn + f

o=K

REMARKs. (1) Part (iii) of the above theorem says that the deficiencies and canonical

measures behave “continuously” as n — . Further, if the canonical measures can be
uniformly bounded, @.(do) =< P(do), for some measure P(do) satisfying the regularity
conditions (2.2), then the deficiencies and infima also behave “continuously.”
(2) The convergence of canonical measures in the above theorem is also “weak conver-
gence;” that is, @.(do) - Q(ds) means Q.(s) — Q(o) at all continuity points ¢ of Q(o).
With this notion of convergence it is also possible to consider the continuity or even
differentiability of a collection of canonical measures {Q.(ds)} with respect to a real-
valued parameter x.

3. Diffusion hitting times. A diffusion with possible killing on an interval [ro, 1] can
be described in terms of a generalized second order differential operator A. Alternatively,
the diffusion can be described in terms of its speed measure m(dx), natural scale s(dx)
and killing measure k(dx). (For background information on diffusions, see for example Ito
and McKean (1965) or Mandl (1968).)

There are four types of boundary for a diffuson: natural, exit, entrance and regular;
and regular boundaries subdivide into absorbing and reflecting. In the case of a regular
reflecting boundary r;, we must also assign speed and killing measure to the boundary
point, 0 < m{r;}, k{r;} < «. We shall adopt the convention that m{r;} = k{r;} = 0 for all
other types of boundary.

To facilitate discussion of right- and left-hand derivatives with respect to natural scale
on (ro, r1), we shall adopt throughout the paper the notation

frx) =d*f(x)/ds(x), [~ (x) =d f(x)/ds(x), ro<x<r

when these limits exist. Interpret such functions and their derivatives at boundary points
by

fir) =lime,, f(x),  f7(r) =lim.. f*(x), [ (r)=lim..f (x).

Also associated with the diffusion are boundary conditions B, and B, at ro and r;. For
suitable functions f(x), the boundary condition at r, takes the form By( f) = 0, where Bo(f)
= f(ro) for natural, absorbing regular and exit boundaries; Bo(f) = f*(ro) for an entrance
boundary; and Bo(f) = f*(ro) — [k{re} — Am{ro}1f(ro) for a regular reflecting boundary.

Note that the description of the diffusion is unaltered if the speed measure, natural
scale and killing measure are rescaled by

3.1) m(dx) — cm(dx), s(dx) — ¢ ls(dx), k(dx) — ck(dx)

where ¢ > 0.

Let 7o, denote the first time the diffusion hits b, starting at a. Denote its m.g.f. by
Gas(A\) = E{exp(ATap)}. To find Gos(M), where ro < a < b < r; and A < 0, it is sufficient to
solve the generalized differential equation

(3.2) AYy+ N =0
together with the boundary condition
(3.3) Bo(y) =0

for a continuous function y(x) = y(x, A), which is not identically zero. Then

(3.4) Gar(N) = Y(a, N)/Y(b, A).
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Equation (3.2) can also be written in the equivalent integral form

(3.5) vix) —yF(y) = f Y(w) {k(dw) — Am(dw)} re<y<x<r.

(3]
From (3.5) we see that ¢ *(x) ((x)) is right- (left-) continuous in x and that
(3.6) Y (x) — Y7 (x) = Y(x)[R{x} — Am{x}], ro<x<r;.

In particular, if Y(x) = 0 or if x is not an atom of the speed or killing measure, then y*(x)

=y (x).
Since for A < 0, y satisfies the boundary condition (3.3), we can let y | ro in (3.5) to get

(3.7) YH(x) — T (ro) = Y(w) {k(dw) — Am(dw)}, ro<x<r;,A<O0.

(ro,x]

Note here that ¢*(ro) = ¢~ {ro).

In Kent (1980) it was shown that G,(A) lies in the Bondesson class. Thus G,»(\) can be
analytically continued as an analytic nonzero function of A € C\[0, ). Now for A < 0,
Y(x, A) is determined by (3.2)-(3.3) only up to multiplication by an arbitrary nonzero
function of A. Hence without loss of generality, we may suppose that for each x € (ro, 1),

(3.8) Y(x, ) is an analytic nonzero function of A € C\[0, =),
(3.9) : Y(x, A) is real-valued and positive for A < 0,

and

(3.10) Y(x, 0—) € (0, ).

