The Annals of Probability
1982, Vol. 10, No. 2, 303-319

ANOTHER VERSION OF STRASSEN’S LOG LOG LAW WITH AN
APPLICATION TO APPROXIMATE UPPER FUNCTIONS OF A
GAUSSIAN PROCESS WITH A POSITIVE INDEX

By Norio K6no

University of Minnesota and Kyoto University

Let {Y(¢, ) = (Xi(¢, w), +++, Xa(t, w)); 0 = ¢ = 1} be a d-dimensional
Gaussian process whose components are independent copies of a Gaussian
process with index «; that is, E[X(¢, )] = 0, X(0, w) = 0, and E[(X(¢, w) —
X(s, ))*] = o%(| t — s|), where a(z) =1 0<a<1. Let h(t) be a positive, non-
increasing, continuous function and set

q= sup{r =0 f e ROz dt/t = +oo}.
+0

Then, as an application of a version of Strassen’s log log law, we have
lim supyo t'm({0 =s < ¢t || Y(s, w) | > a(s)h(s)})
= sup:esm({0 < s =< 1; || x(s) | = o(s)/Vq}), as,

where || denotes the usual Euclidean norm, m(I') denotes the Lebesgue
measure of a linear set I', and B is the unit ball of the direct sum of d copies
of the reproducing kernel Hilbert space with the kernel R(s, t) = (a(¢) + 0*(s)
— o%(|t — s|))/2. In case of the d-dimensional Brownian motion, Strassen [7]
had proved that the right-hand side of the above formula is equal to 1 —
exp{-4(¢ — 1)} ifg=1,and 0ifg = 1.

As a corollary, o(¢)A(t) is an approximate upper function as introduced by
D. Geman [2] if and only if ¢ < 1. Especially, if lim,oh(¢)/v2 log log 1/t = ¢,
o(t)h(t) is an approximate upper function if and only if ¢ = 1.

1. Introduction. In [2], D. Geman introduced the notion of approximate upper and
lower functions of a stochastic process; locally, the former can be thought of as a modulus
of approximate continuity of the sample paths, whereas the latter provides a lower bound
on the growth of the path.

Let {X%(¢, w); 0 < ¢ < 1} be a measurable stochastic process defined on a probability
space taking the value in R¢ d-dimensional Euclidean space with the Euclidean norm
[l]l- A continuous function ¢(¢) is called an approximate upper function (at ¢ = 0) if, with
probability 1,

limyot'm({0 = s < ¢; | X%s, w) — X400, w) | > @(s)}) =0,

where m(I') denotes the Lebesgue measure of a linear set I'.

Among many results in [2] and [3], Geman has shown that for any real-valued, centered
Gaussian process, if A = ¢/o 1 +» as ¢ | 0, then ¢ is an approximate upper function
whenever

f h(t) e O dt/t < 400
+0
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holds. (In particular, @(¢) = o(t) V2 log@)1/t + ylog@sl/t, vy > 1.)

In this paper, we will focus our concern on a d-dimensional Gaussian process with
positive index, which means that each component is an independent copy of a centered,
path continuous Gaussian process with X(0) = 0 and E[(X(t) — X(s))?] = oX(|t—s|) =
[t—s|™0<a<]l.

For the 1-dimensional case of this class, Geman [2] showed that
o(t)V2 loge 1/t — yloge 1/t, v < — 1 + 1/a, is an approximate upper function. Even in
the d-dimensional case, however, we will prove a much better result than this as a corollary
of our theorem; namely, for 4 1 +w as ¢ | 0, ok is an approximate upper function if and
only if ¢ < 1, where

qg= sup{r =0 f e O get = +oo} .
+0

Especially, if lim,o h(£)/v2 log log 1/¢ = ¢, oh is an approximate upper function if and
only if ¢ = 1.

2. Main results. To describe our results, we need two function spaces: the space C
of all d-dimensional continuous functions defined on [0, 1] with the sup norm | x| ¢ =
SuPo<:=1 || x(¢) ||, and a Hilbert space K = H® ... @ H (d copies), the direct sum of the
reproducing kernel Hilbert space H with the reproducing kernel

R(s, t) = E[X(s)X(t)] = (°(8) + 0*(s) — o*(|t — 5]))/2,

where a(f) = t%, 0 < a < 1. It is well known that for x € K, x(¢) = (x1(¢), - - -, x4(¢)) is an
element of C and

2.1) || x]|& = suposesi Y1 (x:(-), R(E, )3 < suposess R(E, ) T || %) 3 = || x| %,

where we denote by || || # and || | x the norms in H and K respectively.

Let {Y(t, w); 0 = ¢ =< 1} be a d-dimensional Gaussian process whose components are
independent copies of the Gaussian process with index «, 0 < a < 1, mentioned in Section
1, and let A(¢) be a non-increasing, positive, continuous function defined on the positive
half-line. .

Our first theorem is analogous to that of Strassen [7] and Oodaira [6].

THEOREM 1. Assume that for any € # 0,
f e IMOR ge/t <+, or = 4o
+0 .

depending on whether ¢ > 0, or ¢ < 0. Then the random set in C given by {fu(t, w) =
Y(¢/n, w)/(0(1/n)A(1/n)); n=1,2, ...} is, with probability 1, relatively compact in C and
the set of all limit points coincides with the unit ball of K.

