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OPTIMAL TRIANGULATION OF RANDOM SAMPLES
IN THE PLANE

By J. MICHAEL STEELE!

Stanford University

Let T, denote the length of the minimal triangulation of n points chosen
independently and uniformly from the unit square. It is proved that 7./ vn
converges almost surely to a positive constant. This settles a conjecture of
Gyorgy Turan.

1. Introduction. Triangulation of finite sets occurs naturally in several areas of
mathematical analysis, and the object of this article is to take some beginning steps in the
probabilistic study of the triangulation process. The main result obtained is a proof of a
conjecture of Gyorgy Turan (1980) on the rate of growth of the minimal triangulation of
n points independently and uniformly distributed in the unit square.

Turan’s conjecture was initially motivated by an envisioned analogue to Karp’s proba-
bilistic algorithm for the Traveling Salesman Problem (Karp, 1977). This in turn was
motivated in part by the relatively recent development of practical fixed point algorithms.
(See, for example, Karamardian, 1977).

In view of the apparently special nature of the process studied here, it seems worth
noting that the method employed can be used in several problems which deal with growth
rates in geometric probability. The present technique will hopefully form a useful comple-
ment to the theory of subadditive Euclidean functionals (Steele, 1980).

To state the minimization problem precisely, first let S = {x1, x2, ---, x,} denote a
finite set of points x; € R% By a triangulation of S, we will mean a decomposition of the
convex hull of S into triangles such that each x; € S is a vertex of some triangle. It is not
required that each vertex of the triangulation necessarily be an element of S.

By the length of triangulation we mean the sum of the lengths of all of the edges in the
triangulation. The central quantity of interest here is T'(x;, x2, - - -, X,) which denotes the
minimum length over all possible triangulations of S.

The following result, originally conjectured by Gyorgy Turan, will be proved in the
next two sections.

THEOREM 1. If T, = T(X:, Xz, ---, X.) where X;, 1 =i < « are independent and
uniformly distributed in [0, 1], then

T,
limn—»eo —_— = B
n
with probability one for some constant 8 > 0.

In the fourth section, the assumption of uniform distribution is relaxed, and some special
results are obtained. The section also mentions several open problems.

2. Mean asymptotics. To establish a limit as in Theorem 1 it is almost essential to
first show ET, ~ Bvn. This will be done here by means of a Poisson “smoothing” and
Tauberian argument. By IT we denote a planar Poisson point process with intensity 1, so
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OPTIMAL TRIANGULATION OF SAMPLES 549

for each Borel A C R% II(A) is a set of points uniformly distributed in A. Further, the
cardinality |IT(A)| is a Poisson random variable with parameter A(A), the Lebesque
measure of A. )

LEMMA 2.1. The expectation ¢(t) = E(T(II[0, t]*)) satisfies
o(t) = m?p(t/m) + Cmtlog t

for some constant C, allm € Z* and t € (3, x).

ProoF. Let [0, 1]* be decomposed inta m? cells @;, 1 < j < m?, of edge length 1/m, and
set tQ; = {x:x = ty, y € @;}. Also, for any set of points A C R’ let e(A) denote the
cardinality of the set of extreme points of the convex hull of A. The main observation is
that

21)  T([0, t1*) = ¥ T(IL(tQ,)) + 4-27 m ™'t T2, e(T1(tQ))) + 2(m + 1)¢.

To establish (2.1) we note that a triangulation of II[0, ¢]* can be obtained by taking the
minimal triangulations of each I1(¢@),), and then completing these to a general triangulation
as follows:

(a) Adjoin each of the boundaries 8(¢@,), 1 =/ < m? and thus add a total length of
2(m + 1)t, and

(b) extend the triangulation of I1(¢@),) to a triangulation of I1(¢Q;) U {extreme points of
tQ,}. This second action has a total cost bounded by 4-(27"/%/m) - t-e(¢Q;), since there
are certainly no more than 4e(¢Q);) lines of length (uniformly) bounded by ¢-27%/m
which are necessary to complete the triangulation within ¢Q),.

We now take expectations in (2.1) and note that by Euclidean translation

ET(II(tQ))) = ET(TI[0, t/m]*) = ¢(t/m), 1=j=m*

If X, are independent and uniformly distributed in [0, 1]% Renyi and Sulanke (1963) proved
that

(2.2) EeX, Xz, -, Xp))<Alogn, n=3,

for a constant A. By elementary bounds on the Poisson distribution, this shows

Ee(II[0, t]) = A’ log ¢t for all t = 3, and some constant A’. Returning to (2.1) with these

bounds, one completes the proof of Lemma 2.1. ’
LEMMA 2.2. If a non-decreasing function ¢(t) satisfies

(2.3) o(t) = m?p(t/m) + Cmtlog t

for some ¢ >0 and allm € Z* and t = t,, then

lim, . ¢(¢)/¢* = lim inf,_., ¢(t) /£* = B.

