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BERRY-ESSEEN THEOREMS FOR SIMPLE LINEAR RANK
STATISTICS UNDER THE NULL-HYPOTHESIS!

' By RonNALD J. M. M. DoEgs?

Mathematical Centre, Amsterdam

Berry-Esseen bounds of order O(N~"?) are established for simple linear
rank statistics under the null-hypothesis. The theorems are proved for a wide
class of scores generating functions which include the normal quantile func-
tion. This improves earlier results under the null-hypothesis in von Bahr
(1976), Huskova (1977, 1979) and Ho and Chen (1978).

1. Introduction. Let X;, X;, ---, Xy be independent and identically distributed
random variables with a common continuous distribution function F.If Z, < Zo < .- - < Zn
denotes the sequence X, X, - - - , Xy arranged in increasing order, then the rank Ry of X;
is defined by X; = Z  and the antirank Djy is defined by Xp = Z;,j=1,2, ---, N. For
specified vectors of real numbers ¢y = (cin, C2n, -+, cnn) (regression constants) and ay
= (ain, @zn, - -+ , ann) (scores)

(1.1) Tn=3YN, C)NOR N

is called a simple linear rank statistic. Well-known special cases are the two-sample linear
rank statistics, which have ¢jy = 0,forj=1,2, ... ,n,¢jy=1,forj=n+1, -.. , N and
Spearman’s rank correlation coefficient p which, under the null-hypothesis, is distributed
as Ty with ¢,y =7 and ar~N=Rin,j=1,2,.-.,N.

Throughout this paper we make the following assumption about the regression con-
stants.

Assumption (A). The regression constants ciy, can, - - - , ey satisfy

Ymien=0, Ticin=1 and Y]]’ =OWNT).

The scores ain, azn, - -+ , any are generated by a function J(¢), 0 < ¢ < 1, in either one
of the following two ways

. J .
.2 N = ——— = cee
(1.2) (approximate scores) a;n J( N 1), Jj=12 , N,
(1.3) (exact scores) ayn=EJUw), j=1,2,---,N.

Here U, .y denotes the jth order statistic in a random sample of size N from the uniform
distribution on (0, 1). For almost all well-known linear rank tests the scores are of one of
these two types.

Note that assumption (A) implies that ETy = 0. Taking ay = N~ Y2, a;x, we find that
the variance o% of T (cf. (1.1)) is given by
—1_—125V=1 (ajn — an)®

N
(see e.g. Theorem II 3.1.c of Hajek and Sidak (1967)).

(1.4) ok = o*(Tn) =
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Define for each N = 2
(1.5) TH%=0oNTn
and
(1.6) F#(x) = P(T{<x) for—o<x<oo,

The asymptotic normality of 7'% has been established under very general conditions (cf.
Hajek and Sidak, 1967, Chapter V). Recently a Berry-Esseen bound of order O (N~"?) for
the distribution function F'§ of T} (cf. (1.5) and (1.6)) has been obtained for bounded
scores, 1.e.

(1.7) sup.eg | Fi(x) — ®(x)| = O(N7'%),

where ® is the standard normal distribution function (cf. von Bahr (1976), Huskova (1977,
1979) and Ho and Chen (1978)). The purpose of this paper is to extend the assertion (1.7)
to a large class of scores generating functions including the normal quantile function. The
related problem of establishing Edgeworth expansions for simple linear rank statistics will
be discussed in the author’s forthcoming Ph.D. thesis. We note that for the special case of
the two-sample linear rank statistics, asymptotic expansions both under the null-hypothesis
and under contiguous alternatives were obtained in Bickel and Van Zwet (1978).

In Section 2 we state our results in the form of two theorems. Section 3 contains a
number of preliminaries. The proofs of the theorems are contained in Section 4. In the
sequel we suppress the index N whenever it is possible.

2. Berry-Esseen Theorems. We start this section by introducing a condition on the
derivative of a function which ensures that this derivative does not oscillate too wildly
near 0 and 1 (see also Appendix 2 of Albers, Bickel and Van Zwet (1976)).

Condition R,. For real r > 0, a function 4 on (0, 1) is said to satisfy condition R, if A is
twice continuously differentiable on (0, 1) and
h" (t)
()

1
<1l+-.

lim Supt__)(),lt(]. - t) } -

To formulate our theorems we need some smoothness assumptions for the scores
generating function J.