Applying Theorem 1 to obtain approximate upper functions for Gaussian sample paths,
we have the following. Following Uchiyama (who, in a private communication, has applied

this criterion to obtain the same result in case of the Brownian motion, although his proof
is completely different from ours), set

(2.2) q= Sup{r > 0’ j e—rhz(ﬂ/Z dt/t — +°°} .
+0

THEOREM 2. (i) With probability 1,
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limgosup t 'm({0 = s <t || Y(s, w) | > a(s)h(s)})

(2.3) =supesm({0<=s=<1; || x(s) || = o(s)/Vq}) if 0<gq<+om,
=1 if g= 4o,
=0 if ¢g=0,

where B is the unit ball of the Hilbert space K.
(ii) The function

F(q) =sup,es m({0<=s=1;| x(s)|| = o(s)/«/c_I})

is continuous for q > 0; in particular, positive strictly increasing for q¢ > 1 with limg;+e
F(qg) =1and F(q) =0 for g < 1.

COROLLARY. As a corollary of Theorem 2, it follows that oh is an approximate upper
function if and only if ¢ <1, where q is defined by (2.2).

REMARK. In case of one-dimensional Brownian motion, Strassen [7] had shown that
supres m({0<s=<1; || x(s) || = Vs/Vg}) =1—e*@ if g=1,
=0 if 0<g=1.

Nothing changes in the higher dimensional case: Uchiyama [8] has proved that the left-
hand side of (2.3) in Theorem 2 is equal to 1 — e %" if g = 1 and 0 of ¢ < 1 in case of d-
dimensional Brownian motion applying the methods of diffusion processes.

3. Stochastic version: Proof of Theorem 1. The proof of Theorem 1 splits into
the following two lemmas.

LEMMA 1. Assume that for any 1 >¢>0
(3.1) j e RO gyt < oo,
+0

Then, with probability 1, { f,(t, w) = Y(¢/n, w)/(6(1/n)h(1/n)); n =1, 2, - ..} is relatively
compact in C and the set of all limit points is included in the unit ball B of K.

LEMMA 2. In addition to (3.1), assume that for any 1 > ¢ >0
(3.2) f e—(l—c)h2(l)/2 dt/t = +oo,
+0

Then, with probability 1, the set of all limit points of {fu(t, w); n =1,2, ...} coincides
with B.

The main difference between our Lemma 1 and Theorem 1 of [5], or Theorems 1 and
2 of [6], is that our function A is not necessarily comparable with the function
log log 1/t; therefore, we need to modify their proof.
Before starting the proof of Lemmas 1 and 2, we notice that (3.1) and (3.2) are equivalent
to the following statements respectively: for any 1 > ¢ > 0 and any j

3.1y [ hI(t)e™ RO Gt/ < oo,
+0

and
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3.2y f hI(£)e™"TIMO2 e/t = oo,
+0

ProoF oF LEMMA 1. For any & > 0, we can choose 8§ > 1 and a positive integer g such
that the following inequalities are fulfilled;

U(nr+1/nr) =1+ &, U(nr+l/nr) - (1 + 8)_1 = 28, 0(1 - nr/nr+1) =g,
and
(3.3) a(ngn,/new) = 2(1 + e)e”

where n, = [87], the largest integer not exceeding 8.

Step 1. With probability 1, {f.(t, w); n =1, 2, - .-} is equicontinuous in C. In fact, set
A; = {; SUP, <m=n,. SUP|—si=n; | Y(E/m, ©) — Y(s/m, @) || = eo(1/n1)h(1/n,)}.
Then, we have
Ay C {w; SUPo=t=trhzn;toshen'ng! | Y(t + b, w) — Y (¢, w) ||
= ea(1/n,+1)h(1/n,)}
C UR%y' {w; SUPknytn; 1<t=(ke+ Dnr nztoshzning! | Y(E + B, 0) — Y(¢, w) ||

= ea(1/n,41)(1/n,)}

= Uy Arg.
Now, in order to apply Lemma 3 of [4] which is an extension of Fernique’s inequality, set

S={(u,v);0=v=u=n;"n;",0=su—v=n;'n;"},
and X%u, v, w) = Y(u, ) — Y(v, 0).
Since we have
E[(Xi(u, ©) — Xi(v, 0) — Xi(w', ) + Xi(v', w))*]
= 2E[(Xi(y, w) — Xi(u', w))* + (Xi(v, w) — Xi(v', w)¥]

=2(lu—u'|*™+|v—v'|*)

=4Vu—u' P+ v - v )%,
and
E[(Xi(u, ©) = Xi(v, ))’] = |u — v|* =< (n,ny) 7>,
it follows from Lemma 3 of [4] that
P(supu,ves | X4, v, 0) || = 2(n,n,)"x) < c;x4 %72

for sufficiently large x, where ¢, is a constant independent of x, r and g. Applying this
inequality to have an upper bound of P(A, ) with the definition of q, we have

P(A;) = 5345 P(Ar) < nger(1 + €)* R %(1/n, e~ IPma/mr2,
and
Y2 P(A,) < ngei(l + )72 Y= h42(1/n,)e 000/

=ngei(1+ &) 2 Y7 b2/, )e ROy (1 — ey /n,) N = )

=c J R (t)e"HIRO2 qu/t <+, by (3.1).
+0
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Therefore, by the Borel-Cantelli lemma, with probability 1, there exists r; = r;(g, w) such
that
(3.4) || fnt, @) = fnls, ) || <&

holds for any m = n,, and |t — s| < n;".

