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CRITICAL MULTITYPE BRANCHING PROCESSES

By JouNn M. HoLTE

Gustavus Adolphus College

A general multitype branching process in which individuals are counted
according to some possibly type-dependent characteristic may be defined
along the lines laid out by Jagers (1969, 1974) for the single type process. In
the critical case, the probability of nonextinction at time ¢ is shown to be
O(t™"), and, conditioned on nonextinction at time ¢, the totals of the charac-
teristic counts, normalized by ¢, are shown to satisfy an exponential limit law,
under weak (essentially, second moment) hypotheses.

1. Introduction. The multitype branching process model that we consider in this
paper is a natural extension of the single type branching process counted according to a
random characteristic, or function of age, that was introduced by Jagers (1974). In the
critical case we find the limiting distribution, as time ¢ — oo, of the population counted
according to a characteristic, conditioned on nonextinction by time £, and we give the
asymptotic behavior of the nonextinction probability. Our results generalize the multitype
results of Ney (1974) and Goldstein (1971), who dealt with the Bellman-Harris branching
process, and they also generalize the results for the single type process obtained by Green
(1977) and Holte (1974). Our proofs were inspired by the arguments of Green and Goldstein.
Following Green, we analyze the behavior of the Laplace-Stieltjes transform of the
distribution of the conditioned process described above by means of renewal theory—in
this case the renewal theory developed by Ryan (1976)—and following Goldstein we base
our analysis of the asymptotic nonextinction probability on a comparison with a Markov
renewal process.

Informally speaking, the multitype process is initiated by a single individual of age 0.
Then offspring of various types are born to this parent at random ages in the course of a
random lifespan. Every individual subsequently appearing in the population also lives and
reproduces, independently of all other individuals and according to probabilistic laws that
depend only on the individual’s type. The individuals in the population are “counted” by
means of a possibly random function of age, such as the function which assigns a count of
1 to each individual who is alive but has not given birth and which assigns a count of 0
otherwise. The total counts of individuals of each type at time ¢ are the quantities of
interest. The critical case is, roughly speaking, the “zero population growth” case.

The formal formulation of the general branching process due to Jagers (1969, 1974)
may easily be extended to encompass the case of a process with d types of individuals. Let
N denote the positive integers. Let S= {1, ---,d} X N, §*= {1, ..., d} X {0}, S” = the
nth Cartesian power of S, and # = U, S .# is the set of possible individuals: (i, n;
««e; Ig, N) € S labels the nith type i offspring of - .- the n;th type i, offspring of the
initial individual. .# may be decomposed as %4 U --. U %, where .4 is the set of possible
type i individuals.

We assume that to each I € fis associated a triple (A, &7, x7) of random entities: A7, a
nonnegative random variable, represents the lifespan of I; &, a vector of d point processes
£;; on [0, o), represents the birth process (£,,([0, ¢]) = &,,;(¢) = the number of type j
offspring born to I during age interval [0, £]); and x; is a stochastic process giving a
“measure” or “count” of I as a function of age (x;(¢) = 0 for ¢ < 0). We assume that the
triples (A1, &1, x1), I € % are stochastically independent, and that for i = 1, - .., d the
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triples (A7, &1, x1), I € 4, are identically distributed. Then we may introduce the following
notation. Let P* denote probability, given that the initial individual is of type i, and let E*
denote the corresponding expectation. For random variables, write A* for A.0,, £ or £; for
£iovir X {(2) for x0) (t), etc. Assume that P’(x/(¢) = 0) = 1 if i # j, so that the type j count
of a type i individual is 0. We also make the following assumptions (which, it seems, could
be weakened somewhat): each x; is a nonnegative stochastic process; P X W)y=0 | AN=<p)
= 1, so that we do not count individuals after their deaths; and P(£;([\’, )) = 0) = 1, so
that individuals cannot give birth after death.
The process we study is X’(¢) = (X;(¢), -+ -, Xa(t)), where ’ denotes transpose, and

X;(8) = Yies xi(t — or),

where o7 is the time of birth of I. If (0) is of type i, i.e. if the original individual is (i, 0),
then we may write X:(¢) for X;(t). One important special case is the case where x; is the
indicator of [0, A;); then X(¢) = Z(t), the population size process. Another example arises
when we take x; to be the indicator of [0, A7) N [a, b); then X;(¢) is the number of type j
individuals who are alive and in the age interval [a, b) at time ¢.

2. Statement of main results. Let mi(¢) = E'(£;(t)), the mean number of type j
offspring born to a type i parent in the age interval [0, £], and let m(¢) = [m}(t)],ad X d
matrix of distributions (or measures). Our main theorem makes the following hypotheses
concerning m.