Proor. From (2.3) we have

o(mt) _ ¢(¢) log(mt)
mr =@ T

and setting Y(t) = ¢(¢) + t** we have

(2.4)

Y(mt) _Y(¢)
t2

me’ =~ £

for all m < t ' exp(vt/2¢c). If we let

A,={m:\f;n;;35%g}= (mi<m<-..-<mp<-...},
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then by (2.4) applied recursively we see A, contains all integers which are of the form 2°3°
with @, b € Z*. From this last observation and elementary number theory one can check
that

lim mk+1/mk =1.
Now, for any £ > 0 we can choose a ¢, such that
Y(t)/th<B + e

But for any s, we can find m,, and my1 in A,, such that mxty < s < ms+1 o and apply the
monotonicity of y to obtain
Y(s) - Y(mp+1to) - Y(Mpsrto) Mis
s2 T (mrto)® T (murrto)®  mi

)

which yields
¥(s)

lim sups_.« - = (B + 9.

This last result implies y/(s) ~ Bs? and since ¢(s) = ¥(s) + o(s®) the proof is complete.
All that remains is the Tauberian argument to complete the main result of this section.

LEMMA 23. ET, ~ ,B«/;—z.

ProoF. From the definition of ¢(¢) and the rescaling of [0, 1]* to [0, ¢]° one can
calculate that

o(t) = t Yoo (ET,)e "> /nl.
The two previous lemmas can now be translated by change of variables to
(2.5) Yoo (ET,)e“u"/n! ~ BVu as u— .

By the Abelian theorem for Borel summability (Doetch, 1943), (2.5) implies that as x1 1,
one has

(2.6) Yr-1 (ET, — ET,-1)x" ~ BI‘(%)(I —x)

But now the (carefully chosen) definition of T, implies ET,+; = ET,, so the Karamata
Tauberian theorem (Feller, 1971) is applicable. This means that (2.6) also implies the basic
result,

ET, = $i-1 (E(Ty) — E(Ti-1)) ~ BV,

3. Stabilizing variances. Rather than attempt to bound the variance of T, directly
it seems useful to introduce a close approximation whose variance is more easily bounded.
We therefore consider the new random variables T = T(Xi, Xz, .-+, X, (0, 0), (0, 1),
(1, 0), (1, 1)); and thus, instead of just triangulating {Xi, Xz, + -+, X} C [0, 1] one also
includes the corners in the triangulation.

To check that T, is close to T, one just notes that

31 0=T.,-T.,=4V2eX1,Xs, --+, Xn) +4 for X,€[0,1% 1=i=n.

The first inequality in (3.1) follows from the definition of T and the second inequality
follows from the same consideration applied in the proof of Lemma 2.1. Since in the case
of X, ii.d. uniform on [0, 1]* we have Ee(X,, Xz, - - -, X») < A log n, the inequalities in (3.1)
and Lemma 2.3 give in that case the asymptotic equivalence,

(3.2) ET,~ET,~pVn as n— .
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The key tool in obtaining the required variance bound of this section is the Efron-Stein
inequality (Efron-Stein 1981). If S(Y1, Y3, - - -, Y,—1) is any real symmetric function of the
independent identically distributed random vectors Y,, 1 = j < o, we set S; = S(Y1, Y»,

e, Yii1, Yieq, -++, Y,) and S. = 1/n Y 7-1 Si. The Efron-Stein jackknife inequality then
says

(3.3) VarS,.1 <= E Y%, (S:— S.)%
This inequality will now be applied to the random variable 7"(Xi, Xz, - - -, X,).

LEmMA 3.1. IfX;, 1 =<i< x, are independent and identically distributed with support
contained in [0, 1% then

Var T,,_1 < 6vV2 ET,, n=2.

Proor. We first note that in the Efron-Stein inequality the right side is not decreased
if S. is replaced by any other function of Y1, Y3, - -, Y,. Applying the resulting inequality
to T, we have

(3.4) Var T, 1= EY1 (T'X1, Xz, +++, Xicty Xig1, » o+, X)) — T

There are two ways to bound the differences in (3.4). If we extend a minimal triangulation
of {(0,0), (1, 0), (0,1), (1, 1), X;, X5, ---, Xi—1, Xis1, - -+, X} = A, to a triangulation of all
of {(0, 0), (1, 0), (0, 1), (1, 1), X;, Xz, -+, X,,} = A, then an increment of at most3v2 is
made. This crude bound comes from the fact that X, is contained in some triangle A of the
ﬁx\'/s_g triangulation, and X; can be connected to the three vertices of A at a cost less than
3v2.

A second way of bounding the differences in (3.4) comes from the fact that if X; is
removed from a minimal triangulation 7 of A, the decrease in the cost is at most
¥ jera | Xi — X;| where I(i) = {j: (X;, X;) is an edge of 7 }.

From the trivial inequality, min(a? b?) < ab applied to the two preceeding bounds and
(3.4), we obtain

(3.5) Var T 1 < E Y71 3v2 Yiern | Xi — X|.
The reason this is effective is that

(3.6) Y Yiern | Xi — Xj| = 2T,

because each edge of the minimal triangulation 7 of A appears exactly twice in the double
sum. From (3.5) and (3.6) the lemma follows immediately.