(Further, an analytic continuation argument in (3.5) shows that any function which
satisfies (3.2) for A < 0 and (3.8)-(3.10) for A € C\[0, ) must in fact satisfy (3.2) for all
_A € C\[0, ), including the limiting case A 1 0.)
We shall suppose throughout the paper that any solution y(x, A) of (3.2)-(3.3) for
A <0 is also chosen to satisfy (3.8)-(3.10). Then arg ¢ = Im log ¢ is well-defined (with arg
Y(x, A) = 0 for A < 0) and the inversion formula (2.4) for the canonical measure Q.s(do) of
Tap takes the form

1 o
(3.11) Qas(0) = p lim, o f [arg ¥(a, p + in) — arg Y(b, p + in)] dp
)

at continuity points ¢ of @.s(-). Further 7., has infimum & = 0 because P(74 < &) > 0 for
all £ > 0 (Ito and McKean, 1965, page 157), and the deficiency is given by e ™ = {(a, 0—)/

‘P( b) 0_)~

4. Infinitesimal hitting times. By letting ¢ 1 b in 7., and scaling appropriately, we
can obtain further distributions in the Bondesson class. Define*
HEQ) = limeys exp{[s() — s(c)]"'[log y(c) — log (b)]}
(4.1) - ’
= exp{—y7 (b, M) /¥(b,A)}

to be the m.g.f. of the left-infinitesimal left-hitting time at b. It roughly represents the
distribution of time taken to move from b — 0 to b, convoluted with itself infinitely often.
Similarly, we can define the right-infinitesimal left-hitting time at b by

(4.2) HEN) = exp{—y™ (5, N)/¥(b, M)},

to describe the time taken to move from b to b + 0.
Both of these infinitesimal hitting times are termed left-hitting times because the
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relevant boundary condition is at the left-hand endpoint ro. Note that although these
infinitesimal hitting times describe well-defined distributions on [0, =], they have no
meaning in terms of the sample paths of the diffusion. (However, see Section 15.)

By Theorem 2.1, it follows that Hf(\) and HE(\) are m.g.f.’s from the Bondesson class.
From (3.6) we see that the deficiencies and infima are related by

(4.3) af =ak + k{x}, O6F=06F+m{x},

in accordance with our intuition about the effect of speed and killing measure, and further,

HE(\) and HE (M) have the same canonical measure, which we shall denoted by Q,(do). (In

fact, if b is not an atom of the speed or killing measure, H5(A\) andHE(\) are identical.)
From (2.3), (3.6) and (3.7), it is not difficult to show that for all types of boundary

8 =0,

thus simplifying (4.3). Further, the inversion formula for the canonical measure Q:(do)
takes the form

(4.4) (o) = 7—17 limuoj — Im[y~(b, p + in) /¥ (b, p + in)] dp
0

at continuity points ¢ of Q,(0).

Theorem 2.1 (iii) applied to (4.1) and (4.2) respectively shows that Q,(do) = 3~ Q.»(da)/
3s(b) = 3" Qus(do)/ds(b) for all ry < a < b < ry. Further, since H¥(\) (HE(\)) is left-
(right-) continuous in b, so is £s(do). Putting these one-sided pieces together yields the
following result.

THEOREM 4.1. The m.g.f’s HE(\) and HE(N) (for the left- and right-infinitesimal left-
hitting times, respectively) have the same canonical measure Qy(do), which is related to

Qab (dd) by
. (4.5) 3Qqs(d0)/3s(b) = Qy(do),

or in integral form,

b
(4.6) Qap(do) = f Q.(do)s(dx).

Further, Q(do) is continuous in b.

In the next section we shall show that the canonical measure Q2s(do) can be identified

with an appropriate spectral measure.
Note that if we are dealing with right-hitting times instead of left-hitting times, then
certain obvious changes must be made to the formulae given here.