(M.1) m(x)” > 0 (componentwise) for some p € N.
(M.2) m() has largest eigenvalue 1.

(M.3) m(0) < m‘(w) for some i, j.

(M.4) m() —m(¢) = o(t™2) as t — oo.

(M.5) Each m;(¢) is a nonlattice distribution.

Assumption (M.1) allows us to invoke Perron-Frobenius theory, and assumption (M.2) is
the criticality assumption. Together they imply that 3 strictly positive left and right
eigenvectors v’ and u corresponding to the eigenvalue 1 which we may assume to be
normalized so that v.-u = v'u = 1 and v-1 = 1. Assumption (M.3) excludes the case where
" the entire population is born at time 0. Assumption (M.4) is slightly weaker than the
assumption that the distributions m®(-) have finite second moments; when (M.4) holds,
we do have finite first moments ! = [§ tmi(dt); we write p = [ui] = [§ tm(dt).

Let Gi(t) = P*(\' < t) and G(¢) = (G'(¢), - - - G°(¢))’. Our assumption on G is like (M.4):
(A) 1-G@t)=o0(t?) as t— o,

Let {.(n) be the number of type i individuals in the nth generation of the branching
process. Then {(n) is a multitype Galton-Watson process, a fact that will be exploited in
the proof of the asymptotic nonextinction probability result. Notice that {(1) = §(). Our
assumption
(GW.1) E{s**} = m(x)s,

where the ith component of the left side is E*([][%-1 s#'), rules out the case where each
parent gives birth to exactly one offspring (in which case m(x) would be the transition
matrix of a Markov chain on the space of types). We also assume finiteness of the second
moments:

(GW.2) @i = E (€ (0)€,(0) — 8 () V i, J, k.

Our main result is the following exponential limit law.

THEOREM. Assume (M.1)-(M.5), (A), and (GW.I)_—(GW.Z). Also assume for i = 1,
-++, d that E‘(x'(-)) is directly Riemann integrable, E‘((x '(t))?) is bounded and — 0 as
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t — oo, and x ‘(t) is almost surely almost everywhere continuous. Then fori=1, ..., d
lim,_ P{{t7'X(t) > x| Z(¢t) # 0} = exp{—max,<<a %,/¢;},

where
1 ©
o=5uQ f E/(3) dy/B,
0

B=vpu=3 73 vipju,
Q =v-q[u],
qTul = ¥ ¥ grti’us.

An interpretation of this conclusion is offered in Section 5.
The proof of this theorem is based in part on the following result on the probability of

nonextinction as ¢ — oo,

PROPOSITION. Assume (M.1)-(M.4), (A), and (GW.1)-(GW.2). Then fori=1, ---,d
lim,_,.. tP{{Z(t) # 0} = 28Q 'u..

3. Renewal theory. Ryan’s multidimensional renewal theorem [12] plays a key role
in our proofs. The following notation is used: if A and B are matrices of measures and f is

a vector function, then
AxB(t) = [Tk aixbf ()], aixbf(?) =J’ b} (¢t — y)ak (dy),

0,41
and
A«f(t) = (T ajf(8)), apfi®) = | fi(t = y)aj(dy).

[0.4]

RENEWAL THEOREM. Let A = [a!] be a d X d matrix of measures satisfying
hypotheses (M.1)-(M.3), (M.5) (with m replaced by A) and [§ tA(dt) < . Let f(t) be a
directly Riemann integrable d-vector function. Then the renewal equation

r(t) = £(¢) + A*r(?)

has a unique solution r (t) which is bounded on finite intervals.

This solution satisfies

0

r(t)—>Bf f(y)dy as t— oo,
0

where
B = g7'[u'y],
where u and v’ are the unique right and left eigenvectors of A (x) with eigenvalue 1 such
that v.-l=1and v.u = 1,and 8 = v’ [§ tA(dt)u.
Let U(t) = Yn=0 A*"(t), the renewal function. U(¢) < o V ¢ by Lemma 4 of Ryan [12].
CoRrOLLARY. Under the assumptions of the Renewal Theorem
(1) U@)-U(Et—-—h)>hB as t—>oVh>0, and
(2) t7'U(#t)—> B as t— o,
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The Renewal Theorem was proved by Ryan (1976). (The i () appearing in his
theorem should be .27 1; () due to a corresponding correction of his Lemma 5.) Assuming
the existence part of Ryan’s theorem, the limit formula may be derived in a different form.
We show this in the following lemma, which we shall use in Section 5, but not in the main
proofs.