Before entering the next step, we need some notation. Let {e;(¢); j = 1, 2, - - -} be a
complete orthonormal system of H and let . be the isometric isomorphism defined by
Y'R(t, -) = Xi(t/n)/o(1/n) between H and the closed linear subspace L% spanned by
{Xi(¢/n)/a(1/n); 0 =< t =< 1}, recall that X;(¢) is the ith component of Y(¢). Then, £%?(«)
=yer), k=12 ---,i=1, .. -, d, are independent standard normal random variables.
Set

Zr(t’ w) = (Zil)(t’ w)’ R} Zi‘d)(t) w)))

where
ZP(, ©) = Tha £8)(@)en (8),

and j is defined in the next step depending on .

Step 2. With probability 1, there exist integers j = j(¢), independent of w, and r, =
r2 (e, w) such that

(3.5) [ £, (t, @) = Z, (¢, @) /R (1/70) |lc <€

holds for all r = r.
In fact, it is well known that there exists jo, = jo (¢) such that

supo=e=1 | R(4, 8) — Th-1 €k(t) | <e
holds for all j = j,. Now, set
B, = {w; | W(¢, w) lc=¢eh(/n)},

where W(¢, w) = (Wi(¢, w), -+ -, Wa(t, w)) is defined by

Wi(t, w) = X;(t/n,, w)/a(1/n.) — ZV(t, ).
Then, {W;(t,w); i=1, - .-, d} are independent centered Gaussian random processes such
that

E[m(t’ w]=R(1t) - Zj=l el%(t) = SUPo=¢=1 2;:=j+1 e%(t) = F12
and

E[(Wi(t, ©) — Wi(s, 0))’] = Ti=ju1 (e (t) — ex(s))?

< SUP|sjmnomtomt Dinjer (€x(t) — ex(s))? = oZ(h).

Therefore, again by Lemma 3 of [4], we have

00

P(|W(t, w)|lc= x(T; + 4 f a;(e™) du))
0
<c xd—Ze—xz/Z’

where;Cg, is a constant independent of x and ;. In this inequality, choosing sufficiently large
J such that (1 + e)(I"; + 4 [§ oj(e‘"z) du) =< ¢, and setting x = (1 + e)h(1/n,), we have

P(B,) < c3/(1 + )4 2pd-2(1 /nr)e—(l+s)2h2(1/n,.)/2,

and
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Y7 P(B,) < cs(1+ &% 2 X h*%(1/n,)e” "2 % p (1 — npot/ne) i — 07t

<c f RE2(t)e RO/ < 4 oo,
+0

Applying the Borel-Cantelli lemma, we have (3.5).

Step 3. With probability 1, {Z,(¢, w)/h(1/n,);r=1,2, ...} is pre-compact in C and all
limit points are contained in the unit ball B of K.
In fact, set

Cr = {w:]| Z,(¢, w) |]g > (1 + &) R(1/n,)}.
Since we have
1Z-t, W) Ik = T 129, w) |7 = Bikn Thoy €57 () |?

and {¢$"(w); k=1, «-+,j,i=1, .-+, d} are independent standard normal random
variables, it follows that

37 P(C)) = ¢ 37 (1 + &) Yh¥(1/n,)e e orwa/me

< CGJ hdj(t)e—(1+e)2h2(l)/2 dt/t< + oo,
+0

By the Borel-Centelli lemma, with probability 1, there exists an r; = r3(e, w) such that
(36) 1Z:(t, ) | < (1 + )h(1/n,)
holds for any r = r;.

Step 4. Conclusion. Since f,(0, w) =0foralln=1,2, ... and for any w, {f.(¢, w); n

=1,2, ...} is pre-compact in C by Step 1. Now, consider the following triangular inequality
for r = ry = max(ry, rz, r3) and n, < m < n,4+1;

Z,(t, w) o(1/n,)h(1/n;) n, (™
fm(t, w) - h(l/m)(l T e) CS o(l/m)h(l/m) ﬂ,(; L w) Zr(m [ w)/h(l/nr) .
o(1/n,) ny _
o(1/m)h(1/m) Z’(E b “’) Z (6, ) .

o(1/n,) 1
’ (ou/m> TT+e ) 12:(t, @) lle/B(1/m)

=1+ 1L+ L.

From (3.3), (3.5), and monotonicity of 4, we have I, < e(1 + ¢). Using the reproducing
property of the kernel Hilbert space, monotonicity of A, (3.3) and (3.6), we have

L = o(nrs1 /) o(1 = 0y /1) || Zo (8, @) |k /R(1/n,) < (1 + €)%

Finally, from (2.1), (3.3), (3.6) and monotonicity of h, we have I < 2¢(1 + ¢), and I, + L,
+ I3 < 10¢ because of € < 1. Since, with probability 1, we have (1 + &) 'Z.(¢, w)/h(1/m) €
B by (3.6), it follows that f,. (¢, w) € Bio., the 10e-neighborhood of B in C. This completes
the proof of Lemma 1.