Now it is possible to complete the proof of Theorem 1. First recall that when the X;,
1 < i < o, are independent and uniformly distributed on [0, 1] the relation (3.2) ET, ~
/3«/2 is valid. By Lemma 3.1, Chebyshev’s inequality, and a 2e argument, we then see that
the probabilities P(| Ty, — B ‘/'Tkl < ¢) are summable for n, = k3, 1 < k < . By Markov’s
inequality and the Renyi-Sulanke bound (2.2) the probabilities P(e(X:, Xz, «--, X,,) =
evn;) are also summable. The inequalities (3.1) therefore imply that

(3.7) lim_.oo T, /Vx = B

with probability one. Since T, is non-decreasing and n;.:/n. — 1, the subsequence limit
(3.7) suffices to prove the existence of the limit in Theorem 1.
To check that B is indeed positive we just note that

(3.8) oT, = Yo min{| X, — Xi|:1=j=n, j#i},

since each X; must be joined to some other X; by an edge of the triangulation. Now a trite
calculation shows that there is a constant « > 0 so that E min{|X; — X;|:1=</j=n,j# i)
= an~"? and hence that ET, = B+n for a 8> 0.
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4. General distributions and open problems. If one assumes only that the X;,
1 < i < o are independent and identically distributed with E|X;|*> < , it still seems
inevitable that lim,_... T\, /Vn exist with probability one. The natural approach to such an
extension, as used in the case of subadditive Euclidean functions (Steele, 1980), does not
seem to help in this context even when the X; have bounded support. The problem seems
to arise from the fact that the functional T, = T(Xi, X, - - -, X.) does not have the “simple
subadditivity” property.

Nevertheless, the next lemma shows that T, does have one of the crucial properties
used in extending the theory of subadditive Euclidean functionals to general distributions,
the “scale boundedness” property.

LEMMA 4.1. There is a constant C such that
T (x1, X2, vy Xn) = cVn
for alln =1 and x, € [0, 1]*.

ProOF. For n = 1 one sets ¥(n) = max T"(x1, x2, - - -, X,) where the maximum is over
all possible choices of x, € [0, 1]. We also set $(0) = 4. The key observation is that

(4.1) Y(n) < maxaro+era=n 2{Y(@) + ¥(b) +¥(c) + ¥(d)}.

This inequality is easily proved by decomposing [0, 1]? into four quadrants, correcting for
the scale of the quadrants, and being careful of the cases which leave some quadrants
empty. By induction one can then prove ¢(n) = 30vn . (In fact, C = 2-4. (2 — ~/§)_1 =
29.8 will suffice.)

As an application of the preceding lemma, one can prove the following.

THEOREM 2. IfX;, 1 <i< =, are independently distributed with compact support
(4.2) limpw T(X1, X5, +++, X2)/Vn =0 as,

if, and only if, the support of the {X.} is singular with respect to Lebesgue measure.

ProoF. First suppose the X; have compact support S with Lebesgue measure zero,
and then choose a finite cover of S by closed squares 4,, 1 <j =< m, with disjoint interiors.
We can further suppose that ¥ A(4,) = (16) ™" $7-1 | 94,|> = e where A(4,) denotes the
Lebesgue measure for A, and |34, | denotes the length of its boundary 94;.

For each j, let E, denote the (four) extreme points of A, and complete the set of edges
U™, 84, to a triangulation of U7-; E;. Let B be the total length of the resulting
triangulation.

We then have the elementary bound

TX:, Xs, -+, X)) =Y T(E,U {X.:X.€EA)}) + B.
By Lemma 4.1 with a change of scale to squares of side A(4,)"* we obtain
T(X1, Xz, -+, X)) = CYL AMA)P|E U (X X, EA)} |"* + B,
so by Schwarz’ inequality
TX1, Xz, -+, Xu) = C(U1 MAL))*(d4m + n)'? + B.

Since Y1 A(A,) < ¢ was arbitrary, the first half of the lemma is thus proved.
To prove the converse we note as before that

4.3) oT, =Y, min{| X, — X,[:1=j=n, i#j)}.

By the Lebesque density theorem one can show (without too much difficulty) that if the
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X, do not have purely singular support that there is a constant 8§ > 0 so that
4.4) Emin{| X, - X;|:1<j=n}>dén""%

But if (4.2) holds, the scale boundedness of Léemma 4.1 and the bounded convergence
theorem imply ET, = o(\/—ﬁ ). This is incompatible with (4.4), so the theorem is proved.

The fact that T,/ Vn = 0 a.s. when the {X;} are singular with compact support suggests
that more refined results might be possible in the singular case. This suspicion is confirmed
by several special results of which the following is typical.

THEOREM 3. IfX;, 1 =i < o, are independent and uniformly distributed on the unit
circle, then

(4.5) T.— ET, =o(log®n) aus.
for any constant a > ' and
(4.6) vilogn = ET, < y;log n,

for some constants 0 < y; < y2 < .

The proof of (4.5) is not difficult and can be based on the Efron-Stein inequality which
in this case shows Var T, = O(n~"). The bounds in (4.6) are not difficult if one does not
aim for good values of y; and y.. Since it is very likely that one actually has ET, ~
v log n, there is little loss in omitting the proofs of the bounds (4.6).
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