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WANDERING RANDOM MEASURES IN
THE FLEMING-VIOT MODEL

By DoNaALD A. DawsoN! aAND KENNETH J. HOCHBERG>

Carleton University and Case Western Reserve University

Fleming and Viot have established the existence of a continuous-state-
space version of the Ohta-Kimura ladder or stepwise-mutation model of
population genetics for decribing allelic frequencies within a selectively neutral
population undergoing mutation and random genetic drift. Their model is
given by a probability-measure-valued Markov diffusion process. In this paper,
we investigate the qualitative behavior of such measure-valued processes. It
is demonstrated that the random measure is supported on a bounded gener-
alized Cantor set and that this set performs a “wandering” but “coherent”
motion that, if appropriately rescaled, approaches a Brownian motion. The
method used involves the construction of an interacting infinite particle
system determined by the moment measures of the process and an analysis of
the function-valued process that is “dual” to the measure-valued process of
Fleming and Viot.

1. Introduction. In a recent paper, Fleming and Viot (1979) have introduced a
probability-measure-valued stochastic process in a variation of a model for the distribution
of allelic frequencies in a selectively neutral genetic population. In this paper, we introduce
techniques for the study of the qualitative behavior of such processes. We then proceed to
analyze in detail the local structure and qualitative behavior of the Fleming-Viot model.

The paper is organized as follows. In Sections 2 and 3, we outline the foundations of the
theory of probability-measure-valued processes and introduce the qualitative notions of
microscopic clustering and macroscopic coherence for such processes. Sections 4 and 5 are
devoted to a summary of several relevant models in population genetics, including the
Ohta-Kimura stepwise-mutation model and its continuous-state-space analogue, the Flem-
ing-Viot model. Section 5 also contains a description of the function-valued process that is
dual to the measure-valued Fleming-Viot process. In Section 6, we introduce two basic
tools used in our analysis of these processes, namely, an infinite system of interacting
particles which arises from the partial differential equations satisfied by the moment
densities, and the empirical moments of the random distributions. Section 7 establishes
the principal qualitative features of the Fleming-Viot model, including the tendency to
cluster at microscopic scales and the long-term coherence of the random distributions.
Finally, in Section 8 we complete the qualitative description by identifying the asymptotic
behavior of the wandering random probability distribution at large time scales.

2. Mathematical formulation of probability-measure-valued processes. We
begin by considering S = R? U {}, the one-point compactification of R¢, #(S), the
o-algebra of Borel subsets of S, and the space M;(S) of probability measures on S furnished
with the topology of weak convergence of probability measures. M;(S) serves as the state-
space for the family of probability-measure-valued Markov processes. Let & = C([0, ),
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M;(S)) and 2P = D([0, ), M:(S)), the spaces of functions mapping [0, ») into M;(S) that
are, respectively, continuous and right continuous with limits from the left. We consider
the canonical process X:[0, ©) X € — M;(S) (or alternatively, X:[0, ) X & X #(S) —
[0, 1]) defined by X (¢, w, A) = w(t, A) for A € B (S), w € Q, t = 0. The distribution of a
probability-measure-valued diffusion process is determined by a mapping p — P, from
M, (S) into IT(2), the space of probability measures on .

The stochastic processes described below are characterized as the unique solutions of
measure-valued martingale problems on { in the sense of Stroock and Varadhan (1979). A
martingale problem on Q is prescribed by a pair (L, 2 (L)), where L is a linear operator
defined on the linear subspace 2 (L) of C(M:(S)). A solution is the distribution { P,:u €
M;(S)} of a stochastic process which satisfies the conditions

(2.1) P(X(0)=p)=1, and
t
(2.2) for Y€ D(L),Y(X(t) — J’ Ly(X(s)) ds is a P,-martingale of each u € M, (S).
0
It can be shown (see Fleming and Viot, 1979, page 835) that a unique solution of such a
martingale problem defines a Markov, Feller diffusion process with state-space M;(S).
The operators associated with diffusion processes with values in M;(S) have the form

(23)  Ly(p) = f A (8 (p)/dp(x))u(dx) +J J (8% (1) /81 (x)8 ())Q (w2 dx X dy),
S S JS

where
Y (u)/8pX) = lim,jo(Y(p + &8:) — Y(u))/e,
Q:M,(S) > M;(S X S) (quadratic fluctuation functional).

A is the infinitesimal generator of a strongly continuous Markov semigroup on Co(R¢),
where Co(R? is the space of continuous functions on R which vanish at o, and §,
represents a unit mass at the point x € R

3. Qualitative properties of M;(S)-valued stochastic processes. At a fixed time
t, an M,(S)-valued stochastic process X (¢, dx) is described by a random probability
measure. We introduce the notion of clustering to describe the structure of a random
measure at microscopic scales. The concept of microscopic clustering can be intuitively
described as follows. Consider a population of N, individuals distributed in a cube V C R
which is subdivided into I'? congruent disjoint subcubes. We assume that Np > I'¢ and
count the number of subcubes N(I') that are occupied. If the distribution is uniformly
random, that is, Poisson, then the number of occupied subcubes is of the order of I'?. If
N(T')/T? <« 1, then the population exhibits a high degree of clustering. The phenomenon
of clustering is seen dramatically by considering the continuous diffusion limit and
identifying the size of the set on which the measure is concentrated. In order to give a
precise formulation to the idea of the size of such carrying sets, we introduce the notion of
the Hausdorff-Besicovitch dimension of support of a random measure.

Given a bounded Borel set E C R%and 8> 0, 8 > 0, let

(3.1 AZ(E) =inf, Y, (d(S))",

where d(S,) is the diameter of the set S; and = {{S,}:E C U,S,, d(S.) < § for each i}.
Then the Hausdorff f-measure of E is defined by

(3.2) AP(E) = lims_oAR(E).
The Hausdorff-Besicovitch dimension of E is defined by
(3.3) dim E = inf{8 > 0: A¥E) = 0} = sup{8 > 0: A#(E) = »}.

Note that 0 < dim E < d, and if E has positive Lebesgue measure, then dim E = d. For
comprehnsive references on Hausdorff measures and Hausdorff-Besicovitch dimension,
refer to Federer (1969) and Rogers (1970).
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Now consider a unit cube V C R? which for each n = 1 is subdivided into I'¢ equal
subcubes of volume I';% where {I';:n = 1} is an increasing sequence of non-negative
integers. The ratio of the diameter of the subcubes to that of the fixed cube Vis I';".

Consider the set B obtained as follows:

By = V, B.CB,_, for n= 1,
B, is a union of N, disjoint subcubes of volume I';¢, and
B= n;.:=o Bn.

Then B is said to be a generalized Cantor set.

LEMMA 3.1. For the set B defined above,
(3.4) dim B = lim inf,_,.(log N,/log I"»).

Proor. Ife>0and

B = (1+ ¢ lim inf, ,.(log N,./log I,),

then
logA£-1(B) < —¢ log N, + ca,
where ¢ is a finite constant. Therefore, letting n — o, we have
AA(B) =0.
Hence
dim B = (1 + ¢) lim inf,_,.. (log N,./log I',).

Now let Y be a random measure on V. Given ¢ > 0, let

(3.5) N(Y)=min{n: 3, Y(v;) = Y(V) — ¢},

and

(3.6) K= UK v,

where {vi:ii =1, 2, ---, N5, (Y)} is a disjoint cover consisting of the given subcubes of

volume I',¢ achieving the minimum in (3.5).
LEmMaA 3.2. (Dawson and Hochberg, 1979). Assume that
(3.7) P((log Ni#(Y)/logT,) =p(1 +m,)) =1 — e,

where e, | 0,7, | 0, and ¢/, | 0 as n > o, Then there exists a random generalized Cantor
set B(w) such that

(3.8) Y(w, B(w)) = Y(w, V), a.e. w,
and
3.9) dim B(w) <p, ae. w.

The smallest p satisfying (3.8) and (3.9) is said to be the Hausdorff-Besicovitch
dimension of support of the random measure Y on the set V.

The long-term behavior of an M;(S)-valued stochastic process X (¢, dx) can be classified
as either coherent or dispersive. The process is said to be coherent if for every ¢ > 0 there
exists £y, 0 < ¢y < o, with the property that for each ¢ = ¢, there is a random sphere S, (¢)
with center x (¢) and radius R.(¢) which satisfies

(3.10) x(t) = xX (¢, dx), and f | x| X (8, dx) < o,
. Rd

Rd
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(3.11) PX(t w, S:(t,w)=1—-¢)=1,
and
(3.12) R.(t) 1is a stationary stochastic process.

The wandering motion of a coherent distribution can be described by the process
{x(t):t = t}. A process is said to be compactly coherent if (3.11) is also valid for ¢ = 0,
with some centering, not necessarily that prescribed by (3.10). A process that is not
coherent is said to be dispersive.