5. Eigenfunction expansions. Consider the differential operator A on the restricted
interval [ro, b], ro < b < r1. Let ¢(x, A) be the solution of (3.2) on (ro, b] which at b satisifies
the Dirichlet boundary condition

(5.1) o(b,A) =0,
and the initial condition
(5.2) ¢ (b,A\) =1

For existence of ¢(x, A), see Theorem 4.1 in Kent (1980), and in particular note that
¢(x, A) is an entire function of A for each fixed x € (ro, b] (including x = ry if r¢ is regular).
In the context of the following theorem, the canonical measure Qy(de) can also be
interpreted as a spectral measure for the differential operator A on the interval (ro, b],
with the diffusion boundary condition B, at r, and a Dirichlet boundary condition at b.
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THEOREM 5.1. There is a Hilbert space isomorphism ®:L*([ro, b), m(dx)) —
L*((0, ), 24(do)) given by

@f(0) = fx)¢(x, 0)m(dx), f € L*([ro, b), m(dx))

[r0,0)

00

D 'g(x) = f £(0)o(x, 0)Qw(do), & € L*((0, »), 2(do)).
0

All functions expressed as improper integrals are to be interpreted as limits in L? of
proper integrals.

ProoOF. See, for example, Titchmarsh (1962, page 51 and also Chapter 6), whose
arguments can be adapted to the present setting with little change. In particular, the
canonical measure Q;(-) in (4.4) can be identified with the spectral measure 7= 'k(-) in
Titchmarsh (1962, page 54, Equation (3.3.1)).

REMARKS. (1) Use of this theorem gives the eigenfunction expansion
flx) = @74(®@(f)), f€ L*([ro, b), m(dx)),

of f(x) in terms of the initial value solutions ¢(x, o) as o varies through the support of
Qs (do) \which is called the spectrum).

(2) If the spectrum is discrete, then the eigenfunction expansion for f(x) becomes a
series in terms of orthogonal functions. In particular, if Ao is an atom of the spectrum,

(5.3) f 6%(x, Apm(dx) = [ AT
[re,0)

(3) The classification of ry, as a limit-point or limit-circle type of boundary can be
.made (Elliott, 1955) but is irrelevant for our purposes.

(4) Eigenfunction expansions based on Theorem 5.1 can be used to express the
probability transition density of the diffusion on [ro, 1] (see Ito and McKean, 1965, pages
149-161).

(5) A change in the initial condition (5.2) would change the normalization of the
eigenfunctions and hence would lead to a different definition of the spectral measure. The
present normalization has been chosen in order to identify the spectral measure with the
canonical measure Qs(-) for the infinitesimal hitting times. However, note that if the
natural scale is rescaled by a constant factor ¢ in (3.1), then both the canonical measure
and spectral measure are altered by the same constant factor so that the identification
between the two remains unchanged.

(6) If bis given a reflecting regular boundary condition, then an expansion analogous
to Theorem 5.1 can be constructed in terms of the appropriate initial value solution.
However, it is not possible to identify the spectral measure with the canonical measure
Q:(do) in this case. '

6. Discrete spectrum. Suppose that Y(x, A) can be chosen so that

(a) for all x € (ro, r1) Y(x, A) is an entire function of A, real-valued for A < 0, and
(b) if Y(x0, Ao) = 0 then Yy~ (xo, Ao) # 0.

This setting includes all diffusion hitting times for which r, is not a natural boundary, in
which case we can take y(x, A\) = u(x, A), the initial value solution at r, given in Theorem
4.1 of Kent (1980).

In general note that (b) prohibits removable zeros because y(xo, Ao) = 0, ¥~ (%0, Ao) = 0
is equivalent to y(x, A¢) = O for all x. Hence ¢ can have no zeros for A € C\[0, ») because
for all ro < a < b < r1, Y(a, A)/Y(b, A) has no zeros or poles for these values of A. Further,
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there cannot be a zero at A = 0 because limyjo{y/(a, A)/¥(b, )} € (0, 1] forall o< a< b
<r.