RENEwWAL LEMMA. Assume that A is a matrix of measures on [0, ®) satisfying
(M.1)-(M.3), (M.5), and [§ tA(dt) = p < . Assume that f is a bounded measurable
vector function on [0, ®) such that f(t) — 0 at t — © and lim,_.. [, £(y) dy exists. Finally,
assume that r(t) is the solution of the renewal equation

r(t) = f(t) + A+r(t) (t=0)

that is bounded on finite intervals, and that lim,_,. r (¢) exists finitely. Then
t

lim,,. v (2) = (v'pu) v’ lim,_mf f(y) dyu.
)

CoROLLARY. Under the same hypotheses as above, but with the vectors f and r
replaced by matrices F and R so that

R(t) = F(t) + A«R(¢) (t=0)

we have
t

limg_m R(t) =B 1imt—>oo j F(y)dy’

0
where

B = [u'v;]/v'pu.

Proor oF THE RENEwWAL LEMMA. Let r(») = lim r(¢). From the renewal equation we
get r(c) = A(c0)r (=), whence r () = ku for some constant k. From the renewal equation
. again we get v'(r(¢) — Axr(t)) = v'f(t). Writing A (¢) =A (x) — (A (¢) — A(x)) and using
V’A () = v’, we get v'f(£) = v'(A(x) — A(.))*r(t). By integration,

t

j v'f(y) dy=f V'(A(o) — A(-))*r(y) dy
0

0
)
=v’ J (A () — A(x)) dx=r(t).
0

Therefore,

00

v/ lim, e f f(y) dy =V’ j (A() — A(x)) dxr () =V’ j x A(dx)r() = v'pr (=),
o 0 0

upon integration by parts. Since r () = Au, this implies
t

k=v'lim, ., f £(y) dy/v'pu,

)
whence the formula for r () follows. 0
4. First and second moments. The starting point for our analysis is the following
equality in distribution:

(4.1) X5(8) = 8x7(8) + T-1 TEO X} (8 — 1o (m)),

n=1
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where 74 (n) = inf{¢: £%(¢) = n} is the age of the original parent at the birth of the nth type
k offspring, and X% ,(n =1, 2, 3, - -.) are i.i.d. copies of X, % This equation asserts that the
total x -count of type j individuals is equal to the yx -count of the initial individual plus the
sum of the x-counts of type j individuals in the lines of descent emanating from each
offspring of the initial individual. In this section we shall deduce from (4.1) the basic
equations for the first and second moments of X (¢) (only the first moment is used in the
sequel), and in Section 7 we deduce the basic equation for the Laplace-Stieltjes transform
of X (¢).
Taking expectations in (4.1) leads to a renewal equation for M (f) = [E‘(X:(¢))]:

(4.2) M(¢) = [§]E/(x ()] + m=M(¢).

Accordingly, when m satisfies the hypotheses on A in the Renewal Theorem,

©

4.3) M}(t)eﬁ“u‘vjf E/l(x/(y))dy as t—

0

where now 8 =Y Y v, uiu’ ui= [ tm}(dt), and v’ and u are the left and right eigenvectors
of m (x) corresponding to eigenvalue 1 normalized so that v-1 =1and v-u = 1.

Equations for higher moments may also be derived from equation (4.1). For example,
the second factorial moment,

@5, (81, &) = EYX;, (8)X;,(82) — 8, X, (1 A\ 1)),

satisfies
TN
Qi it &) = £}, (t1, t2) + T, Zsz J’ M} (6 — y1) M3 (82 — y2) @i, (A1, dy2)
0 0

NS

+ 2 QL (t — y, ta — y)mi(dy),

0
where

Fin(ty, t) = 85,85, E {x (t)x'(t2) — X' (1 \ £2))

ty rty
+ 8y, Y J’ f M,k;(tz - yz)Qf.k(dyl, dys)
0 0
HAL,
+ 8, f M (t: — y)m;, (dy)
0
t, by
+ 8y, T f J’ M} (t — y1)qk;,(dy1, dy2)
0 0

AL,
+ &-jzf M3t — y)mj,(dy).
0
Ift, =t and ¢, — t; = A > 0 is fixed, then this is a system of renewal equations in Z.

5. The embedded 1-type processes. The results of this section permit us to
interpret the conclusion of our theorem, but are not used in the main line of proof. The
quantities ¢;, -+, ¢y that appear in the exponential limit law may be interpreted with
reference to 1-type critical branching processes Xj(¢) associated with the birth processes
fl(t), ceey, éd( t), where g',-(t) = the number of type j individuals born during [0, ¢] which
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have no type j ancestor, with the possible exception of the initial ancestor. (The occurrence
of these embedded 1-type processes was noted by Doney in [1].) To analyze the &;(-)
processes, we start with

(5.1) E(t) =0 &(8) + Taws 289 &0 (2 — (D)),

where £ 1, £ 5, - - are independent copies of the £ process. This equation says that the

number of type j individuals born during [0, ¢] without a type j ancestor other than