4. Stochastic models in population genetics. Consider a finite population of N
individuals, with each individual having d observable numerical characteristics (e.g. height,
weight, shade of eye color, shade of hair color, shoe size, etc.). We assume that these
characteristics are measured in discrete units as integral multiples of some standard unit
m. The “type” of an individual is determined by the set of the d characteristics; thus, an
individual’s type is represented by a vector & = (ky, - - -, ka) € Z% Let nx(t), k € Z% be the
number of individuals of type % in the population at time ¢ = 0. Let Z¢ denote the one-
point compactification of Z¢, and M;(Z% the set of probability measures on Z¢. For ¢ =0,
let p(t) € M:(Z° be defined by

1 (4.1) p(t;k) = ny(¢)/N, ke Z°

We assume that { p(¢): ¢ = 0} is an M;(Z%)-valued continuous-time Markov process with
generator given by

(4.2) Lay(p) = Yux, £8i(P) ¥ (PY) — ¥ (P)],
where p € M, (Z% and ¢ € C(M,(Z")), the space of continuous functions on M, (Z%), and
pY(k) =p(k) — /N, if k=i
4.3) =p(k) +1/N, if k=j
=p(k), it ki

The coefficient g,,(p) denotes the rate at which an individual of type i is replaced by an
individual of type j, given that the distribution of the population is given by p. The
continuous-time Ohta-Kimura model for a randomly mating population of Moran type
with stepwise mutation is given by the coefficients

(4.4) &,(p) =[yp()p(j) + Dp(i)4,],
where vy >0, D > 0, and
6,=1, if |i—j]=1,
4.5) =-2d, if i=j,
=0, otherwise.

Note that the point « is assumed to be an absorbing point for the mutation process but a
regular point for the sampling process. In (4.4), y represents the sampling rate and D
represents the mutation rate.

Ohta and Kimura (1973, 1974) first introduced their model, known as the “ladder” or
“stepwise-mutation” model, to describe the distribution of allelic frequencies in a large but
finite population having a large number of possible genetic states. The model was
formulated to describe the distribution of allelic types distinguishable as signed electrical
charges in electrophoretic experiments. It should be noted that recently there has been
some controversy regarding the reliability of electrophoretic techniques in classifying
charge-states according to the stepwise-mutation model, as evidenced, for example, by the
recent contrasting papers of Ramshaw, Coyne and Lewontin (1979) and Fuerst and Ferrell
(1980) on electrophoretic detection of hemoglobin variants. The objections are aimed at
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the efficacy of electrophoresis for detection, however, and not at the mathematical
formulation of the stepwise-mutation model itself. Additional studies and variations of the
Ohta-Kimura stepwise-mutation model can be found in Brown, Marshall and Albrecht
(1975), Chakraborty and Nei (1976), and Kimura and Crow (1975, 1978). For a complete
discussion of stochastic models for selectively neutral allelic populations, refer to the book
of Ewens (1979).

Moran (1975, 1976) studied the behavior of the Ohta-Kimura model in the limit of large
population (N — =) and small mutation rate (D = O(1/N)). He observed that although
the Markov process has no stationary distribution, the relative genetic differences of
randomly chosen pairs of individuals tends to a steady state. Kingman (1976) established
that the joint distribution of the relative differences of the genetic states, measured from
a randomly chosen one, does converge to a limit. Thus, the distribution of alleles is
“coherent” in the sense that it tends to aggregate into a cluster rather than spread out like
a pure diffusion process, and the cluster itself tends to wander throughout the set of allelic
states. These results imply that for a fixed finite population size N, there is a limiting
random number of types A(N) as t — o. Kesten (1980) proved that, in the case D =
O(1/N), A(N) tends to  with N but at an extremely slow rate. This phenomenon also
appears in the “infinite alleles model” of Kimura and Crow (1964). In this model there is
no spatial structure, and each mutation gives rise to a completely new type. A stationary
distribution giving the limiting relative frequencies of countably many types exists and is
known as the Poisson-Dirichlet distribution (refer to Kingman (1975)), Watterson (1976)
and Ethier and Kurtz (1981)).

5. The Fleming-Viot model.

5.1 The basic existence theorem. In the studies of Moran, Kingman and Kesten on
the Ohta-Kimura model, the limiting behavior was analyzed under the assumptions that
the mutation rate is inversely proportional to the population size and the incremental
effect on the numerical characteristics due to a single mutation remains constant. Fleming
and Viot (1978, 1979) have introduced an alternative limiting form of the Ohta-Kimura
stepwise mutation model in which the mutation rate is constant, but the incremental effect
of a single mutation is assumed to decrease at a rate inversely proportional to the square
root of the population size. In order to obtain convergence to a nondegenerate diffusion
under the corresponding rescaling of the state space, the process must be observed at an
appropriately adjusted time scale. The Ohta-Kimura process { p(¢, -):¢ = 0} rescaled in
space and time leads to the M;(S)-valued process

(5.1) Yn(t, A) =3, /mrca p(N, j).

The generator L, of the rescaled process Yx has the following form:
(5.2) 2(Ln) is the linear space of functions of the formy(p) = f({¢, p)) wheref€E

C*R"), ¢ € Ck(R"), (¢, p) = X, ¢(x)p()), and x, = j/N'?,
Lyy(p) = 3o, N[f(($, ) — &(x.)/N + ¢(x,)/N) = f({s, p))]
-(yp@)p(j) + Dp(i)6,)
(5.3) = N’Df'({(¢, P))(E: pPD[Ti-i1=1 (%) — 2db (x:)1/N)
+ %y (($, D)) (T, POP()S% () + ¢7(x,) — 26 (x:)¢ (x7)])
+ (1/N)R(s),
where R (¢) is a bounded remainder term if | f” | = M < . Hence,
(64)  Lay(p) = Df' ({6, p))((Ad, P)) + " ({6, PV(", p) — (¢, p)°] + (1I/N'*)R(9),

where A denotes the d-dimensional Laplace operator.
In order to identify the limiting Fleming-Viot process, we require an operator which is
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formally obtained as a limit of the operators Ly. Let Q(L) be the set of functions of the
form

(5.5) Y(p) = f({P1, w), =+, {Pn, 1)),

where (¢, u) = [ ¢(x)u(dx), f(y1, -+, y») € CHR"), and ¢; € Ck(R"), the space of twice
continuously differentiable functions on R with compact support. The linear operator L
is defined by

(.6 LYW = DY £,(bn ), oy du ) (At )
Y Bt Dt Foy (1o 1), =+, (s (i 1) = (D05 (> )]

where f,,, f,,,, denote the first and second partial derivatives of f. The operator L given by
(5.6) is of the form (2.3) with

(5.7) A=A, and
(5.8) ’ Q(p:dx X dy) = pu(dx)d.(dy) — p(dx)u(dy).

THEOREM 5.1. (Fleming and Viot, 1979).

(a) The martingale problem associated with (L, 2 (L)) given by (5.5) and (5.6) has a
unique solution on Q. Let the M,(S)-valued Markov diffusion process determined by this
solution be referred to as the Fleming-Viot process and be denoted by X(-,"-).

(b) Let Yn(-, -) be given as in (5.1). Then Yn(-, ) = X(-, ) as N — o, where =
denotes convergence in the sense of weak convergence of probability measures on Q.

The remainder of this paper is devoted to the study of the qualitative features of the
Fleming-Viot process and its associated random measure. It follows from Theorem 5.1(b)
that the Fleming-Viot process can be interpreted as a diffusion approximation to the
Ohta-Kimura model in the case of small incremental mutational effect observed in an
appropriate time scale. In this respect, the qualitative results for the Fleming-Viot model
have implications for the Ohta-Kimura model itself.

5.2. The dual process. In this section we introduce a function-valued Markov process
which is the dual of the measure-valued Fleming-Viot process and which is used in the
proof of Lemma 6.9. We first introduce an algebra 2 (M;(S)) of functions on M:(S)
consisting of polynomials with bounded coefficients. 2(M;(S)) is defined to be the smallest
algebra of functions on M;(S) which contains all functions of the form

(5.9) Fr(p) =f ff(xl, oo an)plda) - - p(dan)

s s
where f € C(S"), the space of continuous functions on S". Equation (5.9) also defines a
family of functions 2 (%) on € = U%-=; C(S") as follows:

F.(f) = Fy(p).

The space € is furnished with the topology given by the inductive limit of the supremum
norm topologies.

An alternative formulation of the Fleming-Viot martingale problem is given by the
following pair (L, 9,(L)):

(5.10) Dp(L) = {Fy:f € UR=y C*(SV)}
where C*(S") denotes the set of infinitely differentiable functions on SV, and, for f €

Cc>(8"),

(5.11) LFf([.L) = j L) j Kf(x1, e, xN),u(de) e [.L(de),
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where

Kf(xi, -+, xn) =D Zjlil Ajf(xl, <o e, XN)
(5.12)
+v Z/I\il EQJ=1,k¢, [@(fx1, -« -, xn)) — flx1, -+ -, xN)].