Proor oF LEMMA 2. The proof of Lemma 2 is much more complicated than that of
Lemma 1; still, it is routine work for Gaussian processes. It seems that Oodaira’s or Lai’s
proof for the corresponding result to Lemma 2 does not work for our case, but the ideas
are similar. Because of separability of K, it is sufficient to prove that for any x € B such
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that 0 < ||x|lx < 1, with probability 1, x is a limit point of {f.(¢, w) = Y (¢/n, w)/
(o(1/n)h(1/n));n=1,2, -.-}. Now, fix any ¢ > O such that 1 — e > || x||[x > 4e. For 0 < a
< 1, we denote by H,, K,, and C, the restriction to [a, 1] of H, K, and C respectively, we
choose a so small that

(3.7) xllx =l xllx, <&
and
(3.8) Supos=al| ¥ (8) | = 0(@) || ¥ [Ix < €] ¥ |l

for any y € K. Then, it follows by (3.8) that
(3.9) SuPo=t=a| ¥ (¢) || = 11e

holds for any y € Bio., the 10e-neigoborhood of B in C. Consider the compact operator ¢
— [4 R(¢,s)p(s) dson L%([a, 1], ds) and let {@s:2 =1, 2, -- .} be normalized eigenfunctions
corresponding to the eigenvalues {A\; = A, = --- > 0}. That is,

1
(3.10) j R (¢, .S')(pk (s) ds = }\k(Pk (¢), as<t=<1,
and

1
j Pe(s)pr (s) ds =1, ifk=F,

(3.11) a
=0, if k%K.

We notice that not only is ¢. an element of H, but also { VA or; R=1,2, ...} forms a
C.O.N.S of H,.

Next, in order that the following Step 1 and Step 4 go well, we have to choose a positive
integer ; sufficiently large such that

00

(312) L+e@+4 f 5i(e™) du) <e,

)
where
T = supase=1 (R (£, £) — Thoy Me@i (£)) = SUPasi=1 (Ti—js1 M@ (2)),
and
5 () = SUD|t—s=hazts=1 Dimjr1 Me(@r(t) — Pr(s))?,
and such that
(3.13) |lx — x|k, <&,

where X = (X1, - --, ¥4) is the jth partial sum of the expansion of x = (xi, - -+, xa) in Kq;
that is,

xi=Yi-1 2 VAe gu in H,,
and
X = ) i=1 x® \/}\_k Pk.
Finally, we need to choose a positive integer A such that
(3.14) A=2/a, 3A'aFi(l+e)AF =g
and

(3.15) 27(1 + 26)2A;2a % (|| x|l — 36) A% < (|| x ||k — 4¢)*/4
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hold, where 8 = min(a, 1 — a).
In the sequel, we use abbreviations n, = A", r=1,2, -.., and A, = h(1/n,).

Step 1. Set

1

Xi(s/n., w)pr(s) ds

a

7% Nw) =

VM o(1/n)
k=1,2,...,5,i=1,...,d, and
Z.(t, w) = (ZP(t, ), + -+, 21V (8, 0)),
where
ZOt, @) = Yy VA o (0" ().
Then, with probability 1, there exists r1 = r; (g, w) such that
(3.16) Il £, (&, @) = Z:(8, @) /B |ic, < e

holds for all r = r;.
In fact, {(*?(w); k=1,2,:-+,j,i=1, - -., d} are independent standard normal random

variables such that

1
E[X:(¢/n.)n*"] =f R(t/n, s/n )i (s) ds/(VAe 0 (1/n,))

= VA @i (t)o(1/n,).
On the other hand, by Mercer’s theorem, we have
YE=1 Ae@r(t)pr(s) = R (¢, 5),

where the convergence is uniform in s and ¢. Therefore, by an analogous way with that of
Step 2 of Lemma 1 using (3.12), we have (3.16).

Step 2. Set
Dy = (3 12, )/hy — 7(-) I, < e).
Then, we have
(3.17) r=1 P(D,) = +oo.
Since we have Y1 Yi_, |2 |> = | x|k, =< || x||% it follows that
P(D,) = P({w; T They 0 @)/hy — xM)? < %))
= [T [Tt Pw; |n* (@) /R — 1P| < & Vdj})

(x| +¢/ Vdj)h,

- T |

12 w22
(27) V2% %% du
(|x®|—e/Vd))h.

chy \?
r : (W20 2( ) -1 B2
> ( ) :,i=1 l“z=l e (|x®)*+e*(d)) )hr/2.

"~ \V2ndj

dj
2( ehy ) e elireniy2,
v2ndj

Hence, (3.17) follows from || x||% + e <1 — 2¢ + 2¢* < 1 and (3.2)".