(possibly) (0) is equal to the number of type j offspring born to (0) during [0, £] plus the

number of such individuals descended from the offspring of (0) that are not of type j.
Taking expectations in (5.1) leads to

1} (t) = E*(£(2)) = mi(£) + Trwj mh * ) (2),
which may be written
(5.2) m(z) =m + (I — m%(¢)) + m = m(z),
where m%(¢t) = [8m7(¢)]. By the monotone convergence theorem,
15 (00) = Hmy, o172 () = mj () + Tan; mh (@)1itf (),

or, (o) = m(co)(I — 1 “%(w)) + m(co)m (). Left multiplying by v’ and using v'm(c) =
v’, we deduce m“(w) = I. Consequently (o) = m(cw)mm(x). But here every column of
m() must be a right eigenvector of m(x) corresponding to the eigenvalue 1, and hence
must be proportional to u. So h(c) = u'k;, say, and 1 = it/ () = u’k;, whence it} () =
u'/u; i,j=1, ---, d). In particular, ritf(c) =1 (j=1, ---, d), and so the d resulting 1-
type branching processes X;(t) are critical.

Next we shall calculate the so-called mean age at reproduction, i} = [§ &’ (dt) =
f5 (1 — rit4(t)) dt. As we have noted, m(t) satisfies the renewal equation t(¢) = m=(I —
m(t)) + m+m(¢) and converges to m(e) = [u‘/u;]. On the other hand,

t t
lim, f m+(I — h%(y)) dy = lim,.mx J I —m*(y)) dy
0 0

= m(c) f I — m%(y)) dy = m(x)i%,
0

and so, by the Renewal Lemma,

lim, .M (¢) = Bm(x)i% = Bji%* = [u'y;fi{]/v'pu.
As this also equals [u‘/1;], it follows that
(5.3) &= v'pu/(wv’), forj=1,-...,d.

A lengthy calculation based on (5.1) leads to a system of equations for the second
factorial moments:

Gin(ty, t2) = E'E(8)Ex(t) — 8a(ti A )

6ty
= E/Erf J [t —y1, ta — ¥2) @5 (dy, dys)
o Jo

t1/\t2
+ (1 — &) J' (7} (8 — y) + % (t: — y))m;j(dy)
0

ti/\t2

+ Nz ik f Gty —y, ta — y)mi(dy),

0
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where
mi(t)mi(t) fé#j,r#k
-7 . ;
or _J mj(t) if¢#j,r==%k
Fa(ts ) =Y 51(z,) if o=, rkk
1 ifé=j,r==%

When ¢; A t; — oo, we get
Gin =33 abruu’/ (i) + (1 — 8p)min’/u,
+ (1= 8u)miu®/wj + Trgjny MiGis
where G4 = lim §' (21, t2), etc. Let
(5.4) qTu]l =33 qrruu’
and q[u] = (g'[u], - -+, g°[u])’. Then when j = &, the limiting equation becomes
4l = q'Tul/uj + Trej mi G-
Left multiplying by v; and summing over i leads to an equation which can be solved for §7;:
(5.5) G = G5, ®) = v-qul/(u) = @/ (Wu)).
We conclude from equations (5.3) through (5.5) that
o =% WiXT/ Y,
where

x' = f E'’) dy/i(j=1, ---,d),
0

and so the jth marginal distribution is exponential with this mean. But this is exactly the
limit law that holds for each 1-type process X;(¢) when the conclusion of [4] for the critical
case is true.

6. Proof of the proposition on the asymptotic nonextinction probability. We
prove the proposition via a sequence of lemmas like those in Goldstein (1971). The basic
lemma is the asymptotic nonextinction probability result for critical multitype Galton-
Watson processes due to Joffe and Spitzer (1967). To state it, we need some additional
notation. Let f(s) = E‘(s1™ ... s%™), where {;(n) = the number of type i individuals in
the nth generation of the embedded multitype Galton-Watson process. Then f5(0) =
Pi(¢(n) = 0), the probability of extinction by the nth generation.

Throughout this section we assume that the hypotheses (M.1) through (M.4), (A), and
(GW.1) through (GW.2) are in force.

LEMMA 1. lim n(1 — £,(0)) = % (v-q[u]) "u, where q[u] is given by equation (5.4).

Note. (GW.1) implies that v.q[u] > 0.

The remaining lemmas relate the population sizes at time ¢, Z(t), to the generation
sizes, {(n). Let Fi(s, t) = Ei(s?® ,.. s%"). Next we give the counterpart of Goldstein’s

“main lemma.”

LEMMA 2. Fort=0,n=1,2,3, ...,
—m**+G(t) < £,(0) — F(0, t) = Y75 m¥x(1 — G(¢)).