Assumption (B). The scores generating function J/ satisfies
1 1 1
J J(t) dt =0, j J*t)dt=1 and J’ | J(@®] dt < 0.
0 0 0

Assumption (C). The scores generating function oJ is continuously differentiable on
(0, 1). There exist positive numbers I' > 0 and a < % such that its first derivative J’
satisfies '

| J' @) =T {tQ -1} for teE(0,1).
For exact scores Theorem 2.1 provides a Berry-Esseen theorem for the distribution

function F}¥ (cf. (1.6)) of T% (cf. (1.5)). Theorem 2.2 deals with the case of approximate
scores.

THEOREM 2.1. Take a,= EJ(U,n) forj=1,2, ---, N. Assume that assumptions (A)
and (B) are satisfied and that

(2.1) Y1 6% (J(Ujn)) = O(NV*(log N)73).
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Then
2.2) SUp.er | Fi(x) — ®(x)| = O(N73).

THEOREM 2.2. Take a,=J(j/(N +1)) forj=1,2, ..., N. Assume that the regression
constants satisfy assumption (A) and that the scores generating function J satisfies
condition R,, assumption (B) and assumption (C). Then

(2.3) sup.er | Fi(x) — ®(x)| = O(N"3).

We shall show in Lemma 3.1 that, if the scores generating function / satisfies assumption
(C), then condition (2.1) in Theorem 2.1 is fulfilled. It follows that the assumptions of
Theorem 2.2 imply those of Theorem 2.1. We note that Theorems 2.1 and 2.2 both allow
scores generating functions tending to infinity in the neighborhood of 0 and 1 at the rate
of {t(1 — ¢)}~'/*** for & > 0. Finally we note that Huskova (1977, 1979) also proves a Berry-
Esseen type bound for bounded scores under certain alternatives.

3. Preliminaries. The aim of this section is threefold. In the first place we obtain
bounds for moments of functions of order statistics. For this we shall draw heavily on the
results in Appendix 2 of Albers, Bickel and Van Zwet (1976). Secondly, we consider the
behavior of the characteristic function of 7% (cf. (1.5)) for large values of the argument.
We shall prove a lemma which can be reduced to a special case of Theorem 2.1 of Van
Zwet (1980). Finally we prove a technical lemma needed in the proof of Theorem 2.2.

LEMMA 3.1.  If J satisfies assumption (C), then there exists a number § € (0, Y4), such
that uniformly for integers 1 =k < /< N,

. 2 —1/2+28 —1/2+28
,_ o _ofl % N+1-¢
(3.1) Zf:’“E{J(U’:N) J(N+ 1)} _0<{N+ 1} +{ N+1 } )’

2 Y1 0% (J(Ujn)) = O(N*7%).

If J also satisfies condition R, then uniformly in k and ¢
. 2
J

(3.3) Yik {EJ(U,:N) - J(N " 1)}

o E —3/2+28 Y N Ntl—/ —3/2+2
B N+1 N+1 )

Finally, if in addition J satisfies assumption (B), then

. . 2
(3.4) ¥ {J(ﬁ> —% N J(N:— 1)} = N+ O(NY*%),

Proor. Without loss of generality we suppose that assumption (C) holds for a € (1,
%) and we take 8 = % — a. Let A be a function on (0, 1) with #/(¢) = T'{¢t(1 — )} ***° and
write A, = j/(N + 1). Since h satisfies condition R,, Lemma A.2.3 of Albers, Bickel and Van
Zwet (1976) yields

. — )\ )\ 3/2+28
E{h(wN>—h<A,>}2=o(W1 M) )

N

uniformly in j. Because | J'()] = k'(t) we have |J(s) — J(¢)| = | h(s) — h(t)| for every s, t
€ (0, 1) and hence

N —_ N —3/2+28
E{J(Up) = JO)) = o(_&ﬂ__%&__)’

uniformly in j. Now (3.1) follows by summation and (3.2) is implied by (3.1) as o*(J (U;.v))
= E{J(Un) — J\)}
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If J also satisfies R; then, in view of (A.2.11) in Albers, Bickel and Van Zwet (1976), we
have

(1 — N\ (N {1 — )\.))—5/4+8

N N

uniformly in j; (3.3) follows by summation.
If J also satisfies assumption (B), then

LY, J L ow J O\ _ 4
NZ’=1J<N+1) NZFI{J(m) EJ‘UJZN)}

because of (3.5). Furthermore, in view of (3.1) and (3.5),
J J
> JZ(N ~ 1) -N Y {J2<m) - EJZ(le;N)}

. 2
=3 E{J(U,-m - J( e 1)} + o5,

= O(N—3/4—8)

()

. ) — J = 1/2-25
|53t - ()| - o0

which proves (3.4) and the lemma. 0O

We now consider the behavior of the characteristic function of 7'} for large values of
the argument. Let

(3.6) Un(t) = Ee*T™.