Here A, denotes the action of the d-dimensional Laplacian acting on the variable x;, and
®,, is a mapping from C(S") to C(S"') given by

(5.13) (@) (>, =+, yv-1) = flar, « -, xnv)
where for j # &,

x.=y for i=1,...,(k—1),

xr=y, if j<k,

xp=y-1 if j>k,

x, =y if i=(k+1),.--,N.
Equation (5.11) also defines a linear operator L™ on 2 (%) such that
(5.14) L*F,(f) = LF¢(n).

The operator L* agrees with the infinitesimal generator of a Markov process .with state
space %, which we denote by {n,:¢ = 0} and is referred to as a dual process (not unique)
(cf. Holley, Stroock and Williams (1977)). The process 7, evolves as follows:

(a) by jumps from C(S") to C(SV!) if N = 2,

(b) at the time of a jump from C(S") to C(S™™"), a pair {J, £} is picked at random from
{1, ..., N} and fis replaced by @, f,

(c) between jumps it is deterministic on C(S™) and evolves according to the heat
semigroup on (R%)N, N=1,

(d) if it is in C(S), that is, a function of one variable, no further jumps occur.

LEMMA 5.1. Let v = inf{¢t:n, € C(S)}. Then
(5.15) Pi(r<owo)=1 forany f€E &.
Proor. This follows from elementary facts about pure death processes.

Let {T,:¢t = 0} denote the semigroup of operators on C(M;(S)) associated with the
Fleming-Viot process and { U, : ¢ =0} denote the semigroup of operators on 2(%’) associated
with the dual process {n,:¢=0}. Then for f € C(S"), the duality relationship is expressed
as:

T F(p) = EM<J’ cee ff(xl, e an)X(2 dxy) o0 X (8, de))
(5.16) = Ef(f e J' e, « ooy Xv)p(dx) - - - ,u(dem)>
= UtFAL(f)»
where N(t) = n if 5, € C(S®)\C(S™ ™).
REMARK 5.1. With the use of a truncation and limit argument, it can be verified that

the relationship (5.16) remains valid for f € C,((R%)"), the space of continuous functions
with at most polynomial growth at infinity.
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REMARK 5.2. The duality relationship (5.16) provides a proof of the uniqueness of the
solution to the martingale problem (L, Z,(L)).

6. The moment system.

6.1 Moment measures and the canonical representation. The distribution of a
random probability measure X on S is given by a probability law P on the measure space
(M(S), B (M(S))) where B (M,(S)) denotes the o-algebra of Borel subsets of M:1(S).

The kth moment measure M;(dx,, ---, dxi) is a probability measure on S* which
satisfies the equality

(6.1) E([[%=1 (¢, X)) = f cee f o1(x1) - -+ dr(xp)Mi(dxy, -+ -, dxz),
s s

where E denotes the expectation operator and ¢; € C(S).
Note that {M}: % = 1} form a consistent family of probability measures, that is,

(6.2) Mi(dxy, -+, dx—1, S, dXji1, ++ , dxx) = Mp—1(dx1, < -+, dxi1, d%s1, -+, dx).
Also, for each &k, My(- , --- , -) is an exchangeable probability law on S*: that is,
Mi(Ay, -+, Ar) = Mi(Anqy, -+ 5 An)

for every permutation 7. It follows from Kolmogorov’s extension theorem thét there exists
a probability measure P* on (*, # *), where &* = S and # * denotes the P*-completion
of the product o-algebra, such that

(6.3) P*(A; X Ay X -++ X A) = Mi(Ay, Ay, -+, Ap)

for Ay, -+, Ar € B(S). In turn, P* is the probability law of a sequence of exchangeable
S-valued random variables {Z,:% = 1}. The random variables Z; can be viewed as the
locations of a countable collection of particles in S.

A permutation 7 of the non-negative integers is said to be finite if 7 (rn) = n for all but
finitely many n. Given such a =, there is an induced mapping 7* defined on &* by 7*w*(n)
= w*(7(n)) for w* € Q*. Let @ = {#*:7 finite}. The sub-o-algebra of #* defined by

&={B:BEZ* P*(#*BAB) =0 forall =*€ @},

where A denotes the symmetric difference, is known as the o-algebra of exchangeable
events.

Let .7 denote the smallest algebra of subsets of S containing {0} and the countable
collection of rectangles of the form

%=1 [a;, b) with @, b;rational numbers.

Recall that o(«) = #(S).
We now construct a canonical mapping Y:2* — M;(S). For w* € Q*, A € &/, we define

(6.4) Y(w*, A) = lim,en ' [Y}=1 Ia(Zj(w*))], if the limit exists for all A € o/,
= §,, otherwise,

where I, denotes the indicator function of the set A. The following lemma establishes the
fact that Y*(. , -) can be extended to be a version of the random measure X. It is based on
the circle of ideas contained in de Finetti’s theorem on exchangeable random variables.

LEMMA 6.1.
(a) The limit in (6.4) exists for all A € o for P*-almost every w*.
(b) For every w* € Q*, Y(w*, -) has a unique extension to a probability measure on S.
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(¢c) The mapping w* — Y(w*, A) is measurable with respect to the o-algebra & for
every set A € % (S).

(d) The mapping Y :Q* — Mi(S) is measurable with respect to the o-algebra &.

(e) Forw* € Q*, A€ %(S),

(6.5) Y(w*, A) =P*(Zi€ A| &) (w*), P*as,

that is, Y(- , -) is a regular conditional probability given the o-algebra &. More
generally, for A, € % (S),

(6.6) P*Z,€EALKk=1,2,3,.--| &) =[[F=1 Yr(w* Ar), P*-as,

where Yir(w*, A) = Y(w*, A) for each k.
(f) For any set B € % (Mi(S)),

(6.7) P*(YeB) =P(X€EB),

that is, Y (- , -) is a random probability measure having the same distribution as
X.

Proor. By de Finetti’s theorem, the random variables Z,, conditioned on &, are
identically distributed independent random variables (a complete discussion of de Finetti’s
theorem can be found in Chow and Teicher (1978, page 220)). Part (a) follows from the law
of large numbers for bounded identically distributed independent random variables.

Y (w*, ) as defined by (6.4) is finitely additive on the algebra .o/. Furthermore, for any
set A € o and ¢ > 0, there exists a compact set K C A which is a finite union of closed
rectangles such that

lim inf,_on "[Ye1 Ix(Z, (0*)] = Y(0*, A) —¢, P*-as.

This implies that if {A.} is a decreasing sequence of sets in .o and Y (w*, Az) — 7 >0, then
there exists a decreasing sequence of compact sets K, C A, such that

1im inf, _..lim infp_wm " [$ 7 Ik (Z;(w*))] = Yn

and hence N%-; A, # ¢. This implies that the additive set function Y(w*, -) on the algebra
of is continuous from above at ¢. The existence of a countably additive measure
Y(w*, ), for almost every w*, on o() = Z(S) then follows from the Carathéodory
extension theorem. This completes the proof of (b) by noting that, if necessary, Y(w*, -)
can be redefined on a set of w* of P*-zero probability so that Y(w*, -) is a probability
measure for every w*.

The measurability of the mapping w* — Y(w*, A) for A € &/ with respect to the o-
algebra & is a consequence of (6.4). As defined, Y(w*, A) is a limit of &-measurable
functions and is clearly invariant under the action of 7* € @. Moreover, the class of A’s for
which w* — Y(w*, A) is &-measurable is closed under monotone limits. Hence, w* —
Y(w*, A) is &-measurable for all A € o(/) = % (S). This completes the proof of (c). Since
2% (M,(S)) is generated by functions of the form u — u(A) with A € % (S), part (d) follows
from part (c) and another standard monotone class argument.

Part (e) for the case of sets A, € of follows from (6.4) and the law of large numbers for
exchangeable random variables. Since both sides of (6.5) or (6.6) describe probability
measures which agree on generating algebras P*-a.s., they are identical P*-a.s.

To prove (f), it suffices to show that '

E(]7=1 X(A) = E*([[J=: Y(4),
where A;, -+ , A € 2(S). But
E([71 X(A)) = Mu(Ay, -+, Ap) = P*(A; X + -+ X Ap)
=E*(P*A1 X +++ X An| 6)) = E*([[™1 Y(w*, 4))),

and the proof of the lemma is complete.
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The probability space (2*, % *, P*) together with the mapping Y:Q* — M;(S)
constructed above are referred to as the canonical representation of the random proba-
bility measure X.

6.2 Moment equations for the Fleming-Viot Model. Let {X(t):t = 0} denote the
Fleming-Viot process, and let ¢1, - -+ , ¢» € C%(R?. Then, from the defining martingale
problem for the Fleming-Viot process, it follows that

£@) =[17-1 (¢, X&) — [[7=1 (¢, X(s))

(6.8) - f (D Y71 [Th=102) (Dr, X(w)) (D), X ()

+ v X1 D=t rws (dr, X)) pipi, X (1)) — (), X(w)) (s, X(u))]) duu

is a P,-martingale for every pand 0 = s < ¢.