ProOF. The ith component of £,(0) — F(0, ¢) is P'({(n) = 0) — P(Z(t) = 0) = P{(Z(¢)
% 0) — Pi(¢(n) #0) = PYZ(t) # 0 & ¢{(n) = 0) — Pi(¢(n) # 0 & Z(t) = 0). Let a:i(n, t) be
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the number of type i individuals from generations 0, 1, - - -, n — 1 alive at time ¢ Also, let
Bi(n, t) be the number of type i individuals born into the rnth generation by time ¢, and
vi(n, t) the number of those who are also alive at time £. Now Z(¢) # 0 & {(n) =0 implies
B(n,t) =0 & Z(t) = a(n, t) # 0, and so

PiZ(t) # 0 & {(n) =0) < Pia(n, t) #0) <3, Pio(n, t) = 1) < ¥, E'(ay(n, t))
=YL Thss (m**)ix(1 - G(2)),

the ith component of Y.<, m**+(1 — G(¢)). On the other hand, {(n) # 0 & Z(t) = 0
implies B(n, t) # 0 & y(n, t) = 0. Therefore

Pi(¢(n) # 0 & Z(t) = 0) < P(B(n, t) #0 & y(n, t) =0)
=Y Pi(Bin, ) =1 & y;(n, t) = 0)
=Y, E{Bi(n, t); vin, t) = 0) = T ,;(m*");+G’(¢),
the ith component of m*"+G(¢). 0O

The following lemma, which is the counterpart of Lemma (2.12) of Goldstein, may be
proved by direct calculation and induction.

LEMMA 3. Let P(t) = [Py(t)] = [ui'my(¢t)u;] and let P = P(»). Then

(i) P is a stochastic matrix;

(i) uv=(uvy, -+, uata) = (uv)P, i.e. uv is a stationary measure for the Markov chain
defined by P;

(ili) P**(¢) = [ui'm{F™(t)u;] and m**(t) = [up! F(t)u;'], where mF™(t) is the i, j
component of m*"(t) and p§*™(t) is the i, j component of P*"(t). Here and in the
remainder of this section we write m; for m}, etc., to leave the superscript position
open for powers and convolution powers.

In order to study the possible 1-step transitions of the Markov chain Z, corresponding
to P, we introduce the “expanded process” Y, of S. Hudson that is described in Section 6.5
of Kemeny and Snell (1960). If i — j and £ — [ are possible one step transitions, i.e. if p;;pr.
> 0, then the probability of Z — [, given that i — j was the previous transition, is P(Yn+

= (k, 1)| Yn = (i, 7)) = 8zpsc - Since P gives rise to a “regular” process, i.e. some power of
P is strictly positive, and since P has stationary measure uv, we have the following.

LEMMA 4. The expanded process for P is regular and has stationary measure w,
where wy, j) = w;U;py = Vim;(©)u;.

ProOF. See pages 141-142 of Kemeny and Snell (1960).

LEMMA 5. Let S,(i, j) be the number of times the one step transition i — j occurs in
n + 1 steps of the Markov chain for P. Then ¥ § >03 ¢ >0, A € (0, 1) such that

P{|n7'S,(i,j) — wivipy| =8 for some (i,))|Zo =k} =< c\"
forn=1,23, --

Proor. Form the expanded chain Y, whose states are the possible one step transitions.
Let § > 0, and let B, be the event that |n_’S,,(L,]) — u,u;p;| = 8 for some (i, j). By the
theorem of Katz and Thomasian (1961) via Lemma (2.13) of Goldstein, 3 ¢ >0, A € (0, 1)
such that P(B,| Yo = (%, 1)) < cA". Then P(B,|Zo= k) = Y. P(B.| Yo = (&, )P(Z, =
l|Zy=Fk)y=cX" O

The next five lemmas relate the hypothesis that m () — m(t) = 0(t7?) to the asymptotic
behavior of the error bounds in Lemma 2.
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LeEMMA 6. Let p;;(t) = mij(t)/m, () = pii(t)/pi if m;() # 0 and p,;(t) = 0 otherwise,
and let p;; = [§tpi(dt). For n, defined as in (i) or (ii) below, let {n;} be positive integers
depending on n, such that Y. n;; = n,, and let {b;} be positive numbers such that ¥y, b;
= 1. (Then Y, b;p; >0.) Let ¢ > 0.

i) Ifn.=|t(Q+¢/YY byjpil, then 3 8§ > 0 such that

lm_ . t-pf"xp s oo xp3Gdi(t) =0

whenever |n;/n, — b;| <8V i,j. (Here | x| denotes “the greatest integer < x.”)
(i) Ifn. = [t(1 — &)/YY bypi], then 3 § > 0 such that

lm, .t {pf""* -« *pdi*(o) — pf{''x - .. pJd(t)} =0
whenever |n;/n, — b;j| <8V i, .