LEmMMA 3.2. Suppose that the conditions of either Theorem 2.1 or Theorem 2.2 are
satisfied. Then there exist positive numbers B, B and y such that

(3.7) | Yn(t)| = BN FlogN
forlogN=<|t|=yN"?and N=2,3, ...

Proor. The present lemma is essentially a special case of Theorem 2.1 of Van Zwet
(1980) where (3.7) is proved for log N =< |t| = yN*? Since we are concerned with
independent and identically distributed random variables X; X, - - . , Xy—which we may
assume to be uniformly distributed without loss of generality—condition (2.7) of this
theorem is clearly satisfied. Moreover, it is easy to see that condition (2.6) is superfluous

in our case since we are only concerned with values of | ¢| = yN'/2 Finally, it follows from
Section 3 in Van Zwet (1980) that the existence of positive numbers ¢ and C such that

(3.8) SNict=e, YNi|cP=CNT2
3.9 SYi(ai—a?’=cN, YV i|laq-al’=CN

suffices to prove the present lemma. Since assumption (A) guarantees the validity of (3.8)
it remains to check (3.9).
For exact scores a; = EJ(U,.n), assumption (B) and (2.1) imply that @ = [ J = 0 and

S af = SN0 ES(Uyn) — St 0% (Usa)) = N — O(N™),
1
B o P = S0 B IWP =N [ 1 T0F d
0

and (3.9) follows. For approximate scores a; = J(j/(N + 1)), (3.9) is a consequence of
assumptions (B) and (C) (cf. also (3.4)). O

Let [x] denote the largest integer not exceeding x. Define m = [N?*] and I = {1, 2,
e om,N—m+1, ..., N—1,N}. Take § € (0, %) as in Lemma 3.1.
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LEmMA 3.3. If assumptions (A) and (C) are satisfied, then

. 4
(3.10) E(Z,ez cD,J(N’+ 1)) = O(N—3-503),

PRrROOF. According to assumption (A), Y ¢;=0,Yc’=1,Y|¢|>=ON""* and ¥ ¢}
=max|¢ |- Y| ¢* = O(N"?). Hence, straightforward computation shows that for distinct
Ljh kel

Ech=O0(N™?),  Echep=0(N"), Echch=O0(N™,
Ec%.cD,th = O(N_a), ECDICD,thch = O(N_4).

Assumption (C) ensures that for /=1, 2, 3, 4,

()

Direct computation of the left-hand side of (3.10) now produces the result of the lemma. 0O

CRUES

¢ N7
- J ({J®OF + | JA = |} dt = O(N/3+76-26/3),
0

4. Proofs of the theorems. To establish a Berry-Esseen theorem one usually invokes
Esseen’s smoothing lemma (see e.g. Feller (1971) page 538), which implies that for all y >
0

N2
(4.1) Supser | Fi(x) — ®(x)| < - J' [ ¢]7" | yn(t) — e™72 | dt + O(N72)

—yNI/2

where Yn(¢) denotes the characteristic function of 7% (cf. (3.6)).
It follows from Lemma 3.2 that in order to prove Theorems 2.1 and 2.2 it is sufficient to
show that

42) J |17 | ¥we) — ™% | dt = O(N'7).
|t|slogN

We first prove Theorem 2.1. Let R = (Ry, Re, -+-, Ry) and D = (Dy, D,, ---, D)
denote the vectors of ranks and antiranks respectively and define

(4.3) Sn=3Y1 ¢, J(U) = ¥ end (Upw),

where Ui, Us, - - -, Uy are independent and uniformly distributed random variables on (0,
1). Since the vector of order statistics is independent of R, we have

(4.4) E(Sn|R) =YX, ep EJ(U;n) = Tn

and it follows that
E(e"™(Sy — Tn)) = E(E(e"™(Sy — Tn)| R))
=E(“™E(Sy— T~ | R)) = 0.
Hence
4.5) Ee"V = Ee"™ + O(t*E(Sy — Tv)?%)
and because of (4.4), assumption (B) and (2.1)

1
o) E(Sy = Tn)" = ES} — ETY = 1 - 5— X% {(EJ (U)Y’

! 1
= ﬁzyﬂ o2(J( Uin)) — Vo1 = O(N—l/z(log N)).
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As Sy is a sum of independent random variables with ESy = 0, 02%(Sy) = 1 and
Y1 PE|J(U)|* = O(N'7?) (cf. assumptions (A) and (B)), we may apply Lemma V 2.1 of
Petrov (1975) to obtain that for |¢| < log N,

4.7 | EeSv — e=2 | = O(N72 | ¢ |? &73).
Finally we note that (4.6) implies that
(4.8) o% = 6% (Tn) = 1 + O(N"2(log N)™?.