Let My (s, p, t:dxy, - -, dx;) denote the 2th moment measure for X () given that X (s)
= u; that is, the family M,(s, -, t:-) denote the transition function moment measures.
They by (6.8),

f e f [17-1 ¢ (%)) M. (s, X(s), t:dx1, - -, dxn)
=[17=1 (¢, X(s))

+ f f e f (D Y51 {Tlees Sr(xe)Ad;(x))} — yn(n — 1) []7=1 ¢i(x))) du
(6.9) i

M, (s, X(s), u:dxy, -+, dxy)
+ Yf f cee f (X 0=1 Ximrumy [TE=10; Dr(x2)8 (x5 — %))

M, —1(s, X(5), w:]]R-10, dxz) du.

(6.9) implies that M, (s, u, - : -) satisfies the following system of partial differential equations
in the weak sense:

OM,(¢:dx1, ++ -, dx,) /3t = DYy AAM, (¢:dx, -+, dx,)
(6.10) —yn(n — DM, (¢:dx,, -+ -, dx,)
+ v Xi1 X Maa(t: [[ 1,50 d2p)S (2, — ;)
with the initial condition
M, (s; dxy, + -, dxn) = [[1=1 X (s, dx).

The initial-value problem given by (6.10) can be solved successively forn =1,2,3, --- and
t > s, as follows:

M, (s, X(s), t; dx1, « -+, dxn) = kex X (s) + v X1 Y=, jmi
(6.11)

t
f ke—u*[Mu-1(s, X(s), u; dxt, -+« dxo1, A2y, -+ -, d%) -0 (% — %) ] du,

where * denotes convolution and

k(X1 ++ +y %) = (4w Dt)y ™ exp(=Y 21 | x, |/4Dt)exp(— yn(n — 1)¢).
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This implies that for ¢ > s, M (s, X (s), ¢; dx1, - - -, dx,) is a probability measure which can
be represented in the form:

M, (s, X(s), t; dx1, -+, dxn) = [J J’ M (8= S; Y1y v 0oy a3 Xy * 005 %)

(6.12)
-X(s,dyr) -+ X(s, dyn)] dx; «-- dx,.

The probability transition density functions ma(u; -; +) are smooth off the diagonals
{(x1, -+, xn) 1 x: = x; for some i # j} and satisfy a system of equations of the form (6.10)
with the initial conditions

(6.13) Ma(0; Y1, + oy Y3 X1y =00y Xn) = [[1=1 8 (i — 32).

Given the transition moment measures M:(-, -, - : -), we can compute joint moment
measures at one or more times. For example, for 0 < s <,

E, (T (¢i X(©)) [15=1 (4, X(s))}

(6.14) = f e J’ TT51 i) i) man(s; 21, « = «5 Zan; Y1y +* 05 Yy U1y ++ 5 Un)

(= 85 U1,y o ooy Unj X1y oo oy Xn)pu(d21) « - - u(d220) [[7=1 dUi dx .

Note that if u(R9) = 1, p({o}) = 0, then the same is true for X (¢), that is, X (¢, RY) =1,
X(¢t, {}) = 0, a.s. for each ¢ = 0. This follows since the system of equations (6.10) has
solutions which are probability measures on (R)".

Equation (6.10), for fixed n, is the forward Kolmogorov equation for a Markov process
with stationary transition mechanism on (R 9y This Markov process is denoted by (Z1(¢),
.++, Z,(t)) and has probability transition density function m,(u; y1, - -+, Yn; X1, « ++, %a). It
can be interpreted as a process describing the motion of n particles in R“ as follows. Each
particle performs an independent Brownian motion in R< however at constant rate, one
particle disappears and another simultaneously splits into two, and the resulting particles
continue to move as independent Brownian motions in R?. Thus, for each n = 1, there is
a right continuous Markov process defined on (RY)" by the probability transition density
function m.(s; y1, « - +, Ya; X1, + * +, X2). We can construct a canonical version of this process
on (D", #") where D" = D([0, ), (R%)"), the space of right continuous functions having
left limits from [0, %) into (R?)". The only discontinuities occurring are those described
above, namely, the disappearance of one particle and the simultaneous binary fission of a
second particle. Two particles resulting from a binary fission are said to be siblings, and
the particle from which they split is said to be the parent. Note that the particle which
disappeared has no descendents. The descendents of a particle are all particles which can
be traced back through a sequence of binary fissions to that given particle which is also
referred to as a common ancestor of the descendents.

REMARK 6.1. There is also a relationship between the dual process {n,:t = 0} defined
in Section 5.2 and the N-particle process {Zi(t), - - -, Zn(t)} defined above. Recall that if
fec=(8Y),

L?F,(f) = F.(Kf),

where K is defined in (5.12). Since K is the infinitesimal generator of the process {Z(t),
«++, Zn(t)}, this implies that for f € C(S™)

Er(m)(xy, «++5 xn) = Bz n(f(Zi(2), + -+, Zn (2))).

6.3 Construction of an infinite particle system. In this section, we construct an
infinite particle system whose evolution is determined by the moment equations (6.10).
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We begin with the n-particle systems described in the last section. However, we now
insist that the initial particles be indistinguishable. The weak sense partial differential
equations (6.10) together with the symmetrized initial conditions

(6.15) M;(0; dxy, -+ -, dxy) = ()7 Y0 Tt 8 (X — Yor)s

where 7 denotes a permutation of (1, ---, n) and yi, ---, y» are n points in R have
probability-measure-valued solutions. The solutions M;, (¢; dx;, - - -, dx,) possess densities
my(t; x1, -+, %) for ¢ > 0, which are smooth off the diagonals {(xi, - - -, x,) : x, = x;, for
some I # j} (cf. (6.12)) and are symmetric functions of x;, « - -, x,.

We now construct a probability measure P” on (D", #") which describes the motion of
an n-particle process (Zi(t), - - -, Zn(t)) on R%. (Zi(t), - - -, Z,(t)) is assumed to be a Markov
process on (R?)" with transition probability density function m, (£; y1, « +, Yn; X1, * + +, Xn)
described in Section 6.2. The initial distribution is assumed to be the following:

(6.16)  P.(Zi(0) E dxy, - -+, Z,(0) € dx,) = (n!))7' ¥ (i1 8 (% — Yrw)p(dy)).

In other words, the n initial points are chosen to be a simple random sample from the
probability law u. Then the distribution at time ¢ is given by

PZ\(t) € dxy, « -+, Za(¢8) € dixn)

(6'17) = [(n!)_l EWJ e f mn(t; Yr(1)s ** s Yr(n)y X1, ** *, xn).u‘(dyl) e .U‘(dy'l)] dxl e dxﬂ

=mu(t; X1, + -, Xn) dxy + -+ dix,.
In terms of m;(¢;-), (6.10) becomes
ami(t; x1, « -+, Xn)/0t
=D Y Ami(t; x1, -+, X2) — yr(n — L)mi (¢ x1, -« -, %)
(6.18) + oy it Yt Ma—1(8; X1, + ooy Ximty Xivry o oo, X0)S (X — X5)

= Gimn(t; 2) + Gamyoi(8; +).

Since {m,(¢; x1, - -+, x,)} are the moment densities of the Fleming-Viot process, (6.2)
implies that for n = 2,

fmi(t; X1y v 00y Xn) dXn = mu_1 (8 X1, <00, Xnoi).

However, starting with the moment equations alone, the transition function for the
Fleming-Viot process can be constructed as in Lemma 6.1 (without prior assumption of
the existence of the process). It is therefore instructive to provide an independent proof of
the consistency of the family of moment densities {m(¢; x1, - -+, x)}.

LEMMA 6.2. Let m%_1(¢; x1, +++, Xn—1) = [ mu(t; X1, + + +, Xn) dxn. Then

my_i(t; X1, ++ oy Xno1) = Mp—1(t; X1, +++, Xn—1) forall t=0.

Proor. Integrating both sides of (6.16), we obtain m}_;(0; x1, «+ +, Xn—1) = m5_1(0; x1,

.+, Xn—1). Next, we integrate both sides of Equation (6.18) to obtain the equations
omi_1(t; %1, +++, Xn-1)/0t

=D Yt Amioi(t;x1, oy Xum1) — yr(n — DmE_1(E; 21, -+, Xno1)

+ oy M1 N he1 i f Mmu-1(E;%1, <+, Xim1, Xiv1, *++, Xn)8 (%, — X;) dXn.
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But the last term on the right-hand side of (6.19) can be rewritten as follows:
YISt Bt e ma—a(t; 21, + o) Xjm1, Kya1, + o 05 1) (X — X3)
+ Yt mioa (8%, e, Xnmr) J' 8 (x; — x,) dxn
+ Y52 f my_1(E; X1, «+ o, X1, Xja1, + o0, X)8 (X — Xn) dxn]
= y[ Y B2l i Mo (B3 X1, « v vy Xjm1, Xja1y =+, Xne1)8 (25 — X3)
+ (n — 1)mf,_1(t;x1, ey xn—l) + 2';;11 m;—l(t;xly sy Xj—15 X+, 00y Xn—1, xl)]
Using the symmetry of m;—i(¢;x1, -+, xn—1) and the fact that n(n — 1) — 2(n — 1)
= (n —1)(n — 2), we obtain
o(mi-1(t;+) — mi_1(t; -)) /ot = Gi(mn-1(t; -) — mi—1(¢; )
(6.20) + Ga(mp—a(t; <) — mi_o(t;-))
—2(n — 1)(ms—1 (£;+) —mi—1 (¢5+))
and
(m3-1(0;+) = mx-1(0;-)) = 0.
It can be verified by an induction argument that the unique solution of the initial value ,
problem (6.20) is (m}i—1(¢; -) —mj-i(t;-)) =0forallt=0and n= 1.
We now confine our attention to the interval [0, ). Let D} = D([0, t], (R%)™), and
F 7 the completion of the o-algebra generated by {Z(s):0 < s =< ¢}. Let 7, denote the time
of the pth discontinuity. Then 7, is a stopping time. Let Z(¢) = (Zi(t), - - -, Z.()) as above.