Then the zeros of y(x, -) are simple and positive, and can be arranged in an infinite
sequence increasing to ©, 0 < Az < Ay < - -. (Adapt the argument in Titchmarsh, 1962,
pages 53-54 to show the zeros are simple.) Clearly, lim,, arg y(x, o + in) is constant for o
real, except at the points o = Ax., where there is a jump of —=. Thus the canonical measure
has a density Q.:(0) = g.s(0) do given by

(6.1) qas(0) = Ti-1 I[o > Aes] — Ti=1 I[0 > Ap]

where I[ -] is an indicator function. As in Theorem 5.1 of Kent (1980) we see that 7. can
be expressed as an infinite convolution of elementary mixtures of exponential distribu-
tions.

If ro is not natural, then Y Az} < to, but this condition need not be satisfied if ro is
natural. (For an example, see Titchmarsh, 1962, pages 90-91, 144-145.)

Integrating (6.1) with respect to o, and comparing with (4.5), (4.4) and (5.3) shows that
Qs (do) is discrete, with mass at A, given by

—0Arp/8(B) = Y7 (b, Aws) /' (B, Ars)

-1
= {f ¢2(x, }\k,;,)m(dx)} .
[re,0)

Here the prime denotes differentiation with respect to A and ¥*(x, Axs) = ¥ (x, Ars) at
x =b.

7. Continuous spectrum. Suppose y(x, A), satisfying (3.8)-(3.10), can be chosen in
such a way that it can be extended as a continuous nonzero function of x € (ro, 1) and A
to the upper side of the cut A = 0 as Im A | 0. Let A = 0 denote a point on the upper side

of the cut.
Then arg ¢(x, A) is defined for A = 0 and (3.11) takes the simple form

T (7.1) gas(0) = arg Y(a, o) — arg Y(b, o), 0<o< o,

where Qas(0) = gas(0) do. Further gas(0) is jointly continuous in (e, b, 6) and g.s(0) = 0.

It is easily checked that y(x, A) satisfies (3.5) throughout the region Im A = 0. In
particular ¢ * (x, ) (" (x, A)) exists and is jointly right- (left-) continuous in x and continuous
in A in the region x € (ro, r1), Im A = 0. Thus, Qs(do) has a density (25(do) = ws(0) do) and
(1.1) can be written in density form

0qa6(0)/3s(b) = wy(0).
Further, w; (o) is jointly continuous in b and ¢, and w;(0) = 0.
8. Properties of diffusion hitting times near ¢ = 0, It is important to note that
the class of diffusion hitting times does not consist of the whole Bondesson class because

diffusion hitting times have an exponentially small probability of being small. Ray’s
estimate (Ito and McKean, 1965, page 134) tells us that for alln = 1,

(81) limuo t'_nP(Tab < t) =0.

In the case of a diffusion generated by a classical differential operator, this estimate can
be strengthened. Suppose
(8.2) A = a(x) d?/dx® + B(x) d/dx + y(x)

where a(x) > 0 is continuously differentiable, and where 8(x) and y(x) <0 are continuous
on (ro, 1). Transform the x-axis so that a(x) = 1/2, and suppose we wish to find the m.g.f.
Gab(A) of 745 Where ro < a < b < r,. Suppose | 8(x) | =M and —y(x) = N,fora*<x=<bd
where ry < a* < a. Then by comparing this diffusion with the two Brownian motions
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governed by
A, = (1/2) d*/dx* + M d/dx
reflected at a*, and by
Ay = (1/2) d*/dx* — M d/dx —N
absorbed at a*, respectively, it is not difficult to check that

(8.3) limy;—w{log Gas(A\)}/{—=(=2N\)"?} = b — a,
which implies
(8.4) im0 {exp(d/t) P(7o <)} =0, 0<d<1/2(b—a)

However, limits of diffusion hitting times need not satisfy thiese bounds. For example,
the exponential distribution, which is too large near 0 for (8.1) to hold, can arise as a limit
(Mandl, 1968, pages 102-106). On the other hand, the m.gf. G(A) = I_;»x(a)/I(a) of
Section 13 has asymptotic behaviour log G(A) ~ —1/2(—A) "2 log(—A), so G(A) tends to 0
more quickly than (8.3) as A | —oo.