STRASSEN’S LOG LOG LAW WITH APPLICATION 311

Step 3. There exists a constant cs, independent of r, such that
(3.18) hZ=log log n. — log cs
holds for all r. In fact, from (3.1) we have

1 1
+00>cg= f e 0 dt/t = ek f dt/t =elogn, forallr.
n n

1 -1
r v

Step 4. Set ‘
A= (r; b= (I x )l — 3)™ V3log log n,).
Then, we have
(3.19) Yrea P(Dy) = +oo.
Since by (3.7) and (3.13) we have
P(D,) = P({w; | Z,(-, @) &, = (| %|Ix, — &)1 })
S P{&; 1 Z:(-, @) Ik, = (| x]lx, — 2e)P})
=P{w; 35 Yoy 0% 2(w) P = (|| x|k — 3e)*AT))
= co(|| x|l — 3e) V2R Y2~ Irlh—30%3/2,
it follows that
Yrga P(Dy) < +oo.
Combining this with (3.17), we have (3.19).

Step 5. Set g, = 2(B8log A)~'log log r. Then, for r € A and r’ € A with r’ =r + g, we
have
P(D,N D,) = ¢, P(D,)P(D,),
. where ¢, is a constant independent of 7’ such that lim,_,. ¢, = 1.
In order to show Step 5, we need the following inequalities; for 0 < s < ¢,

R(s,t) _o(s)  (o(t) —o(t—9))a(t) +a(t—5))

o(s)a(t) 20(t) 20(s)o (¢)
a(s) o(t) —o(t—ys) - a(s) o(t—s) s
~ 20(t) a(s) ~ 20 (t) a(s) t—s’
where the last inequality follows from concavity of ¢(¢). Hence, for 2s < ¢ we havé
RGO _or(e/) + 2-(s/8) = < 3(s/2)",

(3.20)

o(s)a(t)

where 8 = min(a, 1 — «).

Checking by (3.14) that ‘
2s/n, < 2s/n,1 < 2/041 < a/n. < t/n.

holds for all @ < s, t =< 1, from (3.20) we have

1 1
| E[n# %] = (VAxAr a(1/n)a(1/n,)) f f R(s/n,, t/n,)pr (s)gr (t) ds dt

‘ 1 1
(3.21) s(}\k)\k')‘”23a“’(n,/nr»)ﬂJ f | px (s) | |@w(¢) | ds dt
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1 1 1/2
= 3A;1a‘ﬂA“""’ﬁ(f | pw(s) |? dsj | e () | dt)

= 3\jlaPA R,

By definition, {n{*", n%?; k=1, ...,j,and K =1, ..., j} forms a Gaussian system, so

%" can be represented as follows

(3.22) L ) = 7% (0) + §5 (),
§¥9(w) = Bhoy a0 (),

where {n®*?; k=1, ...,j} and {7*?; k=1, ---, j} are independent but we notice that
the random variables of the latter system are not necessarily independent. From (3.21) we
have

(3.23) la(k z)l = |E[§(k i),',’;k,i)]l = lE[nyg’,i),r’;k,i)]l < 3}\1‘_1 a_BA_(r’_')B,

Now, we have an upper bound of the joint probability of D, and D,-. For simplicity, we
use the following abbreviation;

B0), = GE0), fe= (G0)

and ¥ = (x{?) are regarded as elements of dj-dimensional Euclidean space with the
Euclidean norm ||| Since by (3.23) we have

61l = 3N a ™A= .|
and we have || x| = || ||x, <1 and A, /A < 1, it follows that
P(D.N D) = P(|n./h = X|| <&, || i + §) /B — X <€)

= P(|n/hr — %\ =& it /B — | =& + || & /|

< P(|n./h — Z|| < ¢, || /hr — Z|| S & + c0A”777F)
(3.24) (cro=3\"a (1 + ¢))

= P(|n-/h — %|| = & P(|| 7 /hr — X|| = &)

(¢’ = € + c1oA™"77F)

= P(D,)P(D,),

= (nr

where
= {w:||7r /b — x| s €}
and
€ =¢c+ cpA™"E

=e+ 3\ aF(l+e A< 2, by (3.15).
From (3.23) we have

E[|7#7 1 = rfly =1~ ET) &7 1]
=1—-9\2a A" E=1—-0,,,
and
|E[e70) = | rih| = |Zhatty ak|

= QA;Za_ZBjA_Z(r,_r)B = 0r,r’.

(3.25)
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We denote by R; and R;" a positive definite matrix (%)% -1 and its inverse matrix,
respectively. Then, under the condition (3.25), there exists a constant c¢;;, independent of
0. and any vector y = (yi, - - -, ¥;), such that

(3.26) [(R7'%, 7) = (7, 9)| < e 0. (3, )
and
det R, = (1 — 0,-) — (j! — 1)64;}
(3.27) Z (1= Orreg)’ — (! — DO,
=b11 as r— + o,
Therefore, by (3.26) and (3.27), we have
P(D,) < (2m)~4/%p; 42 f e WD gig

l&/h,—zl|=<¢
R,
(where R! is the inverse matrix of R = ( ) ) )
R

(3.28) = (27) —dl/Zbr—d/2 J’ e—(ﬁ,ﬂ)/2+cu0,,,»(ri,ri)dlz

|/, —zl|<e’
(setting (&z/h, — X)e = (0/hy — X)€’)

—dj/2p —d/2 —1x-g B\ dj
(3.29) = (27) Y20 (1 + o' ATEF)