Then Z(7,) and Z(7,—) are % -measurable (refer to Dellacherie and Meyer, 1978; 1V.33,

1V.64).
Particles m and % are said to have a common parent m at time ¢, for the sample history

w if for some p = 1,
7o (w) = to,
Zn (@, p(0)) = Zi(w, Tp(w)),
Zn (0, Tp(w)=) # Zp(w, Tp(w)—),
Zn(w, Tp(0)=) = Zn(w, 7p(w)),
Zm(w, +), Zr(w, -) are continuous on [7,(w), to].

At time ¢, for the sample history w, we define recursively the set of ancestors of a particle
m to consist of its parent and the set of ancestors of its parent. Two particles are said to
have a common ancestor if their sets of ancestors have a common element. We now let

Bl = {w: particles m and % have a common parent at time & for w},
B = {w: particles m and % have a common ancestor at time £, for },
and, for w € By,
T'mr(w) = sup{0 < t < t,: particles m and % have a common ancestor alive at time ¢ for

w}.
LEMMA 6.3. B, Bmr and Twy(-) are % -measurable.

Proor. The measurability of B, follows from the measurability of 7,, Z(r,) and
Z(1,—). The proof of the measurability of B, follows in a similar manner. Finally, note
that the event {7 = ¢} can be expressed in a form similar to that of B+ on the restricted
interval [¢, t]. The proof then follows in a similar manner.
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LEMMA 6.4. For n = 2, there exists a measurable mapping
@,: (D}, F1) — (DL, Fi7t)
such that P"(A) = P*(®;'(A)) for A € F37%.

ProoF. Given w € D, consider {Zi(w, &), + -+, Zn1(w, to)} € (RY)""". Starting from
this point, we can trace out an (n — 1) particle path backwards in time as follows. Except
at times of discontinuity, we retrace the original paths backward in time. At a time of
discontinuity 7 involving two of the (n — 1) paths, we add the particle which disappeared
at time 7, thus maintaining the total of (n — 1) particles. Continuing in this way, we reach
a subset {Z; (w, 0), -+, Z; _(w, 0)} of particles at time zero which are either ancestors of
Zi(w, to), +++, Zn-1(w, to) or particles whose deaths occurred at the time of birth of an
ancestor of Zi(w, t), -+, Zy-1(w, to). We then take the path {Z; (w, ) .-, Z; (w,t):0=
t < t}.Under an appropriate relabeling of (i1, - - -, i,—1), we obtain a unique path Z*(w, -)
={Zi(w, +), +++, Zi1(w, -):0 = t = &} € DY such that Z} (w, o) = Zr(w, to), k=1, -,
(n — 1). We then define

D, (w) = Z%(w, +).

The mapping @, is continuous in the Skorohod metric on DZ, and therefore it is
measurable. The distribution of Z*(¢) is given by m}_i(¢; -) as defined in Lemma 6.2.
Moreover, the process Z* (¢) is Markov since the evolution of an (rn — 1) particle subsystem
of Z(t), conditioned on no binary fission of the remaining particle, is Markov. Lemma 6.2
then implies that Z*(¢) has distribution P""', and the proof is complete.
In view of Lemma 6.4, the system (D7, #7) together with the mappings ®, form a
projective system. Therefore, there exists a projective limit, that is, a probability law P~
n (Dy, #7), where Dy = D([0, %], (R9*) where (R%)" is furnished with the product
topology, and mappings E,: Dy — D! such that P" = E,(P®). For a discussion of
Prokhorov’s theorem on the existence of projective limits and its extensions, refer to
Dellacherie and Meyer (1978; II1.52). The (R“)*-valued Markov process defined by the
triple (D7, #7, P*) is referred to as the infinite particle system associated with the
Fleming-Viot process.

LEMMA 6.5. Let Z(t) denote the ©-particle process constructed above on the interval
[0, %]. For fixed n < x let a(ty, w) denote the number of ancestors of (Zi(w, t), «--,
Zn(w, t)) alive at time t = 0. Then

(6.21) P(a(t) =m) = P(Tn < t),
where T, = 0 has Laplace transform:

(6.22) ¢T7:(s) = E(exp(—sT)) = {[[#=m+1 (1 + (s/yk(E — 1))}, s=0.

Proor. We begin with a study of the n-particle subsystem. We ignore the locations of
the particles and consider the process £(¢) which is defined by the number of jump
discontinuities in [0, ¢] for the n-particle process. According to Equation (6.10), this is a
Poisson process with parameter yn(n — 1). In fact, for each of the n(n — 1) ordered pairs
of particles, there can be associated an exponential alarm clock with parameter y such that
each arrival of the Poisson process coincides with the ringing of a clock. Since a Poisson
process reversed in time is also a Poisson process, it follows that the last discontinuity
before time ¢, occurred at time £, — 7.1 where 7, is exponentially distributed with mean
1/yn(n — 1). This means that at time &, — 7,1, two of the particles alive at time £, were
produced by a binary fission. Viewing the time-reversed process at this point, there is a
coalescence of two particles at their common birth place and time. Now we continue to
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follow backwards in time the histories of the (n — 1) ancestors alive at time (£, — 7,,1)—. At
this point there are (n — 1)(n — 2) remaining exponential alarm clocks, none of which have
rung prior to (¢ — 7,,1) (in reverse time). Thus the no-memory property implies that the
first of these rings after an exponential time 7,2 with mean 1/y(n — 1)(n — 2), independent
of 7,1. This clock rings at time £y — 7,1 — T,2. Continuing in this way, we reach the time
to— Th, Tw =Tn1+ +++ + Tnm-m), at which there are exactly m ancestors. Note that 7,,,
« e+, Tun—m are independent exponential random variables with means 1/yn(n — 1), - -+, 1/
ym(m + 1). Therefore,

(6.23) o (s) = E(exp(—sTr)) = {[[i=m+n (1 + s/yk(k — )y
Recall that
(6.24) to— Th =sup{t:Zi(t), - -+, Z.(ty) has =m ancestors at time ¢}.

Since T, is monotone increasing in n, we can take the limit

(6.25) Th(w) =lim, o Th(w).
Moreover,
(6.26) 97 () =l (8) = ([[immeny (1 + s/vk (R = 1)},

and the proof is complete.
Note that T’y is a finite random variable. In fact,

(6.27) E(T5) = ¥i-m+n (1/vk(k — 1)) < oo,
and
(6.28) Var(T5) = $i-imen (1/vk(k — 1))? < o,

Note also that we can extend the process backwards in time to negative time, if necessary,
to go back to the time £, — T'7 at which there is exactly one common ancestor. In this way
the infinite system of particles alive at time ¢, are the descendents of exactly one ancestor
at a finite time in the past. Thus we can speak of the “age” of the infinite system of
particles alive at time .

Extending this idea, we define the age process { A (t):t = 0} as follows:

A(t) =t —sup{s:0 = s =t Z(t) has exactly one ancestor alive at time s},
(6.29) if the set is non-empty,

= ¢, otherwise.

LEMMA 6.6.
(i) ZLA@)|A@) <t)=ZL(TT|TT <t), where ¥(-|-) denotes the conditional proba-
bility law.
(i) PA@)=t)=P(TY=1).
(iii) A(t+s)=A(t) +s.
(iv) ZL(A(t+s)|A(s)=r)isindependent of s if r<s.

ProoF. (i), (ii), and (iii) follow from the definitions (6.29) and (6.24). (iv) follows from
the definition (6.29) and the fact that Z(-) is a Markov process with stationary transition
mechanism.

Note that Z(0) can be assigned the same distribution as that of a random cluster whose
age is distributed according to Z(T7). In this case, the age process A*(¢) is a stationary
stochastic process with

(6.30) ZL(A*(t)) = L(TT), for —oo<t<oo,
Note that part (iii) of Lemma 6.6 implies that
(6.31) Supo<i=rA*(t) < o, with probability one.
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LEMMA 6.7. Given any T > 0, /(A(t + 8):0=s=T) = ¢(A*(s):0=s=T), as
t — o, in the sense of weak convergence of probability measures on D([0, T], R*)
furnished with the Skorohod topology.