A concrete description of the closure of the class of diffusion hitting times remains an
open question.

9. Shift of spectrum. Suppose the killing measure % (dx) is augmented by a constant
multiple of the speed measure, k(dx) — k(dx) + ¢ m(dx). In (8.2) this transformation
takes the form y(x) — y(x) —c.

The effect of this transformation is clear from (3.2). If G5 (A) denotes the hitting time
m.g.f. for the transformed diffusion then G5 (A) = G5 (A — ¢). Thus, the canonical and
spectral measures are shifted to the right by an amount c,

QR (0) = Qu(o—c),  QF (6) =Qs(o — ).

The deficiency a of course increases with ¢, but the infimum remains unchanged.

10. The Thorin class of distributions. The class of Thorin distributions or gener-
alized gamma convolutions was introduced by Thorin (1977). This class consists of all
distributions in the Bondesson class for which the canonical measure has a density, @ (do)
= q (o) do, such that g (o) is a nondecreasing function of ¢. Differentiating the logarithm
of (2.1) leads to the representation

(10.1) G'(A)/G(A) =8+ j (0— X)_l(I(dO)

(0,0)

(see Bondesson, 1981, pages 48-49).

The Thorin class is closed under convolutions, raising the m.g.f. to positive powers, and
weak limits. Thus, we see from Section 4 that 7., lies in the Thorin class for all ro < a
< b < ry if and only if the infinitesimal left-hitting times at b lie in the Thorin class for
allro<b<r. )

In particular, in the case of a discrete spectrum (Section 6), 7, will not lie in the Thorin
class except possibly at special values of a and b, or perhaps in limiting cases.

11. Conditional diffusions. The diffusion models of Section 3 allow a diffusion
hitting time to equal c with positive probability. If this feature is undesirable it can be
removed by conditioning the hitting times 74, 70 < @ < b < ry, to be finite with probability
one. The resulting process is again a diffusion and its hitting times 7%, satisfy P(7%; <
o) =1, r0<a<b<r;. The mgf. of 7%, is given by

Gi(A) = Gap(A)/Gas(0 =), rn<a<b<r,

so that the distribution of 7%, equals that of 745 | 7as < 00.
Let y(x, A) denote the solution of (3.2)-(3.3). Then the speed measure, natural scale
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and killing measure of the new process are given by
m*(dx) = ¢ (x, 0—)%m (dx), s*(dx) =y (x, 0-)2s(dx), k*(dx)=0.
In terms of the classical differential operator (8.2), the new coefficients are given by
a*(x) = a(x), B*(x)=PB(x)+2a(x)d/dxlogy(x,0-), y*(x)=0.

The type of boundary behaviour can change at both r, and r; but no ambiguity can
arise (except possibly what to do if the diffusion ever reaches r).

12. Time changes. Let X (¢), t = 0, denote a sample path of the diffusion in Section
3. Consider the additive functional up to the hitting time 7,5 defined by

(12.1) T=fa g(X(¢)) dt,
0

where X(0) = a and where g(x) is a given function of x. The hitting time itself can be
included in this framework by choosing g(x) = 1, so that 7,, = T. More general choices for
£(x) can be studied by introducing a random time change into the diffusion (Ito and

McKean, 1965, Chapter 5).
To keep the discussion simple, suppose that the diffusion satisfies

(a) Plras<m) =1 forall ro<a<b<r.

Note (a) implies that (but is not implied by) the vanishing of the killing measure, % (dx)
= 0. Also suppose that g(x) satisfies

(b) 0<fbg(x)m(dx) <o for all ry<a < b <r; (including a = ry if ro is reflecting
regular).
Under conditions (a) and (b) the following result holds.

THEOREM 12.1. For all ro < a < b < r; the additive functional T in (12.1) has the
same distribution as the hitting time 7., for a new diffusion defined by

(12.2) m(dx) = g(x)m(dx), §(dx) = s(dx), E(dx) = k(dx)= 0.