X f e~ V2=cub et/ e=ghile' ~a)fel* i

o/, —x|<e

To obtain an upper bound of (3.29), assume that || 0/A — X|| <¢, | X|| = 1, and ' € A;
then, for sufficiently large r we have

Ie0/e = Zh (e = &) /e|l* = | 0 + croe ' A" "5(G = b 3) |

Z || 0 - 2c0e" AT B (| 5] + A | 2|

= || 0]? — 2¢10e AP + £) (2 + €) B2

= ||7))* = 6(1 + &)(2 + e)e "cuo(]| x|| — 3e)2A""Alog log A”

= || 7)1 — 6(1 + &)(2 + e)e cwol]| x || — 3e) 2A74# log log A&
(because the function A~ log log A* is decreasing for large x)

=|2]* — cn(r),
and
O, ||€'5/c — Zho(e — &)/e|)* < 6,,.(||20] + | ]| h)?

< 0,.(3 + 2)°h} = (3 + 2€)*9A;2a AR

(3.30) =27(3 + 2¢)* A 2a "2 (|| x| x — 3¢) 2A%4F log log A™+&

= cy(r).
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Here, recall that g, = 2(8 log A)™" log log r, so that lim, .ci2(r) = lim...ci3(r) = 0.
Therefore, from (3.29) and (3.30) we have

P(D.) < c,(2m)~4" J' 172 45 = ¢, P(D,),
16/h,— ]| <e

where
= brY (1 + croe \ATEF) Vefnen) * enl/2 |
asr— + o,
Step 6. For each r,
(3.31) Yr<r=r+greaP(D. N Dy) = d. P(D;),
where d, is a constant such that d, — 0 as r — + . Just analogously with Step 5, we have
det R; = b, = (1 — 0,,.1)" — (j! — 1)05}
= cy14 (independent of r by definition),

and under the assumptions of |i/h — X || <2, ||| <1, r<r <r+g. andr' € A we
have

O | T2 = 9N 2a 257 A2 + 2¢)°R2
= 27(1 + 2¢)°A\;2a" %% (|| x ||k — 3e) 2A7*£ log log A™#
= (| x|lx — 4e)*/4log log A4, by (3.15).
Therefore, it follows from (3.18) and (3.28) that

P(D,) < (27) Y21 #/? e~ (@m/2+enb @a) g
1@/ Ry —||<2¢

. _ . (N —92h 2 —4e)? 4, /4
=< (277)—01]/2014«1/2(2 + 48) djh;i/e (|2l —2¢)*h2/2+ (|| x| x—4¢) Zlog log A’ *#

= (27) VX2 + 4e) Ve *8V*(|| x || x — 3¢)~“(log log AE) V72

x g~ (Ilx—40)*(ogloga ~logen/2+ (| x| x—40)*/4logloga **
hence,
Yr<r=r+a,reaP (D, N Dy) < d.P(Dy),
where
d. = g-(2m) V%2 + 26) Vi ?3Y(|| x|k — 3¢) ¥(log log A™*) 72
. exp{—(]| x||x — 4¢)® (log log A — log cs)/2 + (|| x||x — 4¢)?/4-log log A7}
-0 as r— + oo,
Step 7. '
(3.32) P(lim suprea,rs+eDy) = 1.
By Schwarz’s inequality we have
(Cp=r=areaP (D))’ = (E[x(Upsr=qreaDr) (Tp=r=qreax (D)’
(3.33) = E[x(Up<r=qreaD))1E[(Tp<r=qreax(D;))*]
= P(Upsr=qreaDr) Ypsr,r<qrreaP (D, N D),
where x(A) is the indicator function of A. Applying Steps 5 and 6, we have
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Yo=rr=aqrreaP(Dy N D)
<Y pereqreaP(Dy) + 2 Yper<r=qr=r+arrreaP (D N D)
+ 2 Ypr<r=qr+a<rrreaP(D, N Dy)
= (1 + 2 supr=pd;) Yp=r=greaP(D;) + SUPr=pCr (Y p<r=q,rea P (D))",
Combining this with (3.19) and (3.33) by letting q go to infinity, we have
P(U,=preaD;) = 1/sup,=pc,11 asp— + o, (by Step 5).

Step 8. Conclusion. With probability 1, x is a limit point of {f.(f, w); n=1,2, ...}.

First, we recall from Step 4 of Lemma 1 that, with probability 1, there exists n, =
n1(e, w) such that f, € By for all n = n;. On the other hand, it follows from Step 7 that,
with probability 1, there exists a subsequence(n,,; £ =1, 2, ...} such that

(3.34) 1Z, (-, w)/hr, = Z(-) ||k, < &.
Next, combining (3.8), (3.9), (3.13), (3.16) and (3.34), we have
I £, (-1 @) = x|lc < suPosi=a (|| fo, (8, ) || + | x(2)]))

o (s ) = () e,
=126+ || fo, (-, @) = Z,, (-, @)/ by, e,
+1Z,(, @)/hr, = Z()lc, + | X = xc,
=e+e+|Z,(-, w0)/h, — Z()||x, + | X — x||x,
= 15e.
4. Real analytic version: Proof of Theorem 2. In this section we will discuss
nonrandom arguments. For ¢ > 0 and x € C, set
m(q; x) = m({0=<s= 1| x(s)| = o(s)/Vq})
and F(q) = sup:epm(q; x).
First, we will prove the following two lemmas concerning F(q).