ProoF. As a consequence of Lemma 6.5, we can associate a renewal process
{Sk: k = 0} with the infinite particle system Z(¢) as follows:

S() = O,
(6.32)  Sp+1 =inf {¢: all particles alive at time ¢ are descendents of exactly one
particle alive at time S,}.

The random variables (Sp+1 — Si) are independent, identically distributed non-arithmetic
random variables with distribution #(7}). Since they have finite means and variances, we
can apply the standard results of renewal theory to the sequence {S;} (refer to Feller,
1966, Chapter 11, or Athreya et al, 1978, for the required renewal theory). The desired
result is obtained by proving the existence, for any ¢ > 0, of an “e-coupling” of the processes
A(-) and A*(-). We begin by assuming that A(-) and A*(-) are independent. Then there
exists an almost surely finite random integer K such that | Sx — S%| < e. We then modify
the joint process (A(-), A*(-)) by coupling the hierarchy of Poisson processes of jumps of
the two processes after Sk, S%. This does not change the marginal distributions of the two
processes. Moreover,

(6.33) P(sups=s+cinfiy_g=.| A(s’) — A*(s)| > 0) =< P(Sk+1 > ¢)
and
lim, P(Sg+1 > t) = 0.

Thus
P(ps(A(s), A*(s):s=t)>2) >0 as t— oo,

where ps(-, -) denotes the Skorohod metric, and the proof is complete.
LEMMA 6.8. The stationary stochastic process A*(-) is ergodic.

Proor. This follows since it is a consequence of the proof of Lemma 6.7 that the
distribution of {A*(s) : s = t} is almost independent of {A*(s) :0 < s < T'}, for fixed T, for
sufficiently large ¢.

Thus if A(t) < t, we can interpret Z(t) as a random infinite cluster of particles which are
the descendents of a single particle, referred to as the founder, which begins to branch at
time ¢t — A(¢). In order to describe the past history of the particles alive at time ¢, we
consider the binary branching Brownian motion process {Z7(s):0 < s =< t} obtained by
deleting all particles at times s < ¢ which are not ancestors of particles alive at time ¢. Note
that Z}(s) consists of a single particle for s < t — A(¢). Also, conditioned on the age of the
cluster A(¢) = a, the times between branches {r.: % = 1} are distributed with joint density
function

(6.34) p(11, T2, +++) =¢ exp(—y 221;1 k(k + 1)), 22;1 T = Q,

where c is a normalizing constant.

6.4 Moment densities of the centered cluster. Fleming and Viot (1978, 1979) consid-
ered the quantity

(6.35) Il(t:£)=f ma(t; x, x + £) dx,
R4

which denotes the density of the relative genetic displacement of two randomly chosen
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individuals. I (¢; -) satisfies the partial differential equation
(6.36) ol /ot = DAL — 2yl + 2vy8(§).
As t — oo, I (¢; -) tends to an equilibrium value
Ii(o; §) = lim, o [1(¢; £)
which can be obtained explicitly using Fourier or Laplace transforms:
(6.37) Li(o0; &) = 22m)~2(c/| )" 'Ki-ap(c| £]), d = 2,
= Ye exp(—c|&|), if d=1, ¢=(2y/D)",

where K;_q/2(-) is the modified Bessel function (see Erdelyi, 1954, page 146).

In the same way, we can identify the k-particle displacements relative to a randomly
chosen one or, equivalently, the moment densities for the Fleming-Viot cluster centered at
a randomly chosen point. These are given by

(6.38) L(t; &, « -, &) EJ' Mps1 (L X, x + &1, -+, x + &) dx.
Rd

To obtain the stated identification, let 6,X(¢; -) denote the shift of X(¢; -) by the
displacement y, that is,

0,X(t; A) = X(t; {a — y:a € A}).

We now assume that the displacement Y is a random point in R? chosen according to the
probability law X(¢, dx). Then

E[H:;l <¢H 0YX(t’ '))] = J’ e f mn+1(t; Y, X1 + Yyt Xn + y)
(6.39) < o1(x1) <o Palxn) dxo - - - dx, dy

=J Jln(t; X1, vy Xn)1(x1) <o Pu(Xn) dxr - dia.

In this way we obtain an infinite sequence of exchangeable random variables describing
the random measure centered at a randomly chosen point. The limiting values

Li(; &1, ooy &) = limew L (85 &1y -y &)

can be obtained as in the example above. I;(; -, .-+, -) can be interpreted as the steady-
state moment densities for the randomly centered cluster. We note that the existence of
these limiting values is a reflection of the coherence of the Fleming-Viot process, which
will be established in another way in the next section. It also represents the analogue of
the result of Kingman for the Ohta-Kimura model, namely, that the joint distribution of
the relative differences of the genetic states, measured from a randomly chosen one,
converges to a limit.

6.5 The empirical moment processes. Consider the Fleming-Viot process {X(t):¢ =
0} in R% The empirical mean process is defined by x(t) = (x1(¢), - - -, x4(t)), where

(6.40) x(t) = J xX(t, dx), i=1,.--,d.
Rd
Similarly, the empirical covariance process is defined by

(6.41) vy (t) EJ x.5,X(t, dx) — x,(t)x,(t), i,j=1,---,d.
Rd
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The higher order empirical centered moments of X(¢) are defined by
(6.42) Ry, ra(t) = j [T (x — xi() X (¢, dx),
R
where k1, - .-, ks are non-negative integers. (6.42) can be rewritten as

(6’43) Rkl»"'»kd(t) = J’ e f g(x’ x(l)’ R x(NO))X(t’ dx)X(t, dx(l)) e X(ty dx(NO) )’

where
(6.44) glx, x, -oo, ™) = T[%0 1521 (20— x7)
and
No = Z‘f‘=1 k.

LEMMA 6.9. Assume that
(6.45) J' [ x| Mou (dx) < 0.
Then

(a) for 0 =t < o and any non-negative integers ki, - - -, ka,

E,(Rp,,...14(t)) <o, and
(b) limy By (Rr,,... kg (8)) = Thy,. kg

exists and is finite.

Proor. (a) From the dual representation (5.16) applied to the function g (cf. Remark
5.1),

(6.46)  E,(R,,...r(t)) = Eg( J e f Ne(X1, « -+, Xne)p (dx1) - (de(t)))-

Assumption (6.45) implies that
(6.47) f e f lg(x, xM, o) x™) | u (do)p (dxy) - -+ p (daw,) < oo.

Observing that the dual process preserves an initial polynomial growth condition, one can
verify using (6.47) that

(6.48) Eg( J ce J' Ne(X1, =+, Xnp)p (dX1) -+ - p (de(z))> < 0o,

which completes the proof of (a).
(b) Note that the function g is translation invariant; that is,

649) gn+a y2+a, -+, yno1+a) =83, ¥, -++, YN+1) forany a€ R

Observe also that if n(0) satisfies condition (6.49), then 7, satisfies (6.49) for all £ = 0. In
addition, any function g in C(S)—that is, a function of one variable—that satisfies (6.49)
is a constant. Then (6.46), Lemma 5.1 and the fact that the exponential distribution has
finite moments of all orders imply that
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limy o Ey(Ry,,... . (t)) = Eg( f nw(x).u(dx)> = Eg(n) < oo,

and the proof is complete.

REMARK 6.2. Using Lemma 6.9b, it is possible to prove an ergodic theorem for the
random cluster centered at the empirical mean. Then the collection {ry,...,,} form the
joint moment system of the expected steady state distribution of the cluster centered at
the empirical mean. As noted below in Remark 7.3, this is also a consequence of the results
of Section 7, which are obtained by different methods. The method of moments and the
analogue of Lemma 6.9b are used in a forthcoming paper of Shiga (1981) to obtain the
ergodic theorem for the continuous-time Ohta-Kimura model.

LEMMA 6.10. Assume that [ x?X(0, dx) < o for i = 1, .-+, d. Then the stochastic
process {x(t) : t = 0} is a d-dimensional square integrable martingale.

Proor. Apply the martingale problem requirement for the Fleming-Viot process to
the function Y(u) = (¢s, u). Then

t

(bn, X(2)) — J' (A¢n, X(s)) dsis a P,-martingale for each u € M, (R?).

0
Now choose a sequence ¢.(-) such that
|pn(x) | =200, oulx) =2 if |x|=<c. with ¢,— o, and
| Apn(x) | = M < o0,

Since E[ [ | x:| X(¢, dx)] = [| x:| mi(¢; x) dx < oo, and A¢,(x) — 0 pointwise as n — oo, the
fact that x,(¢) = (x;, X(¢)) is a P,-martingale follos from the dominated convergence
theorem. Moreover, by the hypothesis [ x7X(0, dx) < » and Lemma 6.9, it follows that

E(x}() = j j X yima(t; x, y) dx dy < oo,
Rd JRd

which completes the proof.
According to the Doob-Meyer decomposition for continuous square-integrable martin-
gales, there exist unique increasing processes <x;>>; such that
(6.50) x:(t)x;(8) — <x;, x;>>, is a P,-martingale,
where
KXy, x5 = B[ + x50 — K>y — <Kx>>], 1#
and

(6.51) x}(t) — <x>, is a P,-martingale.