No ambiguity about the boundary behaviour at ro can arise for this new diffusion. For
the classical differential operator (8.2), the new coefficients are defined by

a(x) =g(x)la(x), PBx)=gx)B(x), T(x)=y(x)=0.
In particular, the distribution of T lies in the Bondesson class.

13. Example 1. The Hartman-Watson distribution. Consider the diffusion on
(0, ) generated by

(13.1) A, =1/2{x%d?*/dx* + xd/dx — x* — v}
where » = 0 is a parameter. It is easily checked that both boundaries are natural and that

the appropriate solutions of (3.2) (which is just Bessel’s modified differential equation)
lead to the following m.g.f.’s for the first hitting times:

(13.2) Gar(A) = L, (a)/I,(b), O<a<b<wm,
(13.3) Ga(A) = K, (a)/K,(b), w>a>b>0,
where

p=(r—2\)"2

Note that since arg A € (0, 27), we can take arg(v — 2\) € (-, 7), so arg p € (—n/2, w/2).
Here and elsewhere facts about the Bessel functions I,(z), K,(z), J,(2), Y,(2) are taken
from Abramowitz and Stegun (1972). Normalizing these distributions to be finite with
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probability one and letting the right-hand point tend to o yields the distributions in the
Bondesson class with m.g.f.’s.

(13.4) I,(a)/1,(a),
(13.5) K,(b)/K,()).

We wish to determine the canonical measures for these distributions. Note that by Remark
(1) after Theorem 2.1, (13.4) and (13.5) have infima equal to 0.

We start with (18.4) with » = 0 so that u = —i(2A)"2. First, since (13.4) is the m.g.f. of
a Bondesson distribution, I,,(x) is nonzero for arg A € (0, 27). Secondly, note that I5(x)
= I,(x) since for x > 0, I,(x) is an entire function of p, real-valued for p real. Hence for
arg A = 0 (that is, 4 imaginary), we have the relationship

K,.(x) = (1/2)w[I.(x) — I_,(x)]/[i sinh 7 (2A)"?]
= 7 Im[1,(x)]/[sinh 7(2A)"/?]

(Abramowitz and Stegun, 1972, page 375).

Now I,(x) and K,(x) cannot both vanish together because they have nonvanishing
Wronskian; thus the above formula shows that I,,(x) is in fact also nonzero for arg A = 0.
Therefore, Y (x,A) = I,.(x) satisfies the assumption of Section 7, and the methods described
there can be used to find the canonical measures for (13.2) and (13.4).

On the other hand, K, (x) is an even function of p so that (for general » = 0) K,(x) is an
entire function of A. It is not difficult to check that y (x,A) = K, (x) satisfies the assumptions
of Section 6, and hence the methods described there can be used to find the canonical
measures of (13.3) and (13.5). In particular, (13.5) can be written in the form
II%-1 (1 = A/Ax,5) 7" This is the m.g.f. of an infinite convolution of exponential densities.

Note that the canonical measures for the hitting times of A, are related to those of A,
by a shift, as described in Section 9.

The infinite divisibility of (13.2)-(13.5) was first proved in Hartman (1976) using
arguments similar to those involving diffusion hitting times. The distribution with m.g.f.
(13.4) is known as the Hartman- Watson mixing distribution.

The importance of the Hartman-Watson distribution is due to the following result
(Hartman and Watson, 1974). Let £, denote the unit sphere in R?, ¢ = 2, and let Bo(?),
t = 0, be a standard Brownian motion on @, started at some e € Q,. If T is a random
variable with distribution (13.4) independent of B(t), then

(13.6) By(T) ~ M(a, e)

where M (a, e) denotes the von Mises-Fisher distribution of concentration parameter a
and mean direction e. If for fixed ¢ we call Bo(t) the spherical normal distribution of
“variance” t and mean direction e, then (11.6) shows that the von Mises-Fisher distribution
can be obtained as a “variance” mixture of spherical normals. The infinite divisibility of
the Hartman-Watson distribution is important because it implies the infinite divisibility of
the von Mises-Fisher distribution (see Kent, 1977, 1981).

