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ON A GENERAL ASYMPTOTIC INDEPENDENCE
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In a recent paper Barlow and Proschan noted that similar independence
results appeared both in life table analysis and in fixed interval analysis. In
this note we present a general asymptotic independence result of which these
results are special cases. Also some further applications are given. In essence,
our method may be described as follows: Assume that we are interested in g
quantities g1, ---, gs each constructed from a sequence of independent
random variables, and that these sequences are conditionally independent
given their random lengths. Then by the completion of each sequence with
independent random variables we obtain g independent sequences. Under
rather general assumptions we are able to deduce asymptotic properties of
the original sequence from the corresponding properties of the completed
sequences. In particular, we are often able to prove the asymptotic indepen-
dence of the quantities gy, - - -, g.

1. Introduction. In a recent paper, Barlow and Proschan (1976) noted that similar
asymptotic independence results appeared both in life table analysis (cf. Chiang, 1968,
Breslow and Crowley, 1974, and Barlow and Proschan, 1977) and in fixed interval analysis
(cf. Sethuraman, 1961, 1963a, b). The methods of proof were quite different. In this note
we shall show that the above results are special cases of a more general asymptotic
independence result.

In life table analysis the positive real line is partitioned into intervals I, = (a,-1, a.],
¢=1,.+-,8 with0=ay<a; < --- < agz=< w. Given n independent observations from the
life distribution F'(F(0—) = 0), let F,, be the corresponding empirical measure. Usually the
parameters of interest in life table analysis are the conditional probabilities of death, g, =
F[I,)/F(a,-.), estimated by §,= F,[I,]/F.(a;-1), £=1, ---, g; here F=1— F and F[I,]
= F(a,) — F(a,-1). Chiang (1968) shows that these estimators, suitably normalized, are
asymptotically independent and normally distributed. (Actually, he also shows that,
conditionally on F,.[I,] > 0 and F,.[I,] > 0, §,and g, are uncorrelated for finite samples.)
Breslow and Crowley (1974) extend the asymptotic result to the case of random censorship.

The asymptotic independence of certain reciprocals of sample means has been noted by.

Barlow and Proschan (1977). In particular, they show. that the normed interval failure rate
estimators,

(1.1) «/ﬁ[Fn[I,-] / f F.(s) ds — F[L] / j F(s) ds], ¢=1,--+,8

are asymptotically independent and normally distributed.

In a series of papers on fixed interval analysis Sethuraman (1961, 1963a, b) shows the
asymptotic independence of similar conditional sample means based on empirical mea-
sures. Let (Y, X) be a random vector taking values in (R* X &), where R* is the Euclidean
space of k£ dimensions and % is the set {x1, - - -, xz}. Furthermore, let (Y;, Xi),i=1, ---,
n, be independent random elements (r.e.’s) distributed as (Y, X) and assume that the
covariance matrix for Y is finite and that P(X = x) >0, /=1, -.., g. Let F, denote the
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empirical measure on . Sethuraman (1963b) shows that
1
(12) \/Zli; Z(i|X,=x/) Yt/Fn[x/] - E(Y I X= x/’):|) = 1) LR

are asymptotically independent and normally distributed.

The aim of this paper is to present a general asymptotic independence result applicable
both to life table analysis and to fixed interval analysis. In essence, our method may be
described as follows: Assume that we are interested in g quantities q1, -+, gz, each
constructed from a sequence of independent r.v.’s, and that these sequences are condition-
ally independent given their (random) lengths. Then by the completion of each sequence
with independent r.v.’s we obtain g independent sequences. Under rather general assump-
tions we are able to deduce asymptotic properties of the original sequences from the
corresponding properties of the completed sequences. In particular, we are often able to
prove the asymptotic independence of the quantities q1, «+ - , gg.

In Section 2 we give the general result and in Section 3 we prove the asymptotic
independence result in fixed interval analysis due to Sethuraman (1963a). We also indicate
an extension of that result. In Section 4 we study life table analysis proving the results of
Breslow and Crowley (1974) and Barlow and Proschan (1977); the latter result is extended
to the case of random censorship. Finally, in Section 5 we use our general method to
deduce an asymptotic independence result in the theory of semi-Markov processes This
result is of importance in e.g. reliability theory.

In the following we shall assume that a probability space, (2, &% P) is given and that it
is rich enough to make all studied random elements measurable with respect to the Borel
Field (B.F.)%

2. The general result. Let %, n = 1, be an increasing sequence of B.F.’s included in
% and (9., &), n = 1, a sequence of independent, identically distributed (i.i.d.) random
elements (r.e.’s) adapted to %, such that 7, takes values in some measurable product space
Y = X 4., ¥, and £, is a random binary g-dimensional vector such that P({,, = 1) > 0,
/=1, ..., 8.

AssumpTION A0. We assume that 7y, - - - , 7gn, the compbnents of 5., are conditionally
independent given §,.