LEMMA 6.11. <x,, x> = 2y [§ v;;(s) ds, and

t
Kxi>>; = 2y f vii(s) ds.

0

Proor. It suffices to prove the result for the case i = j. Consider the martingale
problem requirement for the function ¥(u) = (x;, u)% Then

t
(6.52) (x,, X(t))% — 2y f [(x%, X(s)) — (x, X(s))*] ds is a P,-martingale.
0
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Hence <x,>> =2y [ & vu(s) ds, and the proof is complete.

LEMMA 6.12. Assume that [ x/X(0, dx) < «. Then
(i) va(t) = (D/Y)(A — ™) + e [§ e dM,(s),

where M,(-) is a square-integrable martingale.
(ii) Let h,(¢) = E(v,(t)). Then

(6.53) limt—mohit(t) = D/Y’ lf Y > O)
lim, . hy(¢) =0 if i#Jj, v>0.
(iti) Au(t) = 2Dt if y = 0.

ProoF. Applying the martingale problem requirement to the function Y(u) =
(x.x;, p) — (%, u)(x;, u), we obtain that

t t
v, (t) — ZDSVJ’ (1, X(s)) ds + 2y f v,(s) ds is a P,-local martingale.
0 0

Hence for the case i = J,

t

(6.54) vu(t) + 2'}’j viz(s) dS = 2Dt + Ml(t),

0

where M,(-) is a P,-local martingale. The increasing process associated with the local
martingale M, (-) defined by (6.54) is given by (cf. Fleming and Viot, 1979, (5.4))

(6.55) <K M>, = f qi(s) ds,
0

where

(6.56) QL(S) = (r‘;k,l(s) - (rék,t (s))z))

and

rids) = f (x. — x(s))*X(s, dx).

Then under the assumption [ x;{X(0, dx) < o,

E(<<M¢>>/) = EI: j {I: f (xl - x,(s))“X(s, dx):l
0
2
(6.57) - [ f (x, — x.(8))X (s, dx)] } dS}

<o by Lemma 6.9.
Since
E(M:(t) — M} (0)) = E(KM,>>,) < o,

this implies that the local martingale M, (-) is actually a P,-square integrable martingale.
(i) then follows by solving the linear first-order differential equation obtained from (6.54).
Taking expectations, we obtain the differential equation

(6.58) Rl (t) — 2yh,(t) = 2D5,.

As a consequence of Lemma 6.8, we can assume without loss of generality that v, (¢) is an
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ergodic stationary stochastic process. In view of the erogodicity of v;(-), we can choose u
= 8. Then A;,(0) = 0 for all ¢, j. Solving Equation (6.58), we obtain

(6.59) ha(t) = (D/y)(A —e™),  hy(t) =0 if i#/.
Parts (ii) and (iii) then follow immediately from (6.59).

7. Clustering and coherence in the Fleming-Viot model.

7.1 The binary branching process with explosion at t,. Let X(t, dx) denote the
Fleming-Viot probability-measure-valued process. In this section, we establish the micro-
scopic clustering and coherence of this process.

We begin by summarizing the relevant results from the last section. Starting with the
moment equations, we have constructed an infinite system of particles in B¢, denoted by
{Z(t) : t = 0}. This in turn determines, for each #, > 0, a binary branching Brownian motion
process {Z}(s):0 = s < #}. All particles involved in Z} (s) are descendents of a founder
which has a first branch at time & — A (t). Z/(-) behaves like a pure birth process with
birth rates A, = yk(k + 1) and with explosion time #,. In addition, Z () consists of an
infinite collection of particles which provides a canonical representation of the random
measure X (¢, -) described in Lemma 6.1.

Recall that the binary branches occur at times ¢, — T3, k=1,2,3, .-- . Let 1, = T%
— T%+1. Then 7, has a negative exponential distribution with mean 1/y%& (% + 1).

LeEMMaA 7.1. {T7} satisfies the following inequalities:
(7.1) T? < 2log k/vk,
for all but finitely many k, with probability one.

Proor. We have

(7.2) P(rp,>§) = e H*+DE £,
Therefore
(7.3) P(r, > 2log k/yk(k +1)) = 1/k%

Then, by applying the Borel-Cantelli lemma, it follows that

(7.4) ™ < 2 log k/yk%,

for all but finitely many k, with probability one. Therefore,

(7.5) To=Y5mTr<Yi-m2log k/yk® = 2log m/ym,

for all but finitely many m, with probability one, and the proof of the lemma is complete.

7.2 The hierarchy of subclusters. The random measure X (%), or equivalently ZZ (%),
can be decomposed into a hierarchy of subclusters as follows. The infinite system of
particles Z} () can be decomposed into the n subclusters of particles consisting of all
those partlcles which are descendents of each of the n ancestors alive at time £, — T'. In
order to determine the relative sizes of these clusters, note that Equation (6.10) implies
that at the time of a binary fission, each existing particle has the same probability of being
chosen as the parent of the new particle.

Therefore, the probability that a binary fission will add a new particle of a given one of
the n types is proportional to the current proportion of particles of that type. Thus, the
evolution of the numbers in each of the n types is described by an n-type Polya urn
scheme. Let (P;, ---, P,) denote the limiting proportions. Let Y,—1 = {(p1, -+, pa):
p.=0,Y p; = 1}. Then the distribution of (P4, - - - , P,) is given by the uniform distribution
on Y, (refer to Dawson (1970) for a discussion of the limit behavior of Polya urn models).
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7.3 The Gaussian displacement process. The locations of each of the infinite set of
particles Z (ty) is determined at the time of its birth as follows. Because each of the
resulting particles of a binary fission is performing a Brownian motion in R with diffusion
constant D, the relative displacement performs a Brownian motion with diffusion constant
2D. Since in the binary branching process we label the particles according to the order of
their birth, in this setting we view one of the two resulting particles as the parent and the
other as the offspring. Therefore, the location of the £th new particle is obtained by taking
a Gaussian displacement D, with mean zero and variance ¢} = 2D T3 from the location of
its parent.

LEMMA 7.2. The displacement D, of the kth particle from its parent satisfies the
inequality

(7.6) | Dr| < 4(Dd/y)"*(log k/kY?)
for all but finitely many k with probability one, where | - | denotes Euclidean length.

Proor. D, is a d-dimensional Gaussian random variable with covariance matrix given
by o3I, where I is the identity matrix. According to Lemma 7.1, for all but finitely many
k,

(7.7) o7 < (4D/y)(log k/k), with probability one.
But for a d-dimensional Gaussian random variable N, (0 2) with covariance matrix ¢2I,

P(|Na(6?) | = x) = dP(N1(0?) = x/d"?) < (d*/27) ?ox 'exp(—x2/2do?).

Therefore,

(7.8) P(|Dx| > [(16Dd/v)(log k)*/k]"*) < c/k*(log k)'>,

where ¢ = d/2(27)"/2. Then applying the Borel-Cantelli lemma, it follows that
(7.9) | Ds| < (16Dd/y)"*(log k/k?)

for all but finitely many k&, with probability one.

7.4 Bounds on the subcluster radii. Let the n ancestors of the infinite system ZZ (¢)
alive at time # — T'7 be denoted by Z¥ ; (to — T7), ---, Z£,; (to — T7). To each of these
is associated an infinite subcluster at time f, denoted by {Z} ;:j € I,},k=1, .-, n. The
subcluster radius is defined by:

(7.10) R, = maxi<p=nSUpjen | Z%,;(t) — Z%,, (to— T3)|.

R, can be viewed as the maximal spread of the “genealogical branches” emanating from
(Zt,,, -+, ZE ) or, equivalently, the maximal length of the corresponding genealogical
chains. A genealogical chain is a sequence of individual particles, each of which is the
offspring of the preceding one. Let % denote the set of all genealogical chains.

LEMMA 7.3. Given § > 0, there is a constant c such that
(7.11) Ry, < c¢/N}*7%, with N,=k*"
forall but finitely many k, with probability one, where 7 is the smallest integer strictly
greater than 2 + 1/6.

Proor. LetdJ, =[to — TR,, to — T%,,,). Note that in this interval there are always at
least N, individuals alive in the binary branching process. Moreover N1 — N < cik'*"
for some constant c;. Let G, be defined by

(7.12) G, = max{r: chain C has r births in ¢J;, for some C € }.
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Recall that, looking backwards, the parent of a particle is chosen at random with all
existing particles having the same probability of being the parent. Therefore, the proba-
bility that a particle born in <J,, has as its parent another particle also born in JJ; is bounded
above by ¢, £'*"/k*>*" = ¢, /k. Hence, the probability that a given genealogical chain has r
births in o, is bounded above by (c;/k)". Next, € can be divided into N..; equivalence
classes of chains having the same histories up to time# — Tl,,,. At most cik'*" of these
equivalence classes has at least one birth in ;. Thus,

(7.13) P(Gr=r) < ck'".
If r=ro=3+ 1, then
(7.14) Yi=1 P(Gr = ro) < 0.