An appealing model in which the representation (13.6) arises naturally has been given
in Pitman and Yor (1981). Their model is closely related to the diffusion (13.1) and is
probabilistically satisfying because the infinite divisibility of (13.4) follows directly from
their construction. Here is their model.

Let B(t), t = 0, be a standard Brownian motion RY, g = 2, started at the origin with
constant drift vector e(€ £,). Split B(¢) into its radial component R(¢) = || B(¢) || and
angular component © (¢) = B(¢)/R (t). Then the following properties hold.

(a) If 60, denotes the first time B(¢) hits the circle of radius a, then O (6¢,) has a von
Mises-Fisher distribution (see, for example, Kent (1978) Theorem 4.1).

(b) R(¢), t =0, is itself a diffusion (a surprising result!) called the Bessel process of
parameter v = (q — 2)/2 and drift 1, with generator

(13.7) A* = (1/2) d®/dr® + {(2v + 1)/2r + I,.1(r)/L.(r)} d/dr.
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(¢) The reversed process uB(1/u), u = 0, is also a Brownian motion (started at e
without any drift). Hence the distribution of © (¢) given R (s), t < s < o, is spherical normal
with mean direction e and ‘“variance”

1/t 0
(13.8) j {uR(1/u)} 2du= f R(s)?ds=T, say.
0 t

The fixed time ¢ can be replaced by any random time which depends only on the radial
process.

If we insert o, for ¢ in (13.8), we see from (a) and (c) that © (c¢.) can be given the
representation (13.6). Using (b) note that oo, is the same as the hitting time 7%, for the
process (13.7), so that the distribution of 7 can also be described by

*

(13.9) T=f X(s)‘zds=limb1wf X(s)2ds
0 0

where X (s) follows the diffusion (13.7) started at a. To find the distribution of T we can
use a time change and a conditioning argument. (Pitman and Yor use a different argument.)
Since P(1%, < ®) =1, a < b < o, and since P (7% = ) = 1 for the diffusion (13.7), we can
make the time substitution given in Section 12 with g(x) = x~2, and describe T as the
hitting time T = 7% for the diffusion generated by

(13.10) A** = (1/2)x*d?/dx® + {(1/2)x(2v + 1) + x°L,41(x)/1,(x)} d/dx.

Now by Section 11, (13.10) is obtained from (13.1) by conditioning the left-hitting times of
(13.1) to be finite with probability 1. Hence, as we have already calculated, T' =72% has
m.g.f. given by (13.4). Since T has been expressed as a diffusion hitting time its infinite
divisibility follows immediately.

Finally, we remark that the Pitman-Yor construction can be carried out for non-integer
values of ¢ = 2 by using the Brownian motion-Bessel process described in Kent (1978,
Section 4). However, for 1 < g < 2 this approach breaks down, in part because the integral
in (13.9) now diverges with positive probability. It is not clear whether any aspects of the
representation (13.6) can be salvaged in this case.

14. Example 2. The Bessel process. Consider now the Bessel process on [0, «)
(without drift) with generator

(14.1) A, = (1/2)[d?/dx® + {(2v + 1)/x} d/dx]

where v is a real-valued parameter. The left-hitting times were studied in Kent (1978,
1980), and here we shall look at right-hitting timest{}, where welet 0 <b < a < wif v =
0,and 0 = b < a < w if » < 0. Note that r;, = « is natural for all ».

The m.g.f. GY (A\) was given (as a Laplace transform) in Kent (1978). Note that for »
> 0, 7% and 7$5” have the same canonical measure but different deficiencies (e™ =
(b/a)* and e~ = 1, respectively).