LEMMA 3. F(q) is a continuous function of q. Moreover, we have the following
lemma. ’

LEMMA 4. 1>F(q)>0forq>1,F(q) =0 for1=q>0,limg.F(a) =1 and F(q)
is a strictly increasing function for g = 1.

ProOF OF LEMMA 3. First, we notice that the function m(q; x) on C is upper semi-
continuous with respect to x. In fact, we have

SUD e 1y M(q; X) = m({0 = s < 1; || x0(s)| = 0 (s)/ Vg — €))

L m(q;x0), aselO,

where U, (xo) is an e-neighborhood of xo. In addition, we have m(q; x/| x| x) = m(q; x) if
0 < || x]|x < 1. Therefore, it follows that there exists x, with || x, ||k = 1 such that F'(q) =
m(q; xq), for B is compact in C (Lemma 3 of [6]). Now, we will show that F'(g) is a right
continuous function. Since F (q) is a non-decreasing function, it is sufficient to prove that
there exists a sequence g, | g such that lim,_..F(g.) = F(q). Since B is compact, we can
find a sequence g, | g such that x,, converges to some element x, € B in C. It means that
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for any ¢ < 0 there exists an no such that || xo(s) || =|| x4,(s)|| — € holds for all n = no and 0
= s = 1. Therefore, we have

lim, o F(gn) = limy0wm(gn; Xg,)
=lim,..m({0 =s=1; | x0(s)|| = o(s)/ Vg, — €})
=m{0<s<1;|x(s)|| = o(s)/Vg —e}) | m(qg; %), aseO
=F(q).

This shows that F(q) is right continuous.

It is rather difficult to show the left continuity of F(gq), for it depends on the property
of the r.k. Hilbert space H. We denote by H (I) the closed linear subspace of H spanned by
{R(t,-); t € I} for a subset I of [0, 1]. Since H ([0, 1]) = H, it follows that for any ¢ > 0
there exists x’ = (x4, .-+, x4) € B, where x{(-) =Y} a!” R(t, -) such that

4.1) F(q)=m(q;x") +¢/2.

Since R (¢, -) does not belong to H([0,t —e] U [t + ¢, 1]) forany 1=¢t+ e >t — e =0, there
exists an interval I, whose length is less than ¢/2, such that || x'/K(I°)| x is positive but
strictly less than || x’||x (< 1), where x’/K (I¢) denotes the projection of x’ onto the closed
subspace K(I°) =H(I°)® -.. ® H(I°), I° = [0, 1] — I. Now, set

x' = x1 + x5,

and x” = x1/|| x1| kx, where x] = x’/K (I°) and x3 is the orthogonal complement of x’. Then,
we have || x1||x < ||x’'||x = 1 and || x”||x = 1. Since x% is orthogonal to K (I°), this means
that x5(¢) = (0, ..., 0) for t € I, so x”(¢) = x'(¢)/|| x1 ||k for ¢t € I°. Combining with (4.1),
we have

F(q)<¢/2+ m(q; x’)
<e+m({s€I;||x'(s)]| = o(s)/Vgq})
=e+m({seI5]|x"(s)|= o(s)/M})
<e+ F(q|xi %)
=e+ F(q')forq|xilk<qg' <gq.
This shows that F'(q) is left continuous.

Proor oF LEMMA 4. We will prove Lemma 4 in several steps.

Step 1. F(q) = 0 for ¢ < 1. In fact, by Schwarz’s inequality, we have
4.2) x| = TE: (x:(8))* = Tk (x:(-), R(s, <N
= o’(s) T |l x||E = o*(s) | % |k

Therefore, if x € B, {0 < s < 1; || x(s)|| = a(s) /g } is empty for any g < 1. This means
F(q) = 0 for ¢ < 1, and by continuity of F'(q) we have F (1) =

Step 2. F(q) > 0for ¢ > 1, and lim,_.+.F' (q) = 1. To see this, set y(-) = (R(¢, -)/o(t),
0, -+, 0) for a fixed ¢ > 0. Then; clearly we have | y(-)||x = 1,;F(q) = m(q; y) > 0, and
lim,,+.m(q, y) = 1.

Step 3. F(q) < 1for all g > 0. Since there exists an xg E B such that F'(q) = m(q; x,),
it is sufficient to show that forg>1landx € B, {0 <s $ 1; | x(s)| = o(s)/Vq} is isolated
from the origin. To show this, assume that there exists ajsequence s, | 0 such that || x(s,) ||
= o(s,)/q and sn+1/s, < 1/2. Then, we will find a contradiction. In fact, define y™ =
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(¥, -++,y¥) € K as follows:
¥ =Y axis) R(s;, +),
and
(4.3) a; = (a’(s)) /)7,
where x;(s) is the ith component of x(s). Then, we have
(x, yM g =Y& (0 y)u = Y& Bim aixi(s)
(4.4) =Y aj]|x(s)||?
=Y, aioi(s)/q
=Y (jg) M+, asn— + .
On the other hand, by (4.2) we have
1y N = & N yillt = TE: B3 ajanxi(s)xi(s) R (s, 5e)
= Y7k gjarR (s, se) || x(s) || || x(se) |
= Y7k q;arR (s), sx)o(s)o(s)
=Yr GR)'R(s), s)/(0(5)0(sk))
=317+ 2 X <e(JR) 'R (s), 82/ (0(s7)0(s)).