Therefore, applying the Borel-Cantelli lemma,
(7.15) G < 1o,

for all but finitely many k, with probability one. But according to Lemma 7.2, the
genealogical displacement from its parent of an offspring born in <J;, is bounded above by

| D,| = 4(Dd/v) *(log Nx/N¥),
for all but finitely many k. Therefore,
Ry, < Y%-m 4(Dd/y)"*ro(log N /Ni/*)
(7.16) < ¢z Y5-m (log k/E®*""?) < c3(log m/m™?)
< cs(log N, /N*®*7)
<¢/NY*?, since 1>2+1/9,

where c, ¢1, ¢z, c3 are constants, and the proof is complete.

Thus the random cluster Z{ consists of N, infinite subclusters whose relative masses
are given by the uniform distribution on Y» 1 and which are contained in spheres of radius
Ry .

n

7.5. Compact support and clustering of the random measure.

THEOREM 7.1. Let X (¢, -) denote the Fleming-Viot process in R%, and assume that
X (0) has compact support, with probability one.

(a) In any spatial dimension, X (¢, -) has compact support, with probability one, for
each fixed t > 0.

(b) Ford=3,t>0,X(t, -) has Hausdorff-Besicovitch dimension of support bounded
above by two, with probability one.

ProoF. (a) According to Lemma 7.3, the infinite collection of particles Z/ can be
contained in a large finite random cube V C R“ which can be assumed to belong to the
algebra .« of subsets of R“. Therefore, from the canonical representation given by (6.4), it
follows that

(7.17) X(t, V) =1 with probability one,

and the proof of (a) is complete.

(b) In view of (a), there is no loss of generality in restricting attention to the random
measure X (¢, -) restricted to a large cube V. Consider a subdivision of the cube V into
congruent subcubes of edge I';;! = N;'/2*%  where &’ is assumed to be rational so that the
subcubes can be assumed to belong to the algebra «Z. From Lemma 7.3 it follows that each
of the N, subclusters is contained in at most (¢ + 3)“ of these subcubes, so that the total
number of occupied subcubes is bounded above by (¢ + 3)“N,. Let B, € o/ denote the
union of the latter occupied subcubes: Lemma 7.3 implies that the infinite collection of
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particles is contained in

(7.18) B = U;-1 N3= B,.

Moreover the Hausdorff-Besicovitch dimension of B is bounded above by
(7.19) dim(B) < lim inf,_..(log N, /log(NY*™%)) < 2 + §”,

where 8” can be made arbitrarily small, by Lemma 3.1. According to the canonical
representation (6.4),N*2, B, € &/, and

(7.20) X(t w,N%2, B,) =1, k<ky <o, Esufficiently large,
for almost every w. Therefore, since X (¢, -) is a probability measure,
(7.21) X(t, w, B(w)) =1, with probability one.

Then the conclusion (b) follows from (7.21) together with (7.19).

COROLLARY 7.1. The Fleming-Viot random measure X (¢, -) is singular for t > 0, in
R d = 3, with probability one.

ProoF. This follows from the fact that in R sets of positive Lebesgue measure have
Hausdorff-Besicovitch dimension d. If X (¢) were absolutely continuous and carried on a
set B(w), then dim B(w) = d = 3, in contradiction to Theorem 7.1.

REMARK 7.1. According to Theorem 7.1, the microscopic scale distribution of three or
more genetic characteristics is subject to a high degree of clustering. Although this
clustering effect is brought into sharp focus in the continuous limit, it is also present in the
discrete case. For the original Ohta-Kimura model for d = 3 genetic characteristics we
have the following implication. If the incremental effect of a single mutation is sufficiently
small, then the type of clustering described in terms of nonuniformity of subcell occupation
frequency will appear at the scale of mean interparticle distance.

7.6. Coherence of the random measure.

THEOREM 7.2. The Fleming-Viot process X (t, -) is compactly coherent.

Proor. Let X*(¢) denote the random probability measure centered at the location
Z¥(t — A(t)) of the founder, that is,
(7.22) X*(t) = 0;)X(¢, -), where &(t)=ZF(@t—A®)).

It is a consequence of Lemma 6.7 that, assuming the appropriate initial condition, {X™*(¢) :
t = 0} is a stationary probability-measure-valued process. In particular, £(X*(¢)) is a
random cluster whose age A *(t) is distributed according to (6.30). Moreover, by Theorem
7.1, there is a random sphere S(¢) of radius R (¢) such that

(7.23) X*(¢, S(¢)) =1, with probability one.
Since X*(-) is a stationary stochastic process, it follows that {R(¢):¢ = 0} is also a
stationary stochastic process. Thus X*(¢) is compactly coherent.
REMARK 7.2. Since we have no regularity on R(t), the previous theorem does not
imply that
Supy=i=0,R (¢) < 0 with probability one.

However, the results to be proved in Section 8, in particular (8.13) and Chebyshev’s
inequality, do imply the existence of a process {R.(¢):t = 0} for ¢ > 0 satisfying (3.11)
and such that
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(7.24) Supe,=e=pR.(t) <o if & <oo,

REMARK 7.3. As a consequence of Lemma 6.8, X*(¢) is an ergodic stationary proba-
bility-measure-valued process. Therefore, the Birkhoff ergodic theorem implies that

T
(7.25) limr_ T J’ X*(t) dt = E(X*(0)), as,
0

where E (X*(0)) € M, (RY).

8. Scaling limit of the wandering random measure. In the last section we
established that the Fleming-Viot process is coherent and thus describes a wandering
random probability measure. In this section we identify the scaling limit of the wandering
random measure. This is done by rescaling space and time as follows:

(8.1) ' Zk(t, dx) = X(K?¢t, K dx).

THEOREM 8.1. Assume that X (0) has compact support. Then
Zg(t, dx) = 8wy, as K— o,

where ¢ = 2D and W(.) is a standard Brownian motion in R®. The convergence is weak
convergence of probability measures on Q. In other words, 8w is a measure-valued
process consisting of a single unit atom undergoing Brownian motion in R“.

Proor. Let the empirical mean and covariance processes x,(-) and v, (+) be defined as
in (6.40) and (6.41). Then x;(¢) is a martingale with increasing process

t

K x> =2y f v (s) ds.
0

We will denote by xX(f) the corresponding empirical mean process for the process
Zk(-,-). Thus,

(8.2) xX(@t) = K 'x (K%).

Then xX(¢) is also a square integrable martingale, with increasing process
K2t
(8.3) <xf>,=2yK? j Vi(s) ds = Tk(t).

0

In view of Lemma 6.8, without loss of generality, we can assume that v;;(s) is an ergodic
stationary stochastic process. Therefore

K2t
(8.4) Tx(t) = 2yK‘2f vi(s) ds— 2Dt as K— «, as.,

0

by the ergodic theorem and Lemma 6.12, part (ii). By a standard time-change argument
for continuous real martingales (refer to Stroock and Varadhan, 1979, (6.6)), we have

(8.5) x5 (t) = WA(Tk ()

where W, (-) is a standard Brownian motion. But then it follows from a result of Rebolledo
(1977) on the weak convergence of martingales that

(8.6) xK(t) > W.(ct), wherec=2D, as K — o

that is, xX(t) converges weakly to a constant multiple of a standard one-dimensional
Brownian motion.
Next we proceed to show that the components {x¥(-);i=1, - - ., d} are asymptotically
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independent. Recall that

K%t
8.7) < xK xK >, = (2y/K? f v, (s) ds.
0

Therefore, using the ergodic theorem,
(8.8) limg o << x5, xf >, = 2y lim, oA, (8) =0 if i5#],

by Lemma 6.12, part (ii). Therefore, the d components (xX(-), .-, x5(-)) converge
weakly to d independent real-valued Brownian motions as K — .

The last step consists in proving that the limiting measure-valued process consists of a
single atom which, in view of the above results, must be located at W(ct). Consider

(8.9) vE(t) = f x2Z(t, dx) — (J x.Zx (2, dx))z, i=1---,d.
Then from Lemma 6.12, part (i), we have
(8.10) vE(t) = @D/K%>y)(1 — e ™) + (e X™"/K?) J - e” dM,(s).
0
By (6.55),
(8.11) : <M, > = f q.(s) ds,
o

where ¢, (-) is given by (6.56). Hence, in view of Lemma 6.9 and Birkhoff’s ergodic theorem,
(8.12) t'< M >, —lim_. E(q(t) =8<x, as.
Therefore for large K, the second term on the right-hand side of (8.10) behaves like

(e™ "/ K*) Wa(B(e™™™ — 1)),

where Wy (.) is a standard one-dimensional Brownian motion. The law of the iterated
logarithm for W, (.) implies that, for fixed T' < oo,

(8.13) Supo<:=1V5 (£) — 0 in probability as K — .

Finally, (8.4), (8.5), (8.13) and Chebyshev’s inequality imply that

(8.14)  Zk(-,-) = 8w in the topology of C([0, T], Mi(R%)), in probability.
This completes the proof of the theorem.
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