Starting first with 75”, » > 0, it is easily checked that the canonical measure has a
continuous density '

(14.2) 95" (0) = g.(a{20}"), 0<o<oo,
where
(14.3) &,(z) = — (1/m) arctan {J,(2)/Y.(2)},

and the branch of arctan is chosen so that g,(z) — 0 as z | 0.
Thus, for general 7%} we have

(14.4) qu(o) =g|v|(a{2a}1/2) _glvl(b{20}l/2)’ 0<0<°°
(including » = 0 by Theorem 2.1).
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Differentiating (14.3) gives gi(2) = 2/{n222M?2(2)}, where M%(z) = M2,(z) = J2(z) +
Y%(z) > 0 for z > 0, » real. Then the canonical measure for the infinitesimal right-hitting
times at a, obtained by differentiating (14.4) with respect to the natural scale s(da) =
((1/2) @) ~®*Y is given by

(14.5) w? (o) = 2((1/2) a)**/wa M (a{20}"?), 0<o<om,

forall vand 0 < a < o.

Let » > 0. Since g/(z) > 0, (14.2) is an increasing function of o; hence 75"’ is a Thorin
distribution. In fact, 1/r%" has a gamma distribution, and in this situation the represen-
tation formula (10.1) is known as Grosswald’s formula (Grosswald, 1976; Ismail, 1977). A
limiting argument shows that Grosswald’s formula is also valid for » = 0, but there is no
direct probabilistic interpretation in this case.

The distribution of 75" for » > 0 was earlier obtained by Hammersley (1961, page 18)
as an additive functional of Brownian motion up to a first hitting time. By the time change
argument of Section 12, Hammersley’s result is equivalent to looking the first hitting time
to O for the Bessel process.

To obtain further results, note that Nicholson’s formula (Watson, 1944, page 446)
implies that M2(z) is a decreasing function of z > 0, for » real. Hence (14.5) is an increasing
function of o. Therefore, all of the infinitesimal right-hitting times (and by Section 10, all
of the right-hitting times) are Thorin distributions. This last result was derived in
conversation with Lennart Bondesson (see Bondesson, 1981), and extends the earlier work
of Ismail and Kelker (1979) and Kent (1978) where just infinite divisibility is shown.

Finally, consider thé diffusion modified as in Section 9, generated by A, — ¢ (¢ = 0),
with hitting times 7%, and in particular consider %", where » > 0. This distribution,
normalized to be finite with probability one, is a Thorin distribution lying in a subclass of
the generalized inverse Gaussian distributions. Its infinite divisibility was established in
Barndorff-Neilsen et al. (1978) using the diffusion obtained from A, — ¢ by the conditioning
arguments of Section 11. It was first shown to lie in the Thorin class by Bondesson (1979)
and Halgreen (1979).

15. Connection with other work. Since this paper was completed J. Pitman
(personal communication) has pointed out that the infinitesimal hitting time distributions
of Section 4 also appear in Ito and McKean (1965, pages 214-217) in a context where the
sample paths of the diffusion do have a natural meaning. For simplicity suppose the
diffusion is persistent with sample paths X (¢), 0 =< ¢ < o, and let L (¢, x) denote the local
time of the diffusion. For y>0and ro < b <r; let

S, =sup{t>0:L(¢, b) =y}

denote the inverse local time process at b, and set

Sy Sy
V,= j I[X(t) <bldt, W,= J’ I[X(¢) < b] dt.
o 0

Then Ito and McKean show that .
{HE(M\)} = Es{exp(A\V,)}, {(HEM)}Y = Ep{exp(\W,)}.

Pitman has also found a nice description of the Bondesson class in terms of Levy
measures. Recall that a general infinitely divisible distribuiton on [0, ] has an m.g.f. of
the form

G(A) =exp{—a+ 6\ + J’ (e™ — 1)0(du)},

(0,»)

where O(du) is called the Levy measure. Then O (du) represents a member of the
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Bondesson class if and only if ©(du) has a density ©(du) = 6(u)du and 0(u) is a
completely monotone function of u. Further it is easily checked that #(u) is the Laplace
transform of the canonical measure @ (do). This description is also implicit in Bondesson
(1981).

In a similar analysis Thorin (1977) showed that 6 (u) represents a member of the Thorin
class if and only if uf(z) is a completely monotone function of u.
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