Foreach /=1, ..., gand i = 1let &, be a measurable function on the product space
% taking values in some metric space #endowed with the topology induced by the metric:

h/i:@tfw% {=1"")g'

Also, let v/, /=1, .-+, g, n = 1, be integer valued functions measurable with respect to
%, such that v,, < n and let u,n, = Y,/-1 &:. Here and in the following, we supress the
references to £and n in v = »,, and p = p,, whenever the risk of misinterpretation is
negligible. In most applications we have » = n. Now, for each £(/=1, --. , g), let §sn, n
= 1, be the thinned sequence constructed from the sequence 7., n = 1, by taking away
those components 7., for which &, ; = 0. We shall be interested in the asymptotic properties
of the r.e.’s.

(21) lz/n=h/p.(ﬁ/1,"‘,ﬁ/u)) = 1)""g;

for an interpretation of these quantities in e.g. fixed interval analysis, see the beginning of
Section 3.

In order to obtain our main result in this section we shall introduce g auxiliary
independent sequences of independent r.e.’s {,,, i =1, /=1, --., g, taking values in %,
being independent of U %, and each with distribution equal to the conditional distribution
of 7,1 given £ 1 = 1. We may now for each n =1 and /(¢/=1, ---, g) construct a new
sequence of r.e.’s:
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ﬁ/i, i=1’...,‘u
) = , n=L

{/’i, i=‘u+1’...

By conditioning on &, j =1, - - - , n, it is immediately seen that for each n the g sequences
W j=1,¢=1,... g areindependent with i.i.d. components distributed as 1. Obviously,
we may write

li{’n=h/u(§({n1)y"'»§g:})’ £= 1’ cec, 8

We are now ready to make the following basic assumptions.

AssuMPTION Al. Assume that for each 4 /=1, ..., g, we have, as n — o (with the
usual abuse of notations) :

Urn = Prn($o1, oo+, $en) = Gr;

here —p denotes weak convergence and G,, /=1, -- - , g, are probability distributions on
H.

AssUMPTION A2. Assume that for each /=1, ..., g, a fixed sequence of integers m
= Msn, 1 = 1, exists such that, as n — o, we have m — o and

" Usn — ht’m(g(znl)) D] g-([n”)l)" —p 0.

From the independence of the sequences {¥?,i=1,¢=1, ---, g and from Assumption
Al we have that A, ({%, -+-, %), =1, ..., g, are asymptotically independent with
asymptotic marginal distributions Gy, - - - , Gg. Now, from Theorem 4.1 in Billingsley (1968)
and Assumption A2 it follows that i, -+, &g are asymptotically independent with
asymptotic marginal distributions Gy, - - -, Gg. That is the main result of this section. In
the following we shall exploit this simple but powerful result in a number of applications.

REMARK. It is obvious that at the price of heavier notations we could have formulated
the above results by using triangular arrays.

3. Fixed interval analysis. In order to prove the asymptotic independence result in
fixed interval analysis due to Sethuraman (1963a), cf. Section 1, we shall give suitable
interpretations of the quantities in Section 2. Let

_ Y,,—E(YnIX=.7C() if X,,=x/
fen 0 otherwise,

and

g - 1 if X,,=x;,
o 0 otherwise.

Then obviously the components 1, are conditionally independent given §,; thus Assump-
tion AO is fulfilled. Furthermore, let » = n and let the functions 4, be defined by

Bon(ys -+ 5 ya) = Yr(Ti1 yi/n).

Hence from the central limit theorem we know that Assumption Al is fulfilled and that
Gy, =1, ..., g, are normal distributions in R*. Also Assumption A2 is fulfilled for m =
[nP(X = X,)]; here [2] denotes the largest integer smaller than or equal to z. This follows
easily by a use of the Kolmogorov inequality (see e.g. the proof of Theorem 7.3.2 in Chung,
1974). The assumptions of Section 2 are fulfilled and hence the asymptotic independence
result follows from the observation that with the given interpretations, the quantities in
(1.2) are equal to those in (2.1) multiplied by quantities converging to positive constants
with probability one.
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The methods originally used by Sethuraman (1961, 1963a) consist, in essence, in
conditioning on the r.v.s &, = Vi (u,n/n — P(X; = x,)) and proving what is called UC*
convergence (weak, uniform and continuous convergence) with respect to Z, of the condi-
tional random vector (iZiy, - - - , ifg:). Using a limit theorem for joint distributions (Sethur-
aman, 1961), Sethuraman then deduces the given result.

Closely related results may easily be obtained by our technique. Assume e.g. that the
actual number of observations is random and that, based on the first i — 1 observations
and on X;, one may decide not to observe Y;. This will not cause any but trivial changes in
the above results as long as the total number, pu.,, of observations contributing to the
conditional sample mean, given X = x,, fulfils y,./n — 8,as n — 0. The described situation
may occur if e.g. observations are costly.

4. Life table analysis.

4.1. Preliminaries. Before applying the results of Section 2 to various life table
situations, we shall give a basic result. Assume the model given in Section 2 and let %, =
R? and 1, = (7/n, 8:»). Later, we shall interpret 7,, and §,, in life table situations as
certain characteristics of the nth individual in the ¢ th time interval. We shall assume that
the random vector (7,,, 8,») has finite second moments, and that &, fulfils the requirements
of Section 2.