Combining (4.5) through (4.8) we arrive at (4.2) and the proof of Theorem 2.1 is complete.
We now turn to the proof of Theorem 2.2. To distinguish simple linear rank statistics
with exact scores and with approximate scores we define

, R, j
4.9 TN=25V=1C,‘ <N+1> Z, 1CDJ(N+1)
and
(4.10) Ty = 25};1 CDIEJ( Ujw).

Because of Lemma 3.1, the conditions of Theorem 2.2 imply those of Theorem 2.1 and we
may therefore conclude from the proof of Theorem 2.1 that

(4.11) f |17 Be"™ — e | dt = O(N7).
|t|<logN

A Taylor expansion yields
(4.12) Ee"™ = Ee'T + jtEeT"(Ty — T4) + O(2E(Ty — T4)?).

In the situation of Theorem 2.2 the scores generating function satisfies both assumption
(C) and condition R;, so that we may apply Lemma 3.1 to find that for some & € (0, %),

. 2
E(Ty — Th)* = (z, ch{EJ( ,—:N)—J(Nil)})

_Lgn g\

1 i
TNV - 2 Y {EJ( Uin) — J<m)}
J
(4.13) ) { EJ(Upn) — J(N A 1)}

L s (i N\
_TV——IZFI{EJ(UI:N) J<N+1)}

1 N j *
TNO-D (Z":‘ {EJ(U””) - J(N ¥ 1>}>

— 0 (N—I/Z—ZB) .

Define m = [N“*]and I = {1,2, ---,m, N—m + 1, ---, N — 1, N} as in Section 3.
Repeating the argument of (4.13) for restricted sums we find

414) E ‘ N cD,<EJ(U,-;N) - J( o 1))

. 2y 1/2
= {E( pih cD{EJw,:N) - J(N{'_ 1)}) } = OBy,
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Combining (4.11) through (4.14) we see that, in order to prove (4.2), we have to show that

iT'N ¢ N J - ~1/2
(4.15) jl . E(e z,elcu,{EJw,w) J(N +1>})‘dt OWN72).

We note that (4.13) and (4.14) imply that

. 2
(4.16) E <2,-e1 cD,{EJ (Ujn) = J(ﬁ )}) = O(N7/27%),

Let & = {D;:j € I} be the set of antiranks D; with indices in I and let w = {d;:j € I'} be
a possible realization of . We have

e —
@ = E{E(exp{it e cD]J(ﬁ)} ‘ ﬂ)E(exp{zt Yjercp J(N{l— T )}
: z,-ezcu,{EJ(U,«;N) - J(N’+ - )} l 9)} .

Conditionally on @ = w, ¥)=7%1 epJ (j/(N + 1)) is distributed as a simple linear rank
statistic for sample size N — 2m based on a set of regression constants {ci, ¢z, ++-, cn}
\{ca:j € I} and having a scores generating function

m+ (N-2m+ 1)x
Jn(x) = J< N1 ) for x€ (0, 1).
We write this simple linear rank statistic as
Q -
(4.18) Tov =YY, by ( M; L
where M = N — 2m, {bl’ b2, ) bM} = {C], Coy v00y CN}\{cd,:jEI}’ Ql? QZ’ ] QM are

the ranks of Vi, Vs, ..., Vi, which are independent and uniformly distributed random
variables on (0, 1). Define

(4.19) Sov =YY, bidn (V).

LEMMA 4.1. Under the assumptions of Theorem 2.2 we have

(4.20) E(Ton — Sun)® = (1 + (Tjer ca))O(NT2747%),

Proor.

2
E(Tov—Sun) =Y b E < < 1) JN(VI))

+ X Y= bibE < ) _JN(VI))(JN(M% 1) _JN(VZ))~

| Y Y bibs| = | ()51 8))* = X321 b7 | = | (Tjercq)® — X)L b7 |

=1+ (Yjerca)?