ProoF. Notice that each p;(-) is a probability distribution or is identically zero. Thus
this lemma follows directly from Goldstein’s Lemma (2.15) (which is based on Theorem 2
of Franck and Hanson (1966)). O

LEMMA 7. Let ¢ > 0. Recall that B = v'pu > 0.
(i) Ifn,=t(1 + ¢)/Bl, then limtm™*™(¢t) = 0.
(i) Ifn, =Lt — €)/B), then lim t(u;v; —m ™ (¢)) = 0.
Proor. Fix i, j. Using the notation of Lemmas 3 and 6 we write
myF(t) = up§(t)u;’
= U Y icam—1) DinPam *** PruryPic*Pan* *+° *p/n—lj(t)uj_l’

where A (k) is the set of all 2-tuples from {1, - - ., d}. Let n;;; = n;;- (i, 4 j) be the number
of times in the sequence (i, ; - - -, l—1, j) that the transition (’, j*) occurs. Let

Ak, 8) = {¢€ A(k — 1):|k'niy (G, 4)) — wvipy| <8V i, j'}.
Let A(k, 8) = A(k) — A(k, 8). Now
) Nt dtn-1,6) DiaDas * * + PewrjPI*pIF12% « oo xp50(t) = 0(t7")
for n = n, =|t(1 + ¢)/B], by Lemma 6(i). (Notice that 8 = ¥Y. vip;u; = XY, vitip;j.) Also,
0 < Y /edin-1,0) Pitipsn ** * PlacaiP T 13125 + o o xp334(¢)

= Y e lin-1,6) PiaPas * + * Penrs = P n7'Suli’, ') — wivip;;| > & for some i, j') < e\”

for some ¢ > 0, A € (0, 1), by Lemma 5. When n = n,, this bound is easily o(¢™") as t —»
0. Combining the above estimates we get that m ™ (¢) = o(¢t™?).
For (ii) we write u;v; — m{*™ (¢) as

-1
wu; (W, — Ysieam—1PuiPas *** Prry
+ DieAn-1) PinPns ++* Pruyj(l — piis <o #p33ei(2))}.

The first sum in the braces is p/”, the i, j component of P". By Corollary 4.1.5 of Kemeny
and Snell, 3 ¢; > 0, A € (0, 1) such that | p§” — u;v;| < e; A1, which is easily o(¢™") when
n, = {t(1 — ¢)/B]. The other sum is bounded by

Yrean-1,8) Pir +** Prerj(1 — Il o oo xp334(t)) + Y€ Zn-1,6) Pin Pt *** Ptoorjv

The first of these sums is o(¢™') when n = [¢(1 — ¢)/8], by Lemma 6, and the second is
=< c\*, by Lemma 5, and hence is also o(¢”") whenn = [ ¢t(1 —¢)/8]. O

As preparation for the last major lemma we need the next two elementary lemmas.
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LEMMA 8. Let A, B be matrices of finite measures, and assume A(x) — A(¢) = o(¢72)
and B() — B(¢) = o(t™®) as t - ». Then A+(B(®) — B(¢)) = o(t"%) and A(x)B(x) —
A«B(t) = o(t™®) ast — oo.

The proof is straightforward.

COROLLARY. m(®)” — m**(t) = 0(¢7?) and m*"+(1 — G(¢)) = o(t %) ast— o forn
= 1, 2’ 3....

The next lemma gives a useful consequence of the assumptions that m;;(0) < m,;() for
at least one pair ij and that m(c)* > 0 for some integer %.

LEMMA 9. 3 positive integer v for which m(0)” < m(x)” and m(x)”* > 0.

PrOOF. It is easy to check that if m,(0) < m,(®) for some pair ij, then m{? (0) <
m{? (), where m(w)* > 0, for some pair . Then by Proposition 1 of Ryan, (m(0)*)" <
(m(c)*)" for r = 3, 4, 5, - - -. So, we may take v = 3k. O

LEMMA 10. Ifn,=|t(1 — ¢)/B], then
Si<nm*x(1 — G(t)) =0(t™") as t— .

ProOF. The argument here is a generalization of that given in [5]. Choose » according
to Lemma 9 so that m(x)” > 0 and m(0)” < m(wx)”. By right continuity 3 42 > 0 such that
m*’(h) < m(x)”. Given n = n, and », let ¢ and r be integers such that n = vg +r,0=<r
< ». Then

Ticn m*(1 — G(2)) = X7, m*"* Y m*"+(1 — G(¢)).
By the Corollary to Lemma 8,
o(t) =i m* +«(1 — G(t)) = o(t™® ast— .