Now, let {;; = (¢;:, d;;) be defined as in Section 2, and let

Uon =Pon(Crny ooy Gon) = VN (Bhet dpi/ 301 bri — E(dr)/E (t1)).
Then

_{E@ )Y (i — E(d/y) — E(dy1) Yim (8 — E(t:1)))/Vn

E(t;) Y1 tri/n ’
and thus, it is easily seen that u,, is asymptotically normal with mean zero and standard
deviation a,, where

s E*t:)V(d:1) + EXd: ) V(t1) — 2E(d: ) E (t:1)cov (b1, dr1)
(4.2) 0, = B0 .

(41) Usrn

Hence Assumption Al is fulfilled. We also have, if u/n —p 8,> 0 as n — oo, that
| wetnoy — ten| —p 0.

The proof of this is a simple application of the Kolmogorov inequality (cf. the proof of
Theorem 7.3.2 in Chung, 1974). Hence also Assumption A2 is fulfilled and &, £ =1,

., &, are asymptotically independent and normally distributed. We are now ready to
prove asymptotic independence results in various life table situations.

4.2. The Breslow-Crowley result. Breslow and Crowley (1974) studies a model with
random censorship, i.e. each random observation is bivariate, (Z,, A,), where Z, may be
interpreted as

Z, = min(Z}, X.,)

and

A1 Z=28
"~ 10 otherwise;

here Z% has c.d.f. F, and X, the censoring variable, has c.d.f. H. The quantities of interest
are

g.=F[I,]/F(a,), /=1, ..-,8;
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here I, and a. are defined as in Section 1, and for any c.d.f. G we use the notation G =
1 — G. For more details on this model see Breslow and Crowley (1974). We shall interpret
the variables in the last subsection in the following way:

8= 1 if ZiEI/ and Ai=1
710 otherwise,

and
Tei =&~ Werif2;
here
wﬁ={1 if Z€I and A=0
0 otherwise,
and

g _ 1 if Z;> Qs
7~ 10 otherwise.

The traditional life table estimator of g, is given by

g Zir 0t
Zz=1 Tei

Hence from the last subsection we infer the asymptotic independence and normality of the
quantities

nG.—q¥), t=1,-,8
here ¢¥ = E(8,1)/E (,1). The asymptotic variance is easily calculated from (4.2).

4.3. The Barlow-Proschan result with random censorship. We shall generalize the
Barlow-Proschan result to the case of random censorship, i.e. we shall use the same model
as in the last sub-section, but we shall interpret 7., as

Z,
T = f 1;(s) ds;
0

here 1;(-) is the indicator function of the set I. In life testing terminology 7,, may be
interpreted as the total time generated by the ith individual in the interval I,. A natural

(naive) estimator of the interval failure rate }_V,
A= F[I/]/f F(s) ds,

& =1 8s;
)\,,=_2 1%

E?=1 'T/i.

is

From Subsection 4.1 we know that

= E@)/E(r), =1, .-+ ,8

are asymptotically independent and normally distributed, if the first and second moments
of (8,,, 7.) exist and are finite. This is trivially the case for /< g — 1. We assume that
the requirement is fulfilled also for /= g. It is of some interest to investigate the consistency
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of A.. From the definitions of 8,1 and 7,1 we obtain
E6/) = f FI(S) dF(s)/(H(a/—l)F(a/—l))’

E(r.1) = f I—{(S)F(S) ds/(I_{(a/—l)F(af—l))~

Hence it is easily seen that A, is a consistent estimator of A , if the quantity B

5, EG _ J

’

dF(s) f H(s) dF (s)

A a1

E(T“) - as _ ar _ _
f F(s) ds f H(s)F(s) ds

=1

’

is equal to zero. Since

f f(s)F(s) ds f dF(s) — f F(s) ds f H(s) dF(s)

¢—~1 /—1
fﬂ/
a

=1

B

’

F(s) dsf H(s)F(s) ds

we have B = 0 if H is constant in I,, i.e. if there is no censoring in I,, or if the failure rate
function, r(s) = f(s)/F(s) (assuming the pdf f exists) is constant on I,. It is also easily seen

that i{ is biased if e.g. the failure rate function is strictly monotone. The case of no
censoring was studied by Barlow and Proschan (1977) and the case of constant failure rate
in each interval was studied by Crow and Shimi (1977).

5. Semi-Markov processes. We may apply our result in Section 2 also to the case
when e.g. a semi-Markov process is observed during a long time period. We give the
following simple formalization: Assume that the imbedded Markov chain takes a finite
number of states, Sy, - - - Sy, and that the holding time in state S; has cdf G;. Now, assume
that we want to estimate the transition probabilities of the Markov chain and the means
of the holding times after a long period of observation of the process. Assuming that the
second moments of the holding times exist an almost straight-forward application of the
results in Section 2 provides us with the asymptotic distribution of the vector of maximum
likelihood estimators suitably normalized, as T, the time of observation, tends to infinity.

It might be worth noting that the alternating renewal process is a special case.
Alternating renewal processes occur naturally in the study of availability measures in
reliability theory, cf. e.g. Barlow and Proschan (1975).
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