Because ¥, b? <1 and

the Cauchy-Schwarz inequality yields

2
E(Tov = Sov)® = 2 + (Yjer Cd,)Z)E<JN<MQ_: 1 ) - JN(VI)) .
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Furthermore we have

2 ‘ )
E(JN<M(?ii 1) - JN(Vl)) =MZ%1 E(JN(‘/j:M) _ JN<M]+ , )) ’

where Vi < Vou < - -+ < V. denote the order statistics of Vi, Vs, - .-, Vir. We note
that | Jx(¢) | is bounded above by

o (N=2m+1\ _ ,(m+ (N-2m+ 1)
hN(t)_< N+ 1 )h( N+1 )

where A is defined as in the proof of Lemma 3.1. Since Ay satisfies condition R., we can
argue as in the proof of Lemma 3.1 to show that

M l 2

v E{JN(V/"-M) - JN(M+ 1 )}
o (lew J - (37 2
_O(MZFIM+1(1 M+1){hN<m—1)})

! -
= 0<J’ t(1—t){hn(t)}? dt) = O(flmN"‘l (¢ — )32+ dt)
o

N+1
= O(NV3%/3)
and the proof of the lemma is complete. O
It follows from Lemma 4.1 that
4.21) | Ee"n — Ee™Sov| = O(|t| N7/~ + (Fjer ca)?}?).

Since S, is a sum of independent random variables, with variance (cf. assumption (A))
(4.22) 75 = 6%(Sn) = (1 = Yjer ¢&)o*(In(V1)),

Lemma V 2.1 of Petrov (1975) together with assumptions (A) and (B) yield

(4.23) | Eeit(Sv—ESa) — e~72t"| = O(N"*| ¢|°)

for all | ¢| = log N. Furthermore, in view of assumptions (A), (B) and (C),

| EeitSv—ESa) — Eei®Sen| < | ¢| | ES,v|

1 m
N -va

=|¢| |, b,f Jn(t) dtl = Itlll_l | Yjercq | m”“ J(t) dtl

(4.24) 0 N+1
N _m
=2|¢t| mﬁmaxlsjszv | ¢l JN“ {J@)+JA —¢)} dt ‘ = O(|¢| N7V3-2/3),
0

Defining
(4.25) & = MN'6*(Jn (V1))
and noting that

|e_75t2/2 - e‘*fvtz/2| =% |72 — 7¥%|t}
we combine (4.21) through (4.24) to arrive at

(4.26) | Ee"™N — =M 2| = O(|t| N™V*"(1 + (T,er ca)}? + 2|72 — 7%])



990 RONALD J. M. M. DOES

for all |¢| < log N and uniformly in . Substituting this result in (4.17) we obtain by
repeated use of the Cauchy-Schwarz inequality,

E(eitva ZIGI cDJ{EJ(l]ij) - J(N{" 1 )})
= e—-rNt /2E(exp<lt Z/EI Cp J<N+1 )) ZjEI cDj{EJ(l]jN) - J(N‘:- 1 )})

+ 0| Beren (B 7 (527 )| (1137208 Qs ey

1-Serch = |))

e e_TWE({l + it Yjer cn, J(N+ 1 )} ZjeICDJ{EJ(Uj:N) - J<N{;- 1 )} )
+O<{E<Z;echj{EJ(Uj:N)_ J( ﬁ )})2}1/2
H < {ZJEICDJ(N{;_I)}4)I/2}

2y 1/29
+ || NTP B + (Syeren))) 2 + tz{E<Z’EI b= 2_m) } D

+ ¢2

N
for all |£| = log N. We note that the assumptions (A) and (C), (3.5) and (3.11) imply

E{l + it ZJGI CqJ(ﬁ)} Zjel CDJ{EJ(IJ/':N) - J<ﬁ)}
] L J
wey IN ZIEIJ<N+ 1 ){EJ(U':N) J(N+ 1 >}
1 J
TNN-1 {Z’E’ (N +1 >}

CSer {EJ(U,;N) - J(N’+ - )} ‘ = O(|t| NV22),

Furthermore, we obtain by applying Lemma 3.3

(4.29) { (2,61 cp J(N_;_ : ))4}1/2 = Q(N71/3-9/3),
Finally,

(4.30) {EQ+ Tjeren)®}? =1+ ON?)
and

(4.31) (E(Sjer ch, — 2mN™)?)2 = O(N~?)

according to assumption (A). Combining (4.16) and (4.28) through (4.31) and substituting
these results in the right-hand side of (4.27) we find that

(4.32) E<ettT'~zje, cDJ{EJ(U,;N) - J( N’+ - )}) = O(|t| N"2®)

for all | £| < log N. To conclude we note that it follows from (3.4) that

2 -] _ 1 N i 2_ —1/2—28
(4.33) o*(Tn) = Z, 1< (N+ 1) NZM J(N+ 1)) =1+ O(N ).
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We see that the proof of Theorem 2.2 is complete by combining (4.1), Lemma 3.2, (4.11)
through (4.14), (4.32) and (4.33). 0
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