It remains to check that ZZ_O m***xp(t) = o(t™).
Lete>0.Letc=(1—¢)/(1 —¢/2),so0that 0 <c<1andn,=[t(l —¢)/B]l=]|lct(l—

€/2)/B]. Write

Yiom*Fp(t) = Y, J’ m***(dy)p(t—y) + 3 f m***(dy)p(t —y) =S; + Sa.
0 ct

For the ith component of S;, we have

ct

Yheo D1 f @ (t — y)m&™? (dy)

o
<v7in Yjsup{gi(x):x = (1 — c)t} mGF"™® ()
=t (n,/vt) ¥, £* sup{g;(x):x = (1 — )t} m{f* ()
=t'01)o(1) =o(t™!) ast— .
Turning our attention to S,, we lgt
@, =sup{gj(x):lh=x=(I+1h 1=j=d} and L =|(t— ct)/h]
Then for the ith component of S; we have

t—lh
@it — y)m§™ (dy) = i 3 Tio f @it — Y)mG™ (dy)

t—(I+1)h

=XO N Y, (miPE — h) —mP(E - 1+ D))

t

-0 X1 f

ct
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An upper bound for the inner sums is gotten as follows (recall that u = m(w)u = m(x)"u).
I —m”D(g))u = Yo m™* (I — m*(t))u

= Yo m™*+(m(x)” — m”(¢))u

= Theo (Th1 Tfes f {my(e) = m”(t = y)ymi™ (dy)u)
= (T3 f {m () = m”(t = yIm ™ (dy)u;)

EDYXOXDN f {my() = mi”(R)ImG™ (dy)u)

=2 (L X5 (m™ () = mG™ (¢ = W} mfP (<) — m§” (B)}u)
= Yieo {m™* () — m™*(¢t — h)}nl
where 7 denotes the least (necessarily positive) component of m(»)” — m** (k). Therefore
Tho St (mS(E) — mE™(E — h)) < 77U — m™ D (B))u
=9I - uv + uv' — m”*V@¢)u
=77 (v — m”*V(g)u,
since (I — uv’)u = u — u(v'u) = u — u(l) = 0. Returning to S, we now have
S: = Yo &~ l(uv’ — mt (¢ — Lh))u
= Y50 O~ i(uv’ — m*9(ct))u.

Here ) ®@; < » because {®;} is bounded and ®; = o(l"2) as I — . Also, since m"*(¢)u is
decreasing in n, (uv’ — m™9*Y(ct))u < (uv’ — m*"(ct))u = o(¢ "), by Lemma 7(ii), where
= |ct(1 — ¢/4)/B], and the lemma now follows. 0

PROOF OF THE PROPOSITION. By Lemma 2,

1-£.00)-m™G(t) <1-F(0,¢t) <1—£,(0) + Yre m™*+(1 — G(2)).
Let e > 0. Put n = | #(1 + ¢)/B] in the left inequality and multiply through by ¢. By Lemmas
1 and 7(i),
2Bu _
(1 + ¢)v-q[u]

Put n = [#(1 — ¢)/B] in the right inequality and multiply through by ¢. By Lemmas 1 and
10,

0 < lim inf, .. t(1 — F(0, t)).

‘ 2Bu
lim sup-.-t(1 — F(0, ) = e+ 0

Since ¢ is arbitrary,
lim, . t(I — F(0, t)) = 28(v-q[u]) 'u. ]

7. Proof of the exponential limit law. The proof of the theorem will follow quickly
from the proposition on the asymptotic nonextinction probability and the following
lemma, which was abstracted and generalized from the proof given by Green (1977). It is
remarkable how well Green’s proof extends in a natural way to the multitype case, and so
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the proof in our case needs merely to be sketched,; it is in these omitted details, which may
be filled in by reference to Green’s paper, that the hypotheses on x are used.
To begin, we introduce 1—the Laplace-Stieltjes transform of X(¢):

H(@, t) = E(1 — e~0°X®),

where E(-) = (E'(.), ---, E%(-))". Then using equation (4.1), conditioning on (\’, £, x),
and taking expectations, we find that

(7.1) H(@, t) =1 — E(ex9 [[&, [[#4 (1 — H*@, t — 1(n))}).
We also introduce the norm || 8| = | Y,6,v;u} x’/B |, where x’ = §5 E“(x’(y)) dy/u’.
LEMMA.

[/

t
limo——H|-,t]=010+c¢c-0)"u
el <t )

for || || in some interval (0, a), where ¢ = (c1, - -+, ca)’, ¢; = % vp} x'(v-q[u])/B>.

ProoF. The basic equation (7.1) may be written as
(7.2) H(0, t) = E(0-x(t)) — Y-1 E(Q.(0, t)) — %2 (0, t) + m+H(8, ?),
where
Qi0,t) =e X9 —1+0.x(),
Qu0,8) = (1 — ™)1 = [iwt TIEY (1 — HYO, ¢ — (D)),
@0, 8) = Y T30 (1 — H*0, t — me(D))) — 1+ 3 5 H*O, t — (1))
—Yo S Yk Suwre H¥(O, t — 7, (L)) H™(0, t — 11, (l2)),

and the ith component of 2 (6, t) is
S e, f H"(@, t — y))H"(0, t — y2)qhy, (dy1, dy2).
[0,¢7?

Equation (7.2), the counterpart of equation (4.2) of Green, is of the form H(@,¢t) =1, ¢t)
+ m*H(0, t), which for fixed # is a multidimenstional renewal equation. Let U(¢) = Y
m**(¢), the matrix renewal function. Then

(7.3) H(0, t) = U«£(0, ¢)
= U=E(@-x (¢)) — Y-1 U+E(Q.(0, t)) — £U=*2 (8, ¢).
Let K(8, t) = | 0| "'tH(8/t, t) and, regarding g% x, as a measure, let

My, (w1, w2) = % DY, f T ([ — wy) — x, ¢ — x]X[E(L — we) — x, t— x]) U; (dx).

0
Since Ui(t)/t = B~ 'u'v; by the Corollary to the Renewal Theorem, and since
q'{e,kz(tl, ) — q{e,kg = E’(&,(0)£r,(0) — 8k,2, &, () as min(t, &) — oo,
one may check that

My p, (W1, w2) = VB TUY U@k, min{wy, we} as t—> oo,
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Equation (7.3) may now be rewritten as the counterpart of Green’s (4.5):

t

K'@,0)=0]7t ZjJ' £0/t, t — ) U; (dy)

0

(7.4) =u'— Y1 RHO, t) — |0 X3, jJ Ky (w0, wit)
0,112

- Ky, (w8, wit)' M, (dw:, dw,),

where, forr=1, 2, 3,
t
R0,)=0]7"t j U(dy)E(Q-(8/t, t — y)),
0

and
Ri(0,t) =u— || 0] "U<E(8-x (t)).

Notice that, when the R, terms vanish and “#; x, is replaced by its limit in equation (7.4),
then the solution that is independent of ¢ is

1
K@) =Q1Q+c-0)u=u- c-0f 1+ c-0w)2dwu.
0

Subtraction from (7.4) yields the counterpart of Green’s page 460 equation:

Ki(@,8) — (1+c-0)u=-Y R}, ¢)
(7.5)

1
— 5100 X2 J’ J’ {K), (w10, w1 8)K,, (w20, w. t)
[0,11

— K, (w10)K,,(w20)} 4, (dw:, dws),

" where

. 1, .
Ri6,0) =3 w0 XX J’ f K, (wi0) Ky, (wo0) M1, (dw:, dw,)
.17

1
- c-0J’ 1+ c-0w) 2 dw u'.
0

Continuing in this way, the remainder of the proof may be developed step for step along
the lines given by Gljeen. Tl_)us, we may find constants ¢, o, a such that | K; (w8, wt) —
Ki(w) | < co, 2B~ 'u’ ¥vigi 1, < ao, and acoaod? < 1. Letting

B'(¢) = sup{| K6, ¢') — (1 + c-0)"'wi|:0< | 0]| < ¢’ > 8}
and '
Ri(t) = sup(3%-1 R0, £):0< || 0]| < o, ' > 1),
we find, fori =1, ..., d, that
B(t) = R'(t) + ac} Y, 3, sup{“M;.,(8, 1):t' > t}
+ acoao Yy, Y, g’ sup{" M, (1, 1):¢' > ¢} B, (8¢) for &€ (0, 1).
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By counterparts of the arguments of Green, Rit) > 0ast— o (i=1, .--,d), and, as in
Green, it follows that B'(f) > 0ast— x (i =1, - .., d), and the lemma follows. O

PROOF OF THE THEOREM. Fori=1, ..., d,
Ei{e X0/t | Z(t) % 0) = 1 — H'8/t, t)/P'(Z(t) # 0)
=1—||0|7'tH @/t t)/(|| 0| "'tP*(Z(¢t) # 0)).
By the lemma and the proposition, the limit as ¢ — o is
1-—(1+c-0)'w/(|0] '28v-qu]) 'v')=1—c¢c-0/(1 +c-0)=1/(1+c-0)

for every @ with 0 < || 8 || < a. By the continuity theorem for Laplace-Stieltjes transforms,
this result is equivalent to the conclusion of the theorem. O
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