By definition we have 2s, < s; for j < k; therefore, applying the inequality (3.20), it
follows that
(4.5) Iy™ k< ¥raj =+ 6T Tia 275

This means that || y™ | % is bounded; however, (4.4) and (4.5) contradict the Schwarz
inequality (x, y")x < || x|z | y™ e =] y" lx.

) Step 4. F(q) is strictly increasing for ¢ > 1. Since there exists an x, € B for each ¢
" such that F(q) = m(q; x,) and we have 1 > F(q) > 0 for ¢ > 1 by Steps 2 and 3, it follows
that m(q; x,) <m(q’; x;) < F(q’) for ¢’ > q.

Next, we will prove the following two lemmas, still concerned with nonrandom argu-
ments, on which the proof of Theorem 2 is essentially based. For a function fin C and a
continuous and non-increasing function % having a finite positive g of (2.2), set

m(t; h, f)=m({0=s=¢;| f(8)]| >0(s)h(s)}),
f(8) = f(¢/n)/(Nq o(1/n)h(1/n)), n=12, -
and ‘
@(t) = ft/n)/ (Vg o(1/n)hie/n)),  &>0.

Then, we have

LEMMA 5. Assume that for a fixed q > 0, the set {f.(t);n=1,2, ...} is pre-compact
in C and that all the limit points are contained in B, the unit ball of the Hilbert space K.
Then,

(4.6) lim sup,jom(t; A, f)/t < F(q).

LEMMA 6. Assume that for a fixed q > 0, and for each rational € > 0, the set {f<(t);

n=1,2, ...} is pre-compact in C and that the set of all the limit points coincides with B.
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Then,
4.7) lim supom(¢; A, f)/t = F(q).
ProorF oF LEMMA 5. It is sufficient for the proof to show a contradiction if we assume
that
(4.8) lim sup,om(t; h, )/t = F(q +¢) + 3¢
holds for some & > 0. From (4.8) there exists a sequence £, | 0 such that
(4.9) m(t.; b, f)/tn = F(q + ) + 2.

Now, take an integer %, such that (k, + 1)™' < £, < k;". Then, if necessary, choosing a
subsequence of {t.}, we can assume (from the assumption of Lemma 5) that {f; (¢); n =
1,2, ---} converges to some continuous x € B. This means that there exists r, such that

for all n = n, we have
(4.10) Ix = fi, llc = 0(e)(1/Vg — 1/Vg +¢).
On the other hand, letting I[x] = 1 if x > 1, = 0 otherwise, we have
m(1l/n; h, f) <e/n+ m({e/n<s=1/n;||f(s)| > a(h)h(s)})
1/n
=¢/n+ f I f(s)||/ (0 (s) h(5))] ds

(4.11) /n

=¢/n+n’ f I f(¢/n) ||/ (o(t/n) h(¢/n))] dt

1
<e¢/n+n? f I £ |/ (o (8) g7*/%)] dit.

Consider k, instead of n in (4.11) and take account of (4.10); then, we have
m(te; b, f)/te < m(k3Y By f) (k. + 1)
1
=m(k.; hf) +e+ f IT|| fv, )/ (o (£) g /*)] dt

1
=m(k:% b, f) +e+f I x ()| /(e (t) (g + &) /*)] dt

=mk:5 hf) +e+ F(q +¢).
This inequality, however, contradicts with (4.9) if we take sufficiently large n such that
m(k:' h, f) <e.
ProOF oF LEMMA 6. It is sufficient for the proof to show that for any x € B and any
rational ¢ > 0 (¢ < q)
(4.12) lim supn—..nm(1/n; h, f) = m(q — & x) — ¢

holds; recall that m(g; x) = m({0 < s < 1; || x(s)|| = o(s)/vq}) . From our assumption there
exists a subsequence {j,.} 7= such that {f{® (¢):n =1,2, ...} converges to x € B in C.
This means that there exists an ny such that for any n = n,

(4.13) lx = £2lle < o(e)(1/Vg — ¢ — 1/Vq).

By an argument to that around (4.11), we have
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Jam (1 Jn; by ) Z jam({e/jn = s = 1/jn; | ()| > 0 () h(5)})

1/jn
- f T A/ 0 (5) h(s))] ds
(4.14) e/

1
- f I A 1/ o i) Rt i) ] dit

1
= f IT £2 ®))/(e(t) g™/*)] dt.

Combining (4.13) and (4.14), we have
Jam(jas h, lzm({e=t=< 1| x(@)| = o(t)/Vqg —€})

=m(qg—¢x)—e for n=n,.

We have completed the proof of Lemma 6.

ProoF oF THEOREM 2. Since the function A(ef) has the same ¢ in (2.2) as A(t),
Theorem 1 is also valid for

{F(t, @) = Y(t/n, &)/ (Vg o(1/m)h(e/n));  n=1,2, ).

Therefore, we obtain the proof of Theorem 2 from Theorem 1, Lemma 5 and Lemma